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Abstract —The importance of the beam and its engineering 
applications plays vital role in analysis, due to different types of 
loading on the beam. Since many types of loading on the beam 
causes various types of cracks. The occurred cracks and their 
locations effect on the shape and values of the beam frequency. 
Recently various types of crack analysis are prevailing in the 
industry of spacecraft, airplanes, wind turbines, turbines, robot 
arm and many other relevant field. In particular breathing 
crack is considered: the natural frequencies and mode shapes of 
beam with crack can provide an insight into the extent of 
damage. 

 
An attempt is been made to address the problem of 

vibrations of a Euler-Bernoulli beam with breathing crack. This 
phenomenon can be attributed to the presence of the non-
linearity due to the opening and closing of cracks. In order 
better to understand the essential non-linear dynamics of the 
beam with crack, a bilinear two-degree-of-freedom model is 
studied. Also numerical study has been carried out to predict 
spectral pattern and the magnitude of each harmonic 
component for a simply supported beam containing breathing 
crack. 

Keywords — Crack, Galerkin procedure, Non-linearity,       
                     Natural frequency, Bilinear 

 

1. INTRODUCTION  

The use of simplified models to simulate the nonlinear 
behavior of a real system has been a very challenging task in 
mechanics. Because of their simplicity, oscillators with 
bilinear or piecewise stiffness characteristics (i.e. with a 
bilinear or piecewise restoring forcing function) have been 
used to model the mechanical systems with nonlinear 
stiffness. For example, 

1. Modeled cantilever beams with nonlinear boundary 
conditions by oscillation with bilinear stiffness. 

2. Bearing suspension of high-speed rotors by 
oscillators with piecewise stiffness. 

3. To model the nonlinearity of a wave-driven off-
shore tower. 

4. To model the nonlinear elastic supports of a rigid 
rotors. 

5. To simulate the behavior of print hammers. [1] 

The use of bilinear oscillators can be used to model 
the dynamic behavior of structures with a fatigue crack [2]. A 
breathing crack was introduced based on the bilinear stiffness 
concept, which assumes that the opens (with lower crack 

stiffness) or closes (with higher stiffness) depending on the 
direction of the vibration. [4, 5, 13] 
Since all numerical simulation techniques require tremendous 
computational time during the analysis. The advantage of 
using stiffness modeling technique is that both the 
homogeneous solution and the particular solution can be 
expressed in terms of two square wave functions.  
        The construction of supersonic aircraft structures and 
high-speed rotating machines such as steam turbines, 
generators, motors and pumps, etc., has become more 
complicated since the late 1950s. Although these machines 
are carefully designed for fatigue loading, possess high levels 
of safety, are constructed with high-quality materials, and are 
thoroughly inspected prior to service as well as periodically 
during their operating lives, still there are instances of cracks 
or damage escaping inspection. Therefore, the development 
of the structural integrity monitoring techniques has received 
increasing attention in recent years. Among these monitoring 
techniques, it is believed that the monitoring of the global 
dynamics of a structure offers favorable alternative if the on-
line (in service) damage detection is necessary. [15] 
 
In order to identify structural damage from vibration 
monitoring, the study of the changes of the structural 
dynamic behavior due to cracks is required for developing the 
detection criterion. Some earlier research based on the open 
crack model, which assumes cracks always keep open during 
the vibration process, has been proposed.  
The time histories of the vibrations showed the existence of 
the nonlinear behavior for structures with fatigue cracks. For 
example, 

 
1. Modeling of the fatigue crack as a bilinear spring and 

using the bondgraph technique to analyze the first 
five modes of a cracked cantilever beam. [6,7] 

2. A pair of self-equilibrating forces and piecewise 
stiffness to model the contact phenomenon of a crack 
during the longitudinal vibration. [10,11]  
 

2. APPLICATION TO EULER - BERNOULLI BEAM 
WITH CRACK 

 
        The governing equation for beams with a 
fatigue crack obtained from the Galerkin procedure 
has not only bilinear stiffness but also bilinear 
forcing functions. The magnitude of the external 
excitation for each mode of vibration indeed 
changes with the stiffness constant. To analyze the 
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vibrations of Euler - Bernoulli beams, it is necessary 
to extend the stiffness modeling technique to 
incorporate the bilinear forcing function [8, 9] 

We consider a Euler - Bernoulli beam of rectangular cross 
section of depth 2d and width, 2b with an edge crack of size 

a, located at x = xc, is shown in Figure 2.1 
 

Fig 2.1 Configuration of the Euler - Bernoulli beam. 

2.1 The equation of motion 

Ι +γ (L1− K− K1)Q 1W
' ' ' '

+[ 2 (I +γ [L1− K − K 1])Q1
'

+γ (2L3+ L2− K2+2K1)Q1 ] W ' ' '

+[(I +γ[L1− K− K1])Q1
' ' +γ(2L3+L2− K 2+2 K ')Q1

'

+γ (L4 +L5− K' ')Q1 ] W ' ' + ρΑ/ Ε Ẅ = 0

          (1) 

 
where the functions     
Ι , Κ1 , Κ 2 L , L1 , L2 , L3 , L4 , L5 ∧Q1  

are defined as       

L2 = ∫
A

dφ1 dA L3 = ∫
A

f 1 φ dA
 

L4 = ∫
A

f 11φ dA L5 = ∫
A

fφ1 dA
 

Q1 = Ι +γ (L1− Κ − Κ 1)/ Ι +γ (L− 2Κ)            (2) 
 
External Excitation, F (x, t) is considered in Eq. 1, can be 
modified simply by adding a forcing function. 
 

ρ Α

Ε
× Ẅ +[I +γ (L1− Κ − Κ 1)]Q1 W

' ' ' '
+{2 [Ι +γ (L1− Κ− Κ1)]Q1

'
+

γ (2L3+ L2− Κ 2+2 Κ
')Q1}W

' ' '
+{[Ι +γ(L1− Κ − Κ 1)]Q1

' '
+

γ (2L3+ L 2− Κ2 +2 Κ' )Q1
' +(L4+ L5− Κ' ')Q1}W ' ' = F (x , t )

 
transverse displacement is       

W i (x , t)= γψ
ic (x )ui (t)+(1− γ)ψ

inc(x )ui (t )         (3) 

where 
ψ

ic is the ith mode shape of the cracked beam 

          
ψ

inc is the ith mode shape of the uncracked beam 

           ui    is the general coordinate for each mode 
 To further simplify the problem, a harmonic forcing function 
is considered here, which is given as 
 

     F (x , t)= ξ (x) sin Ω t [14]               (4) 
 

Eqs. 3 and 4 into Eq. 2, we get 
 

{γ [r (x )ψi
c' '

+g (x )ψi
c ''

+h (x )ψi
c' '

]+(1− γ)[r (x )ψi
nc''

+g (x )ψi
n c' '

+h(x )ψi
n c' '

]}ui+

ρ Α

Ε
[γψ i

c+(1− γ)ψi
nc] üi= ξ (x )sinΩ t

                                        

                                                                       (5) 
where the functions  

r (x ) g (x )and h (x)  are given as 

r (x )= [Ι +γ (L1− Κ − Κ 1)]Q1                          (6) 

g (x)= 2 [Ι +γ (L1− Κ − Κ 1)]Q1
' +γ(2L3+L2− Κ 2+2 Κ ')Q1  7) 

h (x )= (Ι +γ [L1− Κ − Κ 1])Q1
' ' +γ (2L3+L2− Κ 2+2 Κ')Q1

' +γ (L4+ L5− Κ' ')Q1  (8) 

 
2.2 Calculation of the constant m 

 
The stress (or strain) distribution is characterized by the crack 
function f with the parameters α and m defining stress profiles 
in the x and z directions. Since the stress along the z direction 
is assumed to be linear, its decay rate m can be estimated 
from the condition that the same bending moment is carried 
by the cracked beam and the uncracked beam at the crack. (3) 
 

m=
1

1+
3

4(
a

d )
2

−
3

2(
a

d )−
1

8(
a

d )
3

 

 
3. RESULTS AND DISCUSSIONS 

 

This gives the graphs of time history, spectrum of the forced 
response and system resonance in case of simply supported 
Euler-Bernoulli beam. These graphs are plotted using 
MATLAB codes are developed for generating the graphs as 
explained. Section 3 gives the history graph of simply 
supported Euler-Bernoulli beam with a forcing frequency of 
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3Hz and natural frequencies 28.7Hz and 26.5Hz. Remaining 
section give graph of spectrum of the system resonance and 
forced response in case of simply supported Euler-Bernoulli 
beam for the two forcing frequencies 8Hz and 3Hz.  
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u f (t )=
1

2 (
Ρ1

ω1
2
− Ω

2
+

Ρ2

ω2
2
− Ω

2 )sin Ω t +(
Ρ1

ω1
2
− Ω

2
+

Ρ2

ω2
2
− Ω

2 )
{1π −

2
π

∑
k = 1

∞ cos 2k Ω t

(2k+1)(2k− 1)}
                                                                                            (11) 

us (t )=
1
2 [Α1sin ω1 t+ Α2 sin (ω2 t+ β0)]+

Α1

π
∑

k= 1,3,5

∞ cos (ω1− k Ω )t− cos (ω1+k Ω)t

k

−
Α2

π
∑

k= 1,3,5

∞ cos [(ω2− k Ω)t+ β0]− cos [(ω2+k Ω t + β0)]
k

                                                                                         (12) 

3.1 Bilinear oscillator:  

The time history of the bilinear oscillator is plotted by Eqs. 
11 and 12 is shown in Fig 3.1. The positive peaks indicate the 
crack opening with amplitude varying from 0 to 2e-7. The 
negative peak is very small indicating crack closure. Same 
cycles get repeated after each interval of the 0.2 sec. 

Fig. 3.1 Time history of a bilinear oscillator with  = 5 Hz, 1 = 355.9 

Hz, 2 = 1125.4 Hz obtained from numerical simulation 

 

3.2 Forced response of a bilinear oscillator 

Spectrum of the bilinear oscillator under forced response is 
plotted by Eq. 9 is shown in Fig 3.2 The response consists of 
displacements indicated by the peaks. The amplitude 
decreases with increase in the frequency and after frequency 
range of 20 Hz it almost remains same since time required for 
crack opening is less 

Fig.3.2 Spectrum of the forced response of a bilinear 

oscillator with =8Hz, 1 =355.9Hz, 2 =1125.4Hz 

obtained from numerical simulation. 

3.3. System resonance of a bilinear oscillator  

Spectrum of the bilinear oscillator under system 
resonance is plotted by Eq.10 is shown in Fig 3.3 At system 
resonance the magnitude of amplitude is higher compared to 
forced response. Consider a case of the bilinear oscillator 

with  =8Hz 1 =355.9Hz, and 2 =1125.4Hz with forcing 

frequency  =8Hz. At lower frequency the amplitude starts 
increasing rapidly dominated by lower stiffness up to 
resonant frequency. After resonance the amplitude decreases 
due to lack of time for the crack to open sufficiently but at a 
lower rate. After resonant frequency range the amplitude is 
relatively zero. 
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Fig.3.3 Spectrum of the system resonance of a bilinear oscillator for the 

frequency range of 380Hz to 480Hz obtained from numerical simulation. 

3.4 System resonance of a bilinear oscillator 

Spectrum of the bilinear oscillator under system 
resonance is plotted by Eq. 10 is shown in Fig 3.4 The change 
of frequency scale gives clear plot of amplitude with 
frequency scale magnified. Consider a case of the bilinear 

oscillator with  =8Hz 1 =355.9Hz, and 2 =1125.4Hz 

with forcing frequency  =8Hz. In this case amplitudes in 
the plots in Fig 3.4 has a increasing and decreasing behavior 
due to its different natural frequency. 

 
Fig. 3.4   Spectrum of the system resonance of a bilinear oscillator for the 
frequency range of 1300Hz to 1400Hz obtained from numerical simulation. 

 
 

3.5 Simply supported Euler - Bernoulli beam  
 

Time history for the first mode of vibration of a 
simply supported Euler - Bernoulli beam under the forcing 

frequency =3Hz, 1 =28.7Hz, and 2 =26.5Hz, is plotted 

by Eqs. 11 and 12 are shown in Fig 3.5  The peaks are rough 
due to decreasing and increasing magnitude in small quantity 
since there is a varying lag of time between forcing and crack 
opening event. 

 Fig. 3.5 Time history for the first mode of vibration of a simply supported 

Euler-Bernoulli beam under the forcing frequency  =3Hz, 1 =28.7Hz, 

and 2 =26.5Hz obtained from numerical simulation. 

 

3.6 System resonance for the first mode of vibration of a 
simply supported Euler - Bernoulli beam  

Spectrum of the simply supported Euler-Bernoulli 
beam  under system resonance for the first mode of vibration 
is plotted by Eq.12 is shown in Figure 3.6 The simply 
supported Euler-Bernoulli beam case gives a plot with 
amplitudes changing even more rapidly. The amplitudes in 
the simply supported Euler-Bernoulli beam case is relatively 
more compared to bilinear oscillator. The amplitude starts 
from zero magnitude. 

  
FIG. 3.6 Spectrum of the System resonance for the first mode of vibration of a 

simply supported Euler-Bernoulli beam under forcing frequency =8Hz,

1 =28.7Hz, 2 =26.5Hz obtained from numerical simulation. 

 
3.7 Forced response for the first mode of vibration of a 

simply supported Euler - Bernoulli beam  

Spectrum of the simply supported Euler - Bernoulli 
beam  under forced response for the first mode of vibration is 
plotted by Eq. 11 is shown in Fig 3.7  Consider the first mode 
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of vibration of a simply supported Euler - Bernoulli beam 

under forcing frequency  =8Hz, 1 =28.7Hz and 2
=26.5Hz. For a forced response the starting amplitude is 
highest with all other amplitudes nearly zero since it is the 
weakest of all cases due to lack reaction moments.

 
Fig. 3.7 Spectrum of Forced response for the first mode of vibration of a 

simply   supported Euler-Bernoulli beam under forcing frequency =8Hz, 

1 =28.7Hz, 2 =26.5Hz obtained from numerical simulation 

 
3.8   System resonance for the first mode of vibration of a 

simply supported Euler - Bernoulli beam  

    Spectrum of the simply supported Euler - Bernoulli beam  
under system resonance for the first mode of vibration is 
plotted by Eq. 12 is shown in Fig 3.8 Simply supported Euler 
- Bernoulli beam case is the weakest and do not yield 
amplitudes for higher frequencies. Thus if the forcing 

frequency is changed to =3Hz from 8 Hz, and all other 
parameters are kept unaltered the resulting curve is shown in 
Fig 3.8 Amplitude here gives peaks with rapidly rising and 
falling magnitudes distributed over a frequency range.  

Fig. 3.8 Spectrum of system resonance for the first mode of vibration of a 

simply supported Euler - Bernoulli beam under the forcing  =3Hz, 

frequency 1 =28.7Hz, and 2 =26.5 Hz obtained from numerical 

simulation 

 
3.9 Forced response for the first mode of vibration of a 

simply  

       supported Euler - Bernoulli beam  

Spectrum of the simply supported Euler - Bernoulli beam 
under forced response for the first mode of vibration is 
plotted by Eq. 11 is shown in Fig 3.9. To see the forced 
response the configuration of the previous case is kept 
unaltered except forcing frequency and simply supported 
Euler - Bernoulli beam case is simulated numerically 

 
Fig. 3.9 Spectrum of forced response for the first mode of vibration of a 

simply supported Euler - Bernoulli beam under the forcing frequency 
=3Hz, 1 =28.7Hz, and 2 =26.5Hz obtained from numerical simulation 

           
4. CONCLUSIONS 

 
The change of stiffness during free vibration using two 
square wave functions has been modeled and a closed-form 
solution for the forced vibration of a bilinear oscillator with 
constant-amplitude excitation has been studied. The occurred 
cracks and their locations effect on the shape and values of the beam 
frequency. An attempt is been made to address the problem of 
vibrations of a Euler-Bernoulli beam with breathing crack. 
Bilinear oscillator model is derived and checked for free and 
forced vibrations. The equations specifying spectral pattern 
for low frequency forced vibrations derived for both system 
resonance and forced response. 

 
The derived equations are then applied to simulate a Euler - 
Bernoulli beam with external excitation. Parameter affecting 
the amplitude time response is completely known. The study 
yielded relations and time amplitude plot of a breathing crack 
which can be applied to find the crack growth in a structure 
subjected to fatigue. 
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