
Dynamic Resource Management Using Mapreduce Framework In

 Heterogeneous Cloud Environment

Mrs. J. Keerthika
#1

, Mr. Castro
*2

#1
II M.E.CSE,

*2
Asst. Prof, M.E CSE

ASL Pauls College of Engineering & Technology, Elur Pirivu, Coimbatore, India

Abstract

CLOUD computing shows a work of fiction way to

supplement the current utilization and delivery model

for IT services based on the Internet, by providing for

dynamically scalable and often virtualized resources

as a service over the Internet. We tackle the problem

of dynamic resource management for a large-scale

cloud environment. We honour the resource Share

problem as that of dynamically maximizing the cloud

utility under CPU and memory Constriction. We

extend gossip protocol and mapreduce framework to

provide an efficient heuristic solution for the complete

problem, which includes minimizing the cost for

dynamic adapting an Share. The protocol continuously

executes on dynamic, local input and does not require

global synchronization. We propose architecture to

allocate resources to a MapReduce cluster in the

Cloud. In MapReduce, the Map function process the

input in the form of key/value pairs to generate

intermediate key/value pairs, and the Reduce function

process all intermediate values associated with the

same intermediate key generated by the Map function.

In heterogeneous environments where the time to

process a task varies depending on nodes, it is

sometimes better to pick a remote task that runs faster

on the node. Hence, we need to consider both the time

required to read and the time needed to process the

data, to pick the best task for the node. We achieve a

metric of share in a heterogeneous cluster to realize a

scheduling scheme that achieves high Concert and

Fairness.

Key Words—Cloud computing, distributed

management, Re-source Share, gossip protocols.

1. Introduction

Cloud computing environments provide a delusion of

infinite computing resources to cloud users so that

they can increase or decrease their resource

consumption rate according to the demands. Cloud

Environment includes the physical infrastructure and

related control functionality that enables the

provisioning and management of cloud services in

figure 1. In cloud computing environments, there are

two players: cloud providers and cloud users. On one

hand, providers hold massive computing resources in

their large datacenters and rent resources out to users

on a per-usage basis. On the other hand, there are

users who have applications with actuating

Loads and lease resources from providers to run their

applications.While our contribution, we conduct the

discussion from the acuity of the Platform-as-a-

Service (PaaS) notion, with the specific use case of a

cloud service provider which Hosts sites in a cloud

Environment. It offers hosting services to site demand

owners through a middleware that executes on its

infrastructure. Site Owners give services to their

respective users via sites that are hosted by the cloud

service provider. Our contribution can also be applied

to the Infrastructure-as-a-Service (IaaS) notion. A use

case for this notion could include a cloud tenant

running a collection of virtual appliances that are

hosted on the cloud infrastructure, with services

provided to end users through the public Internet.

Figure 1.Cloud architecture

 The intend goal of cloud Environment:

 Concert objective: Objective is to achieve

maxmin sprite among sites for computational

resources under memory Constriction.

 Adaptability: The resource Share process

must with dynamic and resourcefully adapt to

changes in the demand from sites.

 Scalability: To achieve scalability, we

envision that all key tasks of the middleware

layer, including estimating global states,

placing site modules and compute policies

for request forwarding are based on

distributed algorithms.

 These solutions include functions that compute

placements of applications or virtual machines onto

specific physical machines. However, in a combined

and integrated form, (a) with dynamism adapt existing

placements in response to a change (b) with dynamism

scale resources for an application beyond a single

physical machine, (c)scale beyond some thousand

physical machines. These three features in integrated

form characterize our contribution. The notions in this

2191

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60692

paper thus outline a way to improve placement

functions in these solutions.

2. System architecture

Datacenters running a cloud Environment often

contain a large number of machines that are linked by

a high-speed network. Users access sites hosted by the

cloud Environment through the public Internet. A site

is typically accessed through a URL that is translated

to a network address through a global directory

service, such as DNS. Figure 2 (left) shows the

architecture of the cloud middleware. The mechanism

of the middleware layer runs on all machines. Each

machine runs a machine manager component that

computes the resource Share policy, which includes

deciding the module instances to run. The resource

Share policy is computed by a protocol that runs in the

resource manager component. This component takes

as input the estimated demand for each module that

the machine runs. The computed Share policy is sent

to the module scheduler for implementation/execution,

as well as the site managers for making decisions on

request forwarding. The overlay manager implements

a distributed algorithm that maintains an overlay graph

of the machines in the cloud and provides each

resource manager with a list of machines to interact

with.

Our architecture associates one site manager with each

site. A site manager handles user requests to a

particular site. It has two mechanisms: a demand

profiler and a request forwarder. The demand profiler

estimates the resource demand of each module of the

site based on request statistics, QoS targets, etc.

Similarly, the request forwarder sends user requests

for processing to instances of modules belonging to

this site.

Figure 2.The architecture for the cloud
middleware (left) and mechanism for request

handling and resource Share (right).

Figure 2 (right) shows the mechanism of a site

manager and how they relate to machine managers.

The above architecture is not appropriate for the case

where a single site manager can‘t handle the incoming

request stream for a site.

3. Problem statement

 In the existing system, it focus on homogeneous

environments. In a homogeneous environment where

all the machines have the same computing capacity.

Here we consider data locality and network

connectivity when making a job scheduling decision.

If multiple jobs receive their fair share of resources, it

is enough to count the number of machines assigned to

each job. The same applies when the user makes a

resource request; him or her only need to specify the

number of machines wants. Drawback is cloud that

spans a single datacenter containing a single cluster of

machines and efficiency will be stumpy. We proposed

heterogeneous environment to schedule a job on its

preferred allocate resources to achieve high Concert

and Fairness using MapReduce cluster in the cloud.

4. Module description

4.1. Resource share by cloud middleware

We present gossip protocol for resource Share in a

cloud Environment as P*. P* has the structure of a

round based distributed algorithm. Node interaction

with P* follows the so-called push-pull archetype,

whereby two nodes exchange state information,

process this information and update their local states

during a round. P* runs on all machines of the cloud.

After that, it invokes P* to compute and with

dynamism adapt the configuration with the goal to

optimize the cloud utility. Here, we consider a cloud

as having computational resources and memory

resources, which are available on the machines in the

cloud infrastructure. The protocol P* takes as input the

available cloud resources, the current configuration A

and the current resource demand. The specific

problem we address is that of placing modules on

machines and allocating cloud resources to these

modules, such that a cloud utility is maximized under

Constriction. OP(1) optimized the resource Share with

memory Constriction.

Figure 3. Resource Share to Virtual
Machine and

Host by gossip protocol in cloud

2192

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60692

We model the cloud as a system in Figure 3 with a set

of sites S and a set of machines N that run the sites.

Each site s ∈S is composed of a set of modules

denoted by Ms, and the set of all modules in the cloud

is M =_s∈SMs. A machine n ∈N in the cloud has a

CPU capacity Ωn and a memory capacity Γn. We use

Ω and Γ to denote the vectors of CPU and memory

capacities of all machines in the system. An instance

of module m running on machine n demands

ωn,m(t)CPU resource and γm memory resource from

n. Machine n allocates to module m the CPU capacity

ˆωn,m(t) and the memory capacity γm.By considering

the memory Constriction we allocate the resource to

virtual machine without considering the cost.

4.2. P* :A heuristic solution

P* is an asynchronous protocol. OP(2) consider the

memory Constriction and minimized cost for job

scheduling. This means that a machine does not

synchronize the start time of a protocol round with any

other machine of the cloud. At the beginning of a

round a machine reads the current demands of the

modules it runs. At the end of a round a machine

updates its part of the configuration matrix A. The

matrix A thus changes with dynamism and

asynchronously during the evolution of the system.

 P* employs the same basic mechanism as P‘: it

attempts to equalize the relative demands of two

machines during a protocol round. P* attempts to keep

down the cost of reconfiguration by preferring not to

start a new module instance during an equalization

step op(2) in Figure 4.

Figure 4.Heuristic solution to OP(2)

However, if a machine n performs equalization steps

only with machines in Nn, there is a chance of

partitioning the cloud into disjoint sets of interacting

machines, which can result in a system state far from

optimal. It attempts to equalize the relative demands

of machines n and n_. It identifies the machine (i.e)

host having total memory capacity and minimised cost

for job scheduling.

Pseudo-code for heuristic solution

Step 1: Initially read CPU capacity Ωn and a memory

capacity Γn.

Step 2: Start the parallel processing threads (i.e.)

active and passive threads.

Step 3: If active thread start to performing its job

means then read CPU demand (ωn),memory demand

(γn),configuration matrix (rown(A)),machine(Nn)

(i.e.) read ωn, γn, rown(A),Nn.

Step 4: Randomly choose machine from Nn if

rand(0..1) < p

Step 5: Else then choose randomly from the machine

N – Nn

Step 6:While send function is invoke with parameters

CPU demand (ωn),memory demand (γn),configuration

matrix (rown(A)),CPU capacity (Ωn) to machine(Nn

), send (ωn, γn, rown(A),Ωn) to n’. Parallel receive

process take place in passive thread.

Step 7: Active thread invoke receive function send by

passive thread , receive (ωn’ , γn’, rown’ (A),Ωn’)

from n’ and then updated configuration matrix

(rown(A)).

Step 8: Equalize function called to shift the demand

with in the machine and finally after completion the

task active thread move to sleep.

Step 9: If Passive thread receive CPU demand

(ωn),memory demand (γn),configuration matrix

(rown(A)),machine(Nn) to n machine send by active

thread(i.e.) receive (ωn’ , γn’, rown’ (A),Ωn’) from

n’.

Step 10: Passive thread read(ωn, γn, rown(A),Nn) and

send CPU demand, Memory demand, Configuration

matrix to n‘ machine to active thread and finally

update and write configuration matrix.

Step 11: Equalize function called to shift the demand

with in the machine and finally after completion the

task passive thread move to sleep.

4.3. MapReduce framework in heterogeneous

 environment

 MapReduce builds on the observation that many

information processing tasks have the same

computational design computation is applied over a

large number of web pages to generate partial results,

which are then aggregated in some

approach.MapReduce provides an abstraction for

programmer designed mappers as ―specifying per-

record computations‖ and reducers as ―specifying

result aggregation‖ that both operate in parallel on

key-value pairs as the processing primitives. The

mapper is applied to every input key-value pair to

generate an arbitrary number of intermediate key-

value pairs. The reducer is then applied to all values

associated with the same intermediate key to generate

an arbitrary number of final key-value pairs as

2193

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60692

output.This two-stage processing structure is

illustrated in Figure 5. Under the MapReduce

programming model, a developer needs only to

provide implementations of the mapper and reducer.

Mapper allows the execution framework transparently

handles all other aspects of execution on clusters in

Figure 6.

It is responsible for scheduling, handling faults and the

large distributed sorting and shuffling problem

between the map and reduce phases whereby

intermediate key-value pairs must be grouped by key.

As an optimization, MapReduce supports the use of

―combiners" in Figure 5. which are similar to reducers

except that they operate directly on the output of

mappers; one can think of them as ―mini-reducers".

Combiners operate in seclusion on each node in the

cluster and cannot use partial results from other nodes.

Since the output of mappers must eventually be

shuffled to the appropriate reducer over the network,

combiners allow a programmer to aggregate partial

results, thus reducing network traffic in Figure 7.

Figure 5. MapReduce illustration

In cases where an operation is both associative and

commutative, reducers can directly serve up as

combiners, although in general they are not

interchangeable. The final component of MapReduce

is the ―partitioner" in Figure 5, which is responsible

for dividing up the intermediate key space and

assigning intermediate key-value pairs to reducers.

The default partitioner computes the hash value of the

key modulo the number of reducers. Partitioner

shuffle and sort the intermediate aggregate values by

keys in Figure 5,and generate cluster based on key in

Figure 8, Partitioner value.

Figure 6. Cluster Formation by Mapper

Finally, reducer performed the aggregate function on

partitioned value. It then applied to all values

associated with the same intermediate key to generate

an arbitrary number of final key-value pairs as output

in Figure 8, Reducer value.MapReduce framework

performed on program's execution across a set of

machines, handling faults, and managing the required

inter-machine communication are all handled by the

run-time system. This enables programmers with no

experience with parallel and distributed systems to

easily utilize the resources of a large distributed

system.

Figure 7. Combiner Function

2194

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60692

Figure 8. Partitioner and Reducer Value

Pseudo-code for MapReduce

Step 1: Initially the user specify the number of virtual

machine, number of task and number of host to be

created with in Cloud.

Step 2: Mapper form a cluster based on number of

task divide by number of virtual machine. Each

mapper will have map id, virtual machine id and

bandwidth of task.

Step 3: Combiners operate in seclusion on each node

in the cluster .It perform aggregate on each cluster by

checking map id and virtual machine id.

Step 4: Partitioner which shuffle, sort and dividing up

the intermediate key space and assigning intermediate

key-value pairs to reducers. Separate cluster formed

for each map id.

Step 5: Finally reducer perform the aggregate function

on partitioned value.

5. Evaluation through simulation

We evaluate the MapReduce framework in

heterogeneous cloud environment through simulations

using a CloudSim simulator. CloudSim provides for

P* the function of selecting a random machine for

interaction. During Simulation we can specify the

Number of Virtual Machine, Number of Tasks and

Number of Hosts and freight of each site changes with

dynamism with period and asynchronously. CloudSim

is a new generalized and extensible simulation

framework that enables seamless modelling,

simulation, and experimentation of emerging Cloud

computing infrastructures and management services. It

support for modelling and instantiation of large scale

Cloud computing infrastructure, including data centres

on a single physical computing node and java virtual

machine and flexibility to switch between space-

shared and time-shared Share of processing cores to

virtualized services.

Evaluation metrics: We run the protocol P* in

various scenarios and measure the following metrics.

Here op(1) represent Fairness resources Share in red

line in homogeneous environment, op(2) represent

Fairness resources Share with minimized cost in

homogeneous environment in blue line and Map

represent Fairness resources Share with minimized

cost in heterogeneous environment in green line. We

express the sprite of resource Share through the

Coefficient of Variation of Fairness of resource

allocated to number of task utilities. We measure the

satisfied demand as the fraction of task that generates

a utility less than 1. We measure the cost of

reconfiguration as the number of new module

instances started divided by the number of all module

instances running at the end a sampling period, per

machine and per sampling period.

Fairness : P* allocates CPU resources proportional to

the demand of a module instance, regardless of the

available capacity on the particular machine. The

behavior is also to be expected, since OP(1) and op(2)

need more memory Constriction to complete task in

Figure 9. Maps have sufficient memory constraint for

starting new instances. Fairness allocation efficiency

is best in map function. Note that the ideal system

always achieves optimal sprite, which means a value

of 0.

Satisfied demand: The satisfied demand depends on

both Memory constraints. For the ideal system, the

satisfied demand depends only on CLF and hence is

always equal to 1. In a situation where the CPU Share

is fair all machines and allocated CPU resources that

are less than their demand. For this value of op (1) and

op (2), increasing MLF results in a more ‗unfair‘ CPU

Share. Since Map allocate fair share of resource that

satisfy their demand in Figure 10.

Cost of reconfiguration: The cost of reconfiguration

depend on memory constraint. The cost of

reconfiguration can be

further reduced by controlling the trade off between

achieving a higher utility vs. increasing the cost of a

configuration in Figure 11.op(1) and op(2) required

more cost compare to map in heterogeneous

environment.

Figure 9.Fairness Share

2195

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60692

Figure 10.Satisfied Demand

Figure 11.Cost of reconfiguration

6. Conclusion

We conclude that MapReduce framework in

heterogeneous cloud environment that achieves high

Concert metric and fairness resource Share.

MapReduce which includes the mappers and reducers

that both operate in similar as two stage processing on

key-value pairs as the processing primitives. The job

scheduler improves the input data locality of a virtual

MapReduce cluster. With VM reconfiguration, each

node can be adjusted to provide only the necessary

amount of resource demanded for that node and

efficient adaptation to load changes &

scalability.Mapreduce results a metric of share in a

heterogeneous cluster to realize a scheduling scheme

that achieves high Concert and Fairness .

REFERENCES

[1] R. Yanggratoke, F. Wuhib, and R. Stadler, ―Gossip-

based resource Share for green computing in large clouds,‖

in 2011 International Conference on Network and Service

Management.

[2] OpenStack LLC, http://www.openstack.org, Feb. 2012.

[3]http://www.ibm.com/software/webserver/appserv/virtuale

nterprise

/, Feb. 2012, ―IBM Web Sphere Application Server,‖

[4] VMware, http://www.cloudfoundry.com/, Feb. 2012.

[5] Amazon Web Services LLC,

http://aws.amazon.com/ec2/, Feb. 2012.

[6] Google Inc., http://code.google.com/appengine/, Feb.

2012.

[7] Microsoft Inc.,

http://www.microsoft.com/windowsazure/, Feb. 2012.

[8] M. Jelasity, A. Montresor, and O. Babaoglu, ―Gossip-

based aggregationin large dynamic networks,‖ ACM Trans.

Computer Syst., vol. 23, no. 3,pp. 219–252, 2005.

[9] ——, ―T-Man: gossip-based fast overlay topology

construction,‖ ComputerNetworks, vol. 53, no. 13, pp.

2321–2339, 2009.

[10] F. Wuhib, R. Stadler, and M. Spreitzer, ―Gossip-based

resource managementfor cloud Environments,‖ in 2010

International Conference on Network and Service

Management.

[11] F. Wuhib, M. Dam, R. Stadler, and A. Clem, ―Robust

monitoring ofnetwork-wide aggregates through gossiping,‖

IEEE Trans. Network and Service Management, vol. 6, no.

2, pp. 95–109, June 2009.

[12] F. Wuhib, M. Dam, and R. Stadler, ―A gossiping

protocol for detecting global threshold crossings,‖ IEEE

Trans. Network and Service Management,vol. 7, no. 1, pp.

42–57, Mar. 2010.

[13]Z. Gong, X. Gu, and J. Wilkes, ―PRESS: PRedictive

Elastic ReSource Scaling for cloud systems,‖ in 2010

International Conference on Network and Service

Management.

[14] D. Carrera, M. Steinder, I. Whalley, J. Torres, and E.

Ayguade, ―Utility based placement of dynamic web

applications with sprite goals,‖ in2008 IEEE Network

Operations and Management Symposium.

[15] S. Voulgaris, D. Gavidia, and M. van Steen,

―CYCLON: in expensive membership management for

unstructured p2p overlays,‖ J. Network and Systems

Management, vol. 13, no. 2, pp. 197–217, 2005.

[16] R. L. Graham, ―Bounds on multiprocessing timing

anomalies,‖ SIAM J.Applied Mathematics, vol. 17, no. 2, pp.

pp. 416–429, 1969.

[17] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, ―A

scalable application placement controller for enterprise data

centers,‖ in 2007

International Conference on World Wide Web.

[18] H. Shachnai and T. Tamir, ―On two class-constrained

versions of the multiple knapsack crisis,‖ Algorithmica, vol.

29, no. 3, pp. 442–467,

Dec. 2001.

[19] G. B. Dantzig, ―Discrete-variable extremum crisiss,‖

OperationsResearch, vol. 5, no. 2, pp. 266–288, 1957.

[20]C. Adam and R. Stadler, ―Service middleware for self-

managing largescalesystems,‖ IEEE Trans. Network and

Service Management, vol. 4,no. 3, pp. 50–64, Apr. 2008.

[21] J. Famaey, W. De Cock, T. Wauters, F. De Turck, B.

Dhoedt, andP. Demeester, ―A latency-aware algorithm for

dynamic service placement in large-scale overlays,‖ in 2009

International Conference on Integrated Network

Management.

[22] C. Low, ―Decentralised application placement,‖ Future

Generation Computer Systems, vol. 21, no. 2, pp. 281–290,

2005.

[23] Y. Yazir, C. Matthews, R. Farahbod, S. Neville, A.

Guitouni, S. Ganti,and Y. Coady, ―Dynamic resource Share

in computing clouds

using distributed multiple criteria decision analysis,‖ in 2010

IEEEInternational Conference on Cloud Computing.

2196

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60692

[24] E. Loureiro, P. Nixon, and S. Dobson, ―Decentralized

utility maximizationfor adaptive management of shared

resource pools,‖ in 2009International Conference on

Intelligent Networking and CollaborativeSystems.

[25] Google Inc.,http://hadoop.apache.org

 J.Keerthika has done BE (Computer Science

Engineering), from Sri Subramanya college of engineering

& technology, Palani affiliate to Anna University, Chennai

in 2008. Currently doing her ME(Computer Science

Engineering) final Year under Anna University Chennai,

A.S.L.Pauls College of Engineering and Technology in

Coimbatore. She published this paper in International

conference on Innovations in Communication, Information

and Computing (ICICIC'13) Sasurie College of Engineering,

Tirupur, Tamil Nadu, India. January 9 -11, 2013, Published

this paper in National Conference Computing

Communication &Technology(N3CIT),T.J.S Engineering

college, Chennai, Tamilnadu, India. April 10,2013. His

research area is Distributed Management, Gossip protocol,

Cloud Computing.

S.Castro received M.TECH from karunya University

Coimbatore. Currently working as an Asst. Professor in

Dept. of Computer Science Engineering, A.S.L.pauls

College of Engineering and Technology, Coimbatore.

2197

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60692

