
Dynamic Bug Triage System with Data

Classification Techniques

Swapnil Pasarkar
Computer Engineering N.M.I.E.T

Savitribai Phule Pune University

Pune, India

Neha Bagal
Computer Engineering N.M.I.E.T

Savitribai Phule Pune University

Pune, India

 Shilpa Nair

Computer Engineering

N.M.I.E.T

 Savitribai Phule

Pune University

 Pune, India

Kshitija Godse

Computer Engineering

N.M.I.E.T

Savitribai Phule

Pune University

Pune, India

Abstract— Bug triage system is the process of fixing bug, which

aims to correctly assign a developer to a new bug. Programming

organizations spend more than 45 percent of expense in

managing programming bugs. We have proposed an approach

to diminish the time cost in manual work, content classification

procedures connected to lead programmed bug triage. In this

paper, we address the issue of information diminishment for bug

triage, i.e. How to lessen the scale and enhance the nature of bug

information. In proposed approach we are performing data

reduction on bug data set which will reduce the scale of the data

as well as increase the quality of the data and then apply k-NN

and Support Vector Machine classification or combinational

approach of both on the reduced dataset. We are using instance

selection and feature selection simultaneously with historical

bug data. In this paper we have presented a new module which

will describe the status of the bug like whether it assigned to any

developer or not and whether the developer has rectified it or

not. We consolidate case determination with highlight choice to

at the same time lessen information scale on the bug

measurement and the word measurement. The goal of bug

triaging is to assign potentially experienced developers to new-

coming bug reports. We balance the load between developers

based on their experience and past history. We conduct

experiments on four real data sets. The outcomes demonstrate

that our data lessening can successfully decrease the information

scale and enhance the exactness of bug triage. Our work gives a

way to deal with utilizing systems on information preparing to

shape lessened and superb bug information in programming

advancement and maintenance.

Keywords— Bug, Bug triage, Bug repository, Data reduction,

Instance selection, Feature selection, Data Mining, K-NN

Approach, SVM classifier, NLP.

I. INTRODUCTION

Programming organizations spend more than 45 percent

of expense in managing programming bugs. An unavoidable

stride of fixing bugs is bug triage, which plans to accurately

allocate a designer to another bug. To diminish the time cost

in manual work, content classification systems are connected

to lead programmed bug triage. In this paper, we address the

problem of information lessening for bug triage, i.e., how to

decrease the scale and enhance the nature of bug information.

We consolidate case choice with highlight determination to

all the while lessen information scale on the bug

measurement and the word measurement. To focus the

request of applying occasion determination and highlight

choice, we remove properties from authentic bug information

sets and construct a prescient model for another bug

information set. We observationally research the execution of

information diminishment on absolutely 600,000 bug reports

of two vast open source ventures, to be specific Eclipse and

Mozilla. The outcomes demonstrate that our information

diminishment can viably lessen the information scale and

enhance the precision of bug triage. Our work gives a way to

deal with utilizing strategies on information preparing to

shape decreased and superb bug information in programming

advancement and support. Bug triage is an extravagant stride

of programming support in both work cost and time cost. In

this paper, we consolidate highlight choice with occurrence

choice to decrease the size of bug information sets and also

enhance the information quality. To focus the request of

applying case determination and highlight determination for

another bug information set, we concentrate traits of every

bug information set and train a prescient model taking into

account authentic information sets. We observationally

research the information lessening for bug triage in bug

vaults of two expansive open source ventures, to be specific

Eclipse and Mozilla. Our work gives a way to deal with

utilizing systems on information preparing to shape lessened

and brilliant bug information in programming advancement

and support. In future work, we anticipate enhancing the

consequences of information decrease in bug triage to

investigate how to set up a high quality bug information set

and tackle a space specific programming assignment. For

foreseeing decrease orders, we plan to pay endeavors to find

out the potential relationship between the characteristics of

bug information sets and the decrease orders. In [1] instance

selection and feature selection techniques are used to

eliminate the stop words and create a reduced bug dataset and

then K-NN approach is used to classify data. We are using

combinational approach of both in our proposed paper and

then we are applying Support Vector Machine classifier to

triage the bug to appropriate developer for bug resolution.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110538

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

659

II. BACKGROUND AND MOTIVATION

A. Background

Software bugs are common problems faced by IT

industries over the world. Programming organizations spend

more than 45 percent of expense in managing programming

bugs. Software bugs, for example a popular and open source

bug repository are maintained in bug repositories, Bugzilla is

one such widely used repository. Once a software bug is

found, it is tested by a reporter maybe the tester, developer or

the deployer and then if it is identified as a real bug then the

occurrence of bug is reported. A recorded bug is called a bug

report, which has multiple attributes for reproducing the bug.

A human triager will assign the occurred bug to a developer,

once a bug report is formed, and this developer will try to fix

this bug. An attribute assigned-to is attached to this

developer. The assigned-to developer now starts to resolve

the bug. He/she first checks whether the occurred bug is an

existing bug or a new bug has been generated. If it is an

existing bug then it is resolved immediately using existing

solutions and the acknowledgement/report is provided to

user. If in case a new bug has been generated, then triager

tries to find the possible solutions considering the past

history, test cases and the modular breakdown structure of the

project. If still he is unable to resolve the bug then he

redirects it to another developer. If this developer is able to

resolve the bug then the repository is updated and now further

the occurrence of this bug report will be redirected to this

new developer. A status attribute is attached to each bug

report this attributes changes dynamically according to the

resolution steps taken to resolve the bugs.

B. Motivation

Manual bug triaging is a time consuming process. In a

manual bug triage system a triager first manually analyses the

bug and decides to whom this bug report should be given for

resolution. The triager has to manually study the modular

breakdown structure of the entire project to detect in which

module the bug has actually occurred. He has to manually

analyse all the test cases, functions to get the idea behind bug

occurrence. He also has to study the testers, developers,

deplorer’s past history and experiences before redirecting to

them for bug resolution. This is not an easy job and leads to

more inaccuracy in results. As a result of this bug resolution

may take more time than the deadlines maintained or bug may

not be resolved at all. Therefore we have proposed a dynamic

bug triage system in which on the occurrence of bug it will be

dynamically assigned to the developer by dynamically

considering the already formed bug repository. This dynamic

triaging of the bug leads to more accuracy and the overall

performance is improved.

III. RELATED WORK

Different modules have been considered in implementing

the idea described in project. The four modules used are:

Project Analyzer, Bug Repository Maintenance, Bug Report

Analysis, Task Scheduling and Notification.

A. Project Analyser

Project analyzer enhances user to maintain all the

information regarding project and The process of gathering

requirements is usually more than simply asking users what

they need and writing their answers down. Depending on the

complexity of the application, the process for requirement

gathering has a clearly defined process of its own. This

process consists of a group of repeatable processes such as to

capture, document, communicate, and manage requirements.

Module is intended to gather all the information of software

development, like Software breakdown structure, module

specification, their development strategy, modular

dependencies, database, team details, manager, developer,

tester, deployment testing team, services details, external

reference used for project or module development, third party

tools, Module Input Output Details, etc. from company. This

formal process, which will be developed in more detail,

consists of four basic steps.

Elicitation, Validation, Specification, Verification, are

different stages that are considered for gathering

requirements to create an appropriate bug dataset.

B. Bug Repository Maintenance

The Bug Repository data set is a collection of models

and metrics of software systems and their histories. The goal

of such a data set is to allow people to compare different bug

prediction approaches and to evaluate whether a new

technique is an improvement over existing ones. In particular,

the data set contains the data needed to.

 Prediction technique is run based on source code

metrics and/or historical measures and/or process

information (logs data).

 Compute the performance of the prediction by

comparing its results with a set, i.e., the number post

release defects reported in bug tracking system.

Bug prediction is performed at the class level using the

designed data set. However class data is aggregated to derive

the package or subsystem information, since for each class it

specifies the package that contains it.

C. Bug Report Analysis

An automatic bug triaging system is presented by

recommending one experienced developer for each new bug

report. These following steps are performed.

1. Representation Framework

We have a collection of bug reports, B = {b1, b|B|}. Each

bug report has a collection of term, T = {t1… t|T|}, and a

class label (developer), c C = {c1, …, c|C|}.

2. Term selection methods

High dimensionality of term space is reduced using term

selection by selecting the most discriminating terms for

classification task. The methods give a weight for each

term in which terms with higher weights are assumed

to contribute more for classification task than terms

with lower weights.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110538

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

660

3. Chi-Square (X2)

In statistics, the X2 test is used to examine independence

of two events. The events, X and Y, are assumed to

independent if P (XY) = P(X)P(Y) term selection, the

two events are the occurrence of the term and the

occurrence of the class.

4. Term Frequency Relevance Frequency (TFRF)

 The basic behind the TFRF method is that the

more high frequency for a term in the positive category

than in negative category, the more contributions it

makes in selecting the positive instances from

negative instances.

5. Distinguishing Feature Selector (DFS)

 DFS is new novel term selection method. It provides

global discriminatory powers of the features over entire

text collection rather than being class specific. DFS

considers the following requirements:

 Distinct term is a term that occurs frequently in a single

class and not in other classes,

 irrelevant term is a term that rarely occurs in a single

class and not in other classes,

 distinctive term is a term that occurs frequently in all

classes is irrelevant,

 A term that occurs in some of the classes. DFS assigns

scores to features between 0.5 (least discriminative)

and 1.0 (most discriminative).

D. Task Scheduling and Notification

The development group with has run into this issue so

many times that we decided to write our own solution to this

problem and make solve, this module reaches up to developer

as well as customer from Bug Report Analysis phase . It's

called Revalee—as in reveille: a signal to arise—and it is a

Service that freezes your job requests in overall process until

it's time to thaw them out.

IV. ALGORITHMS

Mainly two Methods: Instance Selection and Feature

Selection and two Algorithms: SVM and k-NN have been

considered in implementing the idea described in project.

They are as follows:

A. Instance selection

Instance selection method is the one that address the

need of computational loads and reducing storage

requirements. Using instance selection methods we can

achieve enhanced performance from the learning algorithm

and make it work effectively. This method is used to scale

down the data to select only the relevant data that can be used

in data mining algorithm. Sampling is a procedure and an

important part of instance selection method that can draw a

sample by random process. This process contains samples

and each sample has an appropriate probability distribution.

Consider a situation in which the data size or contents is very

large most of this data is not useful in the training phase of

learning algorithm. Focusing, enabling and cleaning are the

three main functions where instance As the harmful and

superfluous instances are removed and only critical instances

are retained , the problem of instance selection is viewed

more in terms of instance deletion. The response time for

classification decisions decreases as we remove a set of

instances from the database. In classification competence the

removal of instances may lead to either an increase or

decrease. Therefore, we must be clear about the degree to

which we are willing to let the original classification

accuracy depreciate when applying an instance selection

scheme to a database of instances. For example, the number

of cases we are forced to remove might be too large if we

have a fixed storage limit, and unavoidably result in a

degradation of classification accuracy. Uninstructive storage

reduction is the principle objective of an instance selection

scheme. Here, classification accuracy is primary: the same (or

higher) classification accuracy is desired but we require it

taking up less space and faster. Accuracy should never suffer

at the expense of increased performance.

A non-homogeneous class can be defined as one which is

defined by a group of instances not sharing the same locality.

Here, the notion of border instance does not make any sense.

One might argue that all of the instances are critical to the

definition of the class as they make up the borders; when

working with problems of this form the instance selection is a

bad proposition. In this type of situation the safest way to

remove a number of instances by keeping only prototypical

instances selection is mainly applied.

B. Feature Selection

The feature selection technique is defined as the process

of selecting a subset of relevant features such as variables,

predictors for use in model construction or text classification.

It is also known as variable selection, attribute selection or

variable subset selection. Feature selection techniques are

used for three reasons:

 Simplification of models to make them easier to

interpret by researchers/users,

 Shorter training times,

 Enhanced generalization by reducing over fitting.

A feature selection algorithm is represented as the

combination of a search technique for proposing new feature

subsets along with an evaluation measure which results in the

formation of different feature subsets. To test each possible

subset of features is the simplest algorithm in finding the one

subset which minimizes the error rate. Subset selection is a

method that evaluates a subset of features amount the

available feasible subsets which is nearest to optimality.

There are multiple objectives in a feature selection task so the

choice of optimality criteria is a difficult task. Some of the

common task incorporate a measure of accuracy, penalized

by the number of features selected (e.g. the Naive Bayes

classifier algorithm). Feature selection is considered to be a

powerful tool for simplifying or speeding up computations,

and when implemented appropriately it can lead to little loss

in classification quality. In our paper we apply combinational

approach of instance selection and then feature selection to

process the query that is fired by the end-user. Application of

these techniques results in stop word elimination and

extracted query is obtained which is further analyzed for

classification in the bug resolution process.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110538

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

661

C. Support Vector Machine (SVM)

The Support Vector Machine algorithm is a classification

algorithm used on specific database as defined. The Support

Vector Machine are supervised learning models in machine

learning. Were, machine learning is defined as the subfield of

computational learning and computer science, which is

evolved from these itself. It involves the prediction of the

result data present on previous or historic data. The Support

Vector Machine is used to analyze data and for recognition of

data patterns in case of this paper. In machine learning,

Support Vector Machine are supervised learning models.

They are associated with learning algorithms that analyze

data and recognize patterns, used for regression analysis and

classification. A Support Vector Machine training algorithm

builds a model that assigns new examples into one category

or the other. That is why it is called as a non-probabilistic

binary linear classifier. An Support Vector Machine model is

a representation of the examples as points in space. In

Support Vector Machine points are mapped so that the

examples of the separate categories are divided as wide as

possible or by a clear gap. New points are then mapped into

that same space. Depending on which side of the gap they fall

on they are predicted to which category they belong. In

addition to performing linear classification, Support Vector

Machines can perform a non-linear classification efficiently

using the kernel trick which is implicitly mapping their inputs

into high-dimensional feature spaces. For classification, to

transform input data to a high-dimensional feature space in

which the input data is more separable compared to the

original input space nonlinear kernel functions are used. Then

the Maximum-margin hyper planes are created. The produced

model depends on only a subset of the training data near the

class boundaries. Also, the model produced by Support

Vector Regression ignores any training data that is

sufficiently close to the prediction model.

D. k-NN

k-NN is k Nearest Neighbor algorithm. K-NN is

algorithm is a pattern matching algorithm, used for regression

and classification. This algorithm is non-parametric. In k-NN

the function is only approximated locally and all computation

is deferred until classification, as k-NN is instance based

learning. In k-NN algorithm, the neighbors are taken from the

object sets for the classification or the object property value,

k-NN regression is known. There is a training set required for

this k-NN algorithm, but no explicit training steps are

required. The k-NN algorithm is used for pattern recognition.

An example of instance-based learning is k-Nearest neighbor,

in which the training data set is stored. Simply by comparing

the record to the most similar records in the training set a new

unclassified record may be found.

V. DISCUSSION

Earlier bug triage system was manual, the bugs were

assigned manually to developer for generation of appropriate

solution. In this paper, we see the dynamic approach to the

bug triage system, which gives an advantage by assigning the

bug to the developer automatically without going for manual

assigning of the bugs. In our work, we propose the data

reduction for bug triage. The paper which we present gives

the approach for data reduction for Dynamic Bug Triage

System to reduce the data sets scales and improve the quality

of bug reports. Instance and feature selection are techniques

that we have used for purpose to reduce the redundancy and

noise in the bug data sets. The algorithms used in this paper

are Support Vector Machine algorithm (SVM) and k nearest

neighbor (k-NN) algorithm. These both Support Vector

Machine and k-NN algorithms are used for classification of

the bug data. The Support Vector Machine algorithm is used

as classification algorithm for the given bug query by the

user. The k-NN algorithm is used as comparison algorithm, to

compare and match the query present in the bug repository.

In our dynamic bug triage system, the use of four different

modules is done. Those are project analyzer, bug repository

maintenance, bug report analysis and task scheduling &

notification.

This paper, constructs a predictive model that is used for

determining the order of reduction of a new bug data set

based on historical bug data sets. The statistic values of bug

data sets, like the count of the words or the length of the bug

reports, etc. are the attributes used in this model. We extract

more accurate and detailed attributes of the dynamic bug

triage system in future work. Our work is an ideal resolution

to the prediction of reduction orders and can be viewed as a

step towards the automatic prediction. In this, we do the

extraction of all attributes of a bug data set and reporting of

the bug data set is also considered in certain days. Therefore,

process of the extraction of attributes from the bug datasets

can be applied to the applications present in real world.

CONCLUSION AND FUTURE SCOPE

Bug triage in software maintenance is an expensive step

in both labor cost and time cost. We combine feature

selection with instance selection in this paper to reduce the

scale of bug data sets as well as improve the data quality. The

extraction of attributes of each bug data set is done and a

predictive model is prepared based on historical Data sets to

determine the order of applying instance selection and feature

Selection for a new bug data set. The data reduction for bug

triage in bug repositories is investigated of two large open

source projects, namely Eclipse and Mozilla. We have

presented dynamic approach to reduce bug data set to form

reduced and high-quality bug data in software development

and maintenance. We plan on improving the results of data

Reduction in our future work in bug triage to explore how to

prepare a high quality Bug data set and how to tackle a

domain-specific software Task is presented. For predicting

reduction orders, additional functions need to be added to

find out the potential relationship between the attributes of

bug data sets and the reduction orders.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110538

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

662

ACKNOWLEDGMENT

 We thank our internal guide Mr. S.B.Ingle and Nelsoft

Technologies for their valuable guidance and support in

simulation and implementation of project idea.

REFERENCES

[1] Towards Effective Bug Triage with Software Data Reduction

Techniques., Jifeng Xuan, He Jiang, Member, IEEE, Yan Hu, Zhilei
Ren, Weiqin Zou, Zhongxuan Luo, and Xindong Wu, Fellow, IEEE

2015.

[2] S. Artzi, A. Kie_zun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D.
Ernst, “Finding bugs in web applications using dynamic test

generationand explicit-state model checking,” IEEE Softw., vol. 36, no.

4, pp. 474–494, Jul./Aug. 2010.

[3] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:

Recommenders for development-oriented decisions,” ACM Trans. Soft.
Eng. Methodol., vol. 20, no. 3, article 10, Aug. 2011.

[4] C. C. Aggarwal and P. Zhao, “Towards graphical models for text

processing,” Knowl. Inform. Syst., vol. 36, no. 1, pp. 1–21, 2013.

[5] K. Balog, L. Azzopardi, and M. de Rijke, “Formal models for expert

finding in enterprise corpora,” in Proc. 29th Annu. Int. ACM SIGIR
Conf. Res. Develop. Inform. Retrieval, Aug. 2006, pp. 43–50.

[6] P. S. Bishnu and V. Bhattacherjee, “Software fault prediction using

quad tree-based k-means clustering algorithm,” IEEE Trans. Knowl.
Data Eng., vol. 24, no. 6, pp. 1146–1150, Jun. 2012.

[7] H. Brighton and C. Mellish, “Advances in instance selection for
instance-based learning algorithms,” Data Mining Knowl. Discovery,

vol. 6, no. 2, pp. 153–172, Apr. 2002.

[8] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information needs
in bug reports: Improving cooperation between developers and users,”

in Proc. ACM Conf. Comput. Supported Cooperative Work, Feb. 2010,

pp. 301–310.

[9] Brown, L. D., Hua, H., and Gao, C. 2003. A widget framework for

augmented interaction in SCAPE.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110538

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

663

