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Abstract—Dynamic buckling of a rod is analyzed; the effect of
axial oscillating load on a pin ended steel rod of circular cross
section is modeled and numerically solved. Three cases i.e.,
uniform cross section; non-homogenous density distribution and
variable cross section are considered. Two important parameters
are found as responsible for the buckling — amplitude and the
frequency of the oscillating force. Analysis is done by varying
these two parameters over a fixed time period. Buckling occurs
under lower amplitude of the oscillating force in case of dynamic
state while in quasi-static case buckling occurs under higher
amplitude of load. Instability occurs when the frequency of the
oscillating force comes near to the natural frequency of the rod.

Keywords—dynamic buckling; axial oscillating force; forcing
frequency; critical buckling load; pin ended rod.

I.  INTRODUCTION

Failure of structures is a dynamic process [1], and so it/is
obviously more realistic to approach buckling and stability
from the dynamic point of view. At the same time, it appears
that a dynamic approach is necessary to define the concept of
stability precisely.

Buckling from prescribed dynamic loads acting on
structural element e.g. a steel rod is concerned in the present
work. Difference among the several types of dynamic
buckling can be made based on the physical phenomena of the
buckling processes. One of the main distinctions is between
buckling from oscillatory loads and buckling from transient
loads consisting of a single pulse characterized by its
amplitude, shape and duration. The first kind is known as
vibration buckling and the later kind is known as pulse
buckling.

In vibration buckling, the amplitudes of vibration caused
by an oscillating load become unacceptably larger at critical
combinations of load amplitude, load frequency and structure
damping.

As the phenomena of dynamic buckling are very common
in our everyday life, it is of a great importance to analyze and
understand the behavior of it. Long, thin supports are
ubiquitous in natural and engineered load buckling structures,
from spider legs to the steel structure of a skyscraper [2]. A
single column will buckle if too much force is applied along
its axis, which can lead to the catastrophic failure of the
structure. The buckling instability is seen at all sizes, from
pole vaulting to protein microtubules confined in vesicles and
carbon nanotube atomic force microscope probes [3].
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Moreover, there are a lot of structures and bodies which go
under dynamically applied load in service condition, for
example in aircraft landing struts, arches and spherical caps,
cylindrical shells etc. are wvery important both from
engineering and structural viewpoints.

The reason why a simple pin ended rod is chosen for
analyzing is that the simply supported rod is obviously the
simplest element because of its long history in the design of
rods under static loading, for which the theory reduces to very
fundamental form. A lot of experimental and theoretical works
have been done on this account and the findings of those
researches make some interesting points which are quite
influential to do analysis on this particular topic.

Historically, Abrahamson and Goodier [4], investigated
the plastic buckling of columns caused by axial impact. They
defined amplification factor as the ratio of the maximum
amplitude of the shape imperfection associated with the nth
mode to its average value and postulated that the structure
buckled when the amplification factor exceeded a pre-
specified value, say 10. This method has been successfully
used to analyze plastic buckling of rods caused by axial
impact, plastic buckling of plates due to in-plane forces, and
plastic buckling of cylindrical shells under axial impact. Wang
and Ru [5] used the following energy criterion for analyzing
the dynamic buckling of a structure. The structure is unstable
if under a kinematically admissible perturbation superimposed
on the dominant motion, the work done by internal stresses is
less than the work done by the external forces. The energy
criterion has been applied to study the radial buckling of
cylindrical shells by Gu et al [6]. Batra and Wei [7] have
postulated that the buckling mode corresponds to the
wavelength of the superimposed perturbation that has the
maximum initial growth rate, and have used it to study the
buckling of a thin anisotropic thermoviscoplastic plate due to
in-plane forces.

Il. MATHEMATICAL FORMULATION

The differential equation of motion of the rod under axial
pulsating load (Fig.1) can be derived as follows[8]:
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Fig.1. Pin ended rod under pulsating axial force.

Where,

P(t) =P, + P, cosQt )
is the axial compressive load- of which Pgis the static
load and Pis the amplitude of the oscillating force, Qis the
forcing frequency, and pAdescribes mass per unit length of the
rod.
For the boundary conditions of a pin ended rod, we
seek the solution in the form

yunzfﬁmnmE? @)
n=1

Substituting into (1) yields the condition
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in which the following notations are made:
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Here,

= free vibration frequency of the rod for no axial load
w = free vibration frequency under static loadP,

Pcr, = critical load for buckling

p= excitation parameter.

I1l.  BOUNDARY CONDITIONS

To analyze the deflection in the present work, the rod is
assumed to be pin ended on both ends and so theboundary
conditions are, at both ends both the deflection and bending
moment is zero.
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Atx=0and x=I
Deflection,y=0(10)

And, atx=0and x=I
2

Bending moment, E| oy =
ox?

0(11)

IV. MODELING

To study the effect of the amplitude and frequency of the
oscillating force three different cases are modeled. For each
cases boundary conditions, mean static load Po, time t,
modulus of elasticity E, distributed load over the rod q are
same; diameter of the rod d is represented in TABLE 1.

To analyze these cases finite difference method (FDM) is
applied. Second order central difference formula is used for
the domain while at the boundaries second order forward and
second order backward difference formula (for x =0 and x = |
respectively) are used respectively, which results in a second
order accurate numerical analysis.

TABLE 1. TABLE SHOWING THE DIFFERENT CASES CONSIDERED

Ca
se

Description | Figure Dimensions

L=1m
E =207 Gpa
5 | p=7810 kg/m®
- d =0.005m
1 g=0.01N
Po=5N

¥
Uniform ppme bl LUV LU
A" | cross section Y

le
[ L

L=1m

Non
homogenous
density
distribution

qHin

LU

B ooy,

e | | M| s L

Step length=
0.2m

E =207 Gpa
d =0.005m
g=0.01N

p =7810kg/m?
Po=5N

Variable
C Cross
Section

ol
Hl.Hl,.llll Hll,.lll.Hl,

Pitj=—»L 1

;ﬁ,;|z;
\

L=1m

step length =
0.2m

E =207 Gpa
p =7810kg/m?
d =0.005m
q=0.01N

Po=5N

V. OBSERVATIONS

A. Uniform Cross Section

From (6) and (8), it is found that for this rod first critical
buckling load for static case is 63N and corresponding first
resonance frequency is 60.9 rad/s.
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Fig.2.Load vs Midspan deflection plot under various forcing
frequencies (10rad/s - 100 rad/s), dynamic case- for uniform cross
section (Pcr = 60 — 65N, Q = 60 rad/s, t = 2.5sec).
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Fig. 3. Load vs Midspan plot deflection under various forcing
frequencies(110 rad/s - 200 rad/s), dynamic case- for uniform cross
section.

For dynamic case, from the load-deflection analysis
(Fig 2. and Fig 3.) it is observed that, up to 40N applied
load no buckling occurs for all the frequencies between 10
rad/s to 100 rad/s, but as the applied force crosses the limit
of 40N, instability occurs and different values of buckling
load for different frequencies are obtained. At 20 rad/s,
buckling is observed at near 45N, similarly for 10, 30, 40,
50 rad/s buckling occurs between 50N to 60N. Among
these maximum deflection occurs near at 64N at 60 rad/s
(1.6x10°m) and at 80 rad/s (1.8x10°m).

B. Non Homogenous Density Distribution

The critical load and resonance frequency have been
calculated using the formulas derived for the rod which has
uniform density distribution and is under static condition,
(6)-(8); but for the varying density distribution there are no
such formulas, hence, to observe the nature of the
deformation several frequencies are applied.

To compare the change in deflection nature in this
specially constructed rod; different frequencies within a
range of 10 to 100 rad/s have been chosen. For all these
frequencies load is applied from 5N to 100N. The load vs
deflection curve for frequency ranging from 10 rad/s to
100 rad/s are plotted in a single curve which shows that
their nature is almost same and each experiences buckling
at near 60N applied load (Fig. 4).

LMK
=L 10rad's

— (3=20rad's
L 30rad's
< Lr-40rad's
“ (¥=50rad's
Cr 60rad's
Q=T0rad’s
O-80rad's
(2= 90rad/s
- 0=100rad's

L

(21

Load (N)

40

204

=
13
&
-
o
=
=t
=

Midspan deflection (m)

Fig. 4. Load vs Midspan deflection plot under various forcing frequencies,
dynamic case, for non- homogenous density distribution. (Pcr = 60 N, Q
=20 rad/s, t = 2.5sec)

Buckling occurs at 60N under 20 rad/s forcing
frequency. The deflection at this buckling load is about
13mm, which is noticeably larger than that of the uniform-
density-rod.

When analyzing each curve separately it is observed
that for applied load range of 5N - 50N deflection
increases almost at a steady rate and for all the frequency
the deflections are in the range of 10°m to 10™m, and for
60N or above these values increase from 0.5x10°m to
12x10°°m.

Another interesting characteristic observed is that when
the load exceeds 60N or above the corresponding
deflection decreases and fluctuated within 6x10™m- 3x10°
m. This indicates that for a certain frequency the
deflection reaches its maximum values at a certain load
(i.e. critical load) and above that load limit do not have a
regular trend.
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Fig. 5. Deflections under various loads along the length of the rod, Q =0
rad/s, quasi static case, non- homogenous density distribution.

From the static analysis the value of the buckling load
is determined as 60N- the same for uniform-density-rod
but the deflection is much higher as the dynamic case (Fig.
5).
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C. Variable Cross Section
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Fig. 6. Load vs Midspan plot deflection plot under various forcing
frequencies, dynamic case, for variable cross section (P =2000 N, Q =35
rad/s, t = 2.5sec).

For 5N to 5000N applied load, by changing forcing
frequency from 5rad/s to 50rad/s the buckling load is
found as 2000N at 35 rad/s forcing frequency (Fig. 6).
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Fig. 7. Load vs Midspan deflection plot under various forcing frequencies,
dynamic case, for variable cross section (P¢; = 3000 N, Q = 70 rad/s, t =
2.5sec).

Again at 70 rad/s forcing frequency another buckling
load is found, which is equal to 3000N (Fig. 7).

The applied force needed for buckling is much higher
when the varying cross section is considered where the
mid portion of the rod has diameter three times larger than
that of the constant cross section rod and the forcing
frequency is almost half.

TABLE 2.COMPARISON AMONG THE THREE CASES

Critical

Case A Case B Case C
Parameters

Dynamic
buckling load 45 - 65 60
(N), P,

Frequency of
oscillating
load at 20-80 20 35; 70
buckling
(rad/s), Q

Midspan 0.7x107%-
deflection (m) 1.6x10°

2000; 3000

12.8x10° 2.2x10*
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VI. VALIDATION

To check the validity of the numerical model, both
1st and 2nd critical load is calculated from the analytical
formula and the values obtained by the numerical method
are compared with those, the values matches for the quasi-
static case. The values obtained for the dynamic case are
also comparable with the analytical values, which confirms
the validity of the numerical model (TABLE 3.).

In case of dynamic state the forcing frequency at
which buckling occurs is almost equal to the first vibration
frequency of the rod, which also confirms the validity of
the model as from the analytical solution it is found that
instability occurs when the forcing frequency is equal to
the natural frequency of the rod.

Another important characteristic of dynamic buckling
is: instability may occur at loading frequencies other than
the natural frequency, which is also obtained from the
analytical solution, numerical analysis also indicates the
same behavior both for first and second mode of buckling
(TABLE 4.).

TABLE 3.COMPARISON BETWEEN ANALYTICAL VALUES AND
NUMERICAL VALUES (CRITICAL LOAD)

Numerical Value

Critical Analytical 1asi
Load Value Q . Dynamic
static
First critical
load (N) 63 60 45 - 65
Second critical
load (N) 250.68 250 225

TABLE 4. COMPARISON BETWEEN ANALYTICAL VALUES AND
NUMERICAL VALUES (NATURAL FREQUENCY)

; Numerical Value
Natural Frequency | Analytical Value Dynamic
First natural
frequency (rad/s) 60.9 60 - 80
Second natural
frequency (rad/s) 2515 120

VIl. CONCLUSION

At this stage only deformation and response of the
oscillating force is discussed, but there remain a lot of
room for studying more aspects of the dynamic buckling of
an elastic body, such as the critical wavelength for the
buckling instability, dynamic buckling of thin cylindrical
shell, effect of damping on the dynamic stability of any
arbitrary rods, frames, arches, plates, shells, thin- wall
beams etc. The knowledge gained by this particular work
will help to deal with more complex and important systems
of motion with the effective technique to solve those.
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