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Abstract—Dynamic buckling of a rod is analyzed; the effect of 

axial oscillating load on a pin ended steel rod of circular cross 

section is modeled and numerically solved. Three cases i.e., 

uniform cross section; non-homogenous density distribution and 

variable cross section are considered. Two important parameters 

are found as responsible for the buckling – amplitude and the 

frequency of the oscillating force. Analysis is done by varying 

these two parameters over a fixed time period. Buckling occurs 

under lower amplitude of the oscillating force in case of dynamic 

state while in quasi-static case buckling occurs under higher 

amplitude of load. Instability occurs when the frequency of the 

oscillating force comes near to the natural frequency of the rod. 

Keywords—dynamic buckling;  axial oscillating force;  forcing 

frequency;  critical buckling load;  pin ended rod. 

I. INTRODUCTION  

Failure of structures is a dynamic process [1], and so it is 
obviously more realistic to approach buckling and stability 
from the dynamic point of view. At the same time, it appears 
that a dynamic approach is necessary to define the concept of 
stability precisely. 

Buckling from prescribed dynamic loads acting on 
structural element e.g. a steel rod is concerned in the present 
work. Difference among the several types of dynamic 
buckling can be made based on the physical phenomena of the 
buckling processes. One of the main distinctions is between 
buckling from oscillatory loads and buckling from transient 
loads consisting of a single pulse characterized by its 
amplitude, shape and duration. The first kind is known as 
vibration buckling and the later kind is known as pulse 
buckling. 

In vibration buckling, the amplitudes of vibration caused 
by an oscillating load become unacceptably larger at critical 
combinations of load amplitude, load frequency and structure 
damping.  

As the phenomena of dynamic buckling are very common 
in our everyday life, it is of a great importance to analyze and 
understand the behavior of it. Long, thin supports are 
ubiquitous in natural and engineered load buckling structures, 
from spider legs to the steel structure of a skyscraper [2]. A 
single column will buckle if too much force is applied along 
its axis, which can lead to the catastrophic failure of the 
structure. The buckling instability is seen at all sizes, from 
pole vaulting to protein microtubules confined in vesicles and 
carbon nanotube atomic force microscope probes [3].   

Moreover, there are a lot of structures and bodies which go 
under dynamically applied load in service condition, for 
example in aircraft landing struts, arches and spherical caps, 
cylindrical shells etc. are very important both from 
engineering and structural viewpoints.  

The reason why a simple pin ended rod is chosen for 
analyzing is that the simply supported rod is obviously the 
simplest element because of its long history in the design of 
rods under static loading, for which the theory reduces to very 
fundamental form. A lot of experimental and theoretical works 
have been done on this account and the findings of those 
researches make some interesting points which are quite 
influential to do analysis on this particular topic. 

Historically, Abrahamson and Goodier [4], investigated 
the plastic buckling of columns caused by axial impact. They 
defined amplification factor as the ratio of the maximum 
amplitude of the shape imperfection associated with the nth 
mode to its average value and postulated that the structure 
buckled when the amplification factor exceeded a pre-
specified value, say 10. This method has been successfully 
used to analyze plastic buckling of rods caused by axial 
impact, plastic buckling of plates due to in-plane forces, and 
plastic buckling of cylindrical shells under axial impact. Wang 
and Ru [5] used the following energy criterion for analyzing 
the dynamic buckling of a structure. The structure is unstable 
if under a kinematically admissible perturbation superimposed 
on the dominant motion, the work done by internal stresses is 
less than the work done by the external forces. The energy 
criterion has been applied to study the radial buckling of 
cylindrical shells by Gu et al [6]. Batra and Wei [7] have 
postulated that the buckling mode corresponds to the 
wavelength of the superimposed perturbation that has the 
maximum initial growth rate, and have used it to study the 
buckling of a thin anisotropic thermoviscoplastic plate due to 
in-plane forces. 

II. MATHEMATICAL FORMULATION 

The differential equation of motion of the rod under axial 

pulsating load (Fig.1) can be derived as follows[8]:  
4 2 2
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Fig.1. Pin ended rod under pulsating axial force. 

 
Where, 

 

0( ) costP t P P t                                  (2)  

is the axial compressive load- of which Pois the static 

load and Ptis the amplitude of the oscillating force, Ωis the 

forcing frequency, and ρAdescribes mass per unit length of the 

rod. 

For the boundary conditions of a pin ended rod, we 

seek the solution in the form 
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Substituting into (1) yields the condition 
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in which the following notations are made: 
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Here,  

ω
o
= free vibration frequency of the rod for no axial load 

ω = free vibration frequency under static loadPo 

Pcrn = critical load for buckling 

p= excitation parameter. 

III. BOUNDARY CONDITIONS  

To analyze the deflection in the present work, the rod is 

assumed to be pin ended on both ends and so theboundary 

conditions are, at both ends both the deflection and bending 

moment is zero. 

 

 

 

Atx=0and x=l 
Deflection,y=0(10) 

 

And, atx=0and x=l 

Bending moment,
2

2
0

y
EI

x



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IV. MODELING 

To study the effect of the amplitude and frequency of the 

oscillating force three different cases are modeled. For each 

cases boundary conditions, mean static load Po, time t, 

modulus of elasticity E, distributed load over the rod q are 

same; diameter of the rod d is represented in TABLE 1.  

To analyze these cases finite difference method (FDM) is 

applied. Second order central difference formula is used for 

the domain while at the boundaries second order forward and 

second order backward difference formula (for x = 0 and x = l 

respectively) are used respectively, which results in a second 

order accurate numerical analysis.      

 
TABLE 1. TABLE SHOWING THE DIFFERENT CASES CONSIDERED 

Ca

se 
Description Figure Dimensions 

A 
Uniform 
cross section 

 

 

L = 1m 
E = 207 Gpa 

ρ = 7810 kg/m3 

d = 0.005m 
q = 0.01 N 

P0 = 5 N 

B 

Non 

homogenous 
density 

distribution 
 

L = 1m 
Step length= 

0.2m 

E = 207 Gpa 
d = 0.005m 

q = 0.01 N 

ρ =7810kg/m3 

P0 = 5 N 

C 

Variable 

Cross 

Section 

 

 

L = 1m 
step length = 

0.2m 

E = 207 Gpa 
ρ =7810kg/m3 

d = 0.005m 

q = 0.01 N 
P0 = 5 N 

V. OBSERVATIONS 

A. Uniform Cross Section 

From (6) and (8), it is found that for this rod first critical 

buckling load for static case is 63N and corresponding first 

resonance frequency is 60.9 rad/s. 
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Fig.2.Load vs Midspan deflection plot under various forcing 
frequencies (10rad/s - 100 rad/s), dynamic case- for uniform cross 

section (Pcr = 60 – 65N, Ω = 60 rad/s, t = 2.5sec). 
 

 
Fig. 3.  Load vs Midspan plot deflection under various forcing 

frequencies(110 rad/s - 200 rad/s), dynamic case- for uniform cross 
section. 

 

For dynamic case, from the load-deflection analysis 

(Fig 2. and Fig 3.) it    is observed that, up to 40N applied 

load no buckling occurs for all the frequencies between 10 

rad/s to 100 rad/s, but as the applied force crosses the limit 

of 40N, instability occurs and different values of buckling 

load for different frequencies are obtained. At 20 rad/s, 

buckling is observed at near 45N, similarly for 10, 30, 40, 

50 rad/s buckling occurs between 50N to 60N. Among 

these maximum deflection occurs near at 64N at 60 rad/s 

(1.6x10
-3

m) and at 80 rad/s (1.8x10
-3

m). 
 

B. Non Homogenous Density Distribution 

The critical load and resonance frequency have been 

calculated using the formulas derived for the rod which has 

uniform density distribution and is under static condition, 

(6)-(8); but for the varying density distribution there are no 

such formulas, hence, to observe the nature of the 

deformation several frequencies are applied. 

To compare the change in deflection nature in this 

specially constructed rod; different frequencies within a 

range of 10 to 100 rad/s have been chosen. For all these 

frequencies load is applied from 5N to 100N. The load vs 

deflection curve for frequency ranging from 10 rad/s to 

100 rad/s are plotted in a single curve which shows that 

their nature is almost same and each experiences buckling 

at near 60N applied load (Fig. 4). 

 

 
Fig. 4. Load vs Midspan deflection plot under various forcing frequencies, 

dynamic case, for non- homogenous density distribution. (Pcr = 60 N, Ω 

= 20 rad/s, t = 2.5sec) 

 

Buckling occurs at 60N under 20 rad/s forcing 

frequency. The deflection at this buckling load is about 

13mm, which is noticeably larger than that of the uniform-

density-rod.  

When analyzing each curve separately it is observed 

that for applied load range of 5N - 50N deflection 

increases almost at a steady rate and for all the frequency 

the deflections are in the range of 10
-5

m to 10
-4

m, and for 

60N or above these values increase from 0.5x10
-3

m to 

12x10
-3

m.  

Another interesting characteristic observed is that when 

the load exceeds 60N or above the corresponding 

deflection decreases and fluctuated within 6x10
-4

m- 3x10
-

2
m. This indicates that for a certain frequency the 

deflection reaches its maximum values at a certain load 

(i.e. critical load) and above that load limit do not have a 

regular trend. 
 

 
 

Fig. 5. Deflections under various loads along the length of the rod, Ω = 0 
rad/s, quasi static case, non- homogenous density distribution. 

 

From the static analysis the value of the buckling load 

is determined as 60N- the same for uniform-density-rod 

but the deflection is much higher as the dynamic case (Fig. 

5). 
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C. Variable Cross Section 

 
Fig. 6. Load vs Midspan plot deflection plot under various forcing 

frequencies, dynamic case, for variable cross section (Pcr = 2000 N, Ω = 35 

rad/s, t = 2.5sec). 

For 5N to 5000N applied load, by changing forcing 

frequency from 5rad/s to 50rad/s the buckling load is 

found as 2000N at 35 rad/s forcing frequency (Fig. 6). 

 

 
Fig. 7. Load vs Midspan deflection plot under various forcing frequencies, 

dynamic case, for variable cross section (Pcr = 3000 N, Ω = 70 rad/s, t = 

2.5sec). 

 

Again at 70 rad/s forcing frequency another buckling 

load is found, which is equal to 3000N (Fig. 7).  

The applied force needed for buckling is much higher 

when the varying cross section is considered where the 

mid portion of the rod has diameter three times larger than 

that of the constant cross section rod and the forcing 

frequency is almost half.  
 

TABLE 2.COMPARISON AMONG THE THREE CASES 

Critical 
Parameters 

Case A Case B Case C 

Dynamic 

buckling load 

(N), Pt 

45 - 65 60 2000; 3000 

Frequency of 
oscillating 

load at 

buckling 
(rad/s), Ω 

20 - 80 20 35; 70 

Midspan 

deflection (m) 

0.7x10-3-  

1.6x10-3 
12.8x10-3 2.2x10-4 

VI. VALIDATION 
 To check the validity of the numerical model, both 
1st and 2nd critical load is calculated from the analytical 
formula and the values obtained by the numerical method 
are compared with those, the values matches for the quasi-
static case. The values obtained for the dynamic case are 
also comparable with the analytical values, which confirms 
the validity of the numerical model (TABLE 3.). 

 In case of dynamic state the forcing frequency at 
which buckling occurs is almost equal to the first vibration 
frequency of the rod, which also confirms the validity of 
the model as from the analytical solution it is found that 
instability occurs when the forcing frequency is equal to 
the natural frequency of the rod. 

  Another important characteristic of dynamic buckling 
is: instability may occur at loading frequencies other than 
the natural frequency, which is also obtained from the 
analytical solution, numerical analysis also indicates the 
same behavior both for first and second mode of buckling 
(TABLE 4.). 

 
TABLE 3.COMPARISON BETWEEN ANALYTICAL VALUES AND 

NUMERICAL VALUES (CRITICAL LOAD) 

 

Critical 
Load 

Analytical 
Value 

Numerical Value 

Quasi 

static 
Dynamic 

First critical 

load (N) 
63 60 45 - 65 

Second critical 

load (N) 
250.68 250 225 

 

TABLE 4. COMPARISON BETWEEN ANALYTICAL VALUES AND 

NUMERICAL VALUES (NATURAL FREQUENCY) 
 

Natural Frequency Analytical Value 
Numerical Value 

Dynamic 

First natural 
frequency (rad/s) 

60.9 60 - 80 

Second natural 

frequency (rad/s) 
251.5 120 

 

VII. CONCLUSION 

At this stage only deformation and response of the 

oscillating force is discussed, but there remain a lot of 

room for studying more aspects of the dynamic buckling of 

an elastic body, such as the critical wavelength for the 

buckling instability, dynamic buckling of thin cylindrical 

shell, effect of damping on the dynamic stability of any 

arbitrary rods, frames, arches, plates, shells, thin- wall 

beams etc. The knowledge gained by this particular work 

will help to deal with more complex and important systems 

of motion with the effective technique to solve those. 
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