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Abstract —The importance of the beam and its engineering
applications plays vital role in analysis, due to different types of
loading on the beam. Since many types of loading on the beam
causes various types of cracks. The occurred cracks and their
locations effect on the shape and values of the beam frequency.
Recently various types of crack analysis are prevailing in the
industry of spacecraft, airplanes, wind turbines, turbines, robot
arm and many other relevant field. In particular breathing
crack is considered: the natural frequencies and mode shapes of
beam with crack can provide an insight into the extent of
damage.

An attempt is been made to address the problem of
vibrations of a Euler-Bernoulli beam with breathing crack. This
phenomenon can be attributed to the presence of the non-
linearity due to the opening and closing of cracks. In order
better to understand the essential non-linear dynamics of the
beam with crack, a bilinear two-degree-of-freedom model is
studied. Also numerical study has been carried out to predict
spectral pattern and the magnitude of each harmonic
component for a simply supported beam containing breathing
crack.

Keywords — Crack, Galerkin procedure, Non-linearity,
Natural frequency, Bilinear

1. INTRODUCTION

The use of simplified models to simulate the nonlinear
behavior of a real system has been a very challenging task in
mechanics. Because of their simplicity, oscillators with
bilinear or piecewise stiffness characteristics (i.e. with a
bilinear or piecewise restoring forcing function) have been
used to model the mechanical systems with nonlinear
stiffness. For example,

1. Modeled cantilever beams with nonlinear boundary

conditions by oscillation with bilinear stiffness.

2. Bearing suspension of high-speed

oscillators with piecewise stiffness.

3. To model the nonlinearity of a wave-driven off-

shore tower.

rotors by

4. To model the nonlinear elastic supports of a rigid
rotors.

5. To simulate the behavior of print hammers. [1]

The use of bilinear oscillators can be used to model
the dynamic behavior of structures with a fatigue crack [2]. A
breathing crack was introduced based on the bilinear stiffness
concept, which assumes that the opens (with lower crack
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stiffness) or closes (with higher stiffness) depending on the
direction of the vibration. [4, 5, 13]

Since all numerical simulation techniques require tremendous
computational time during the analysis. The advantage of
using stiffness modeling technique is that both the
homogeneous solution and the particular solution can be
expressed in terms of two square wave functions.

The construction of supersonic aircraft structures and
high-speed rotating machines such as steam turbines,
generators, motors and pumps, etc., has become more
complicated since the late 1950s. Although these machines
are carefully designed for fatigue loading, possess high levels
of safety, are constructed with high-quality materials, and are
thoroughly inspected prior to service as well as periodically
during their operating lives, still there are instances of cracks
or damage escaping inspection. Therefore, the development
of the structural integrity monitoring techniques has received
increasing attention in recent years. Among these monitoring
techniques, it is believed that the monitoring of the global
dynamics of a structure offers favorable alternative if the on-
line (in service) damage detection is necessary. [15]

In order to identify structural damage from vibration
monitoring, the study of the changes of the structural
dynamic behavior due to cracks is required for developing the
detection criterion. Some earlier research based on the open
crack model, which assumes cracks always keep open during
the vibration process, has been proposed.

The time histories of the vibrations showed the existence of
the nonlinear behavior for structures with fatigue cracks. For
example,

1. Modeling of the fatigue crack as a bilinear spring and
using the bondgraph technique to analyze the first
five modes of a cracked cantilever beam. [6,7]

2. A pair of self-equilibrating forces and piecewise
stiffness to model the contact phenomenon of a crack
during the longitudinal vibration. [10,11]

2. APPLICATION TO EULER - BERNOULLI BEAM
WITH CRACK

The governing equation for beams with a
fatigue crack obtained from the Galerkin procedure
has not only bilinear stiffness but also bilinear
forcing functions. The magnitude of the external
excitation for each mode of vibration indeed
changes with the stiffness constant. To analyze the
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vibrations of Euler - Bernoulli beams, it is necessary
to extend the stiffness modeling technique to
incorporate the bilinear forcing function [8, 9]
We consider a Euler - Bernoulli beam of rectangular cross
section of depth 2d and width, 2b with an edge crack of size

a, located at X = X, is shown in Figure 2.1

g
L )

fentroidal Axig

K=K,

b

Fig 2.1 Configuration ofthe Euler - Bemoull beam.
2.1 The equation of motion
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where the functions
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are defined as
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External Excitation, F (x, t) is considered in Eq. 1, can be
modified simply by adding a forcing function.

Z—Ax 4y (L= K=K o +{z [I+7 (- K- K o+

7 QLy* L= K, +2K )0 M +{[I+y(L1- K- Kl)]Q;'+

PQL*L)m Ky ¥2K )0 #(Ly+ L= K )0 W = F (x,1)
transverse displacement is

Wi, )=y &)urU=7)y, (x)u; ) 3)
Y
v

where " ;¢ is the i mode shape of the cracked beam

;¢ is the i" mode shape of the uncracked beam

Ui s the general coordinate for each mode
To further simplify the problem, a harmonic forcing function
is considered here, which is given as

Fx,t)= S(x)sinQ ¢ 14 (4)

Egs. 3 and 4 into Eq. 2, we get

{1l o i B et s T

A 4 nls .
Z_[Wz""(l' Wi ] ii= ¢ (rinQ 1
®)

where the functions

r(x)gb)and h(x) s given as

rx)= [I+V (LI_K_KI)]QI (6)
g (F2 [I"'V (LI_ K- Kl)]Q; +7(2L3+L2_ K2+2K')Q1 7)
hx) (“7 [Ll'K'K1])Q’1’+V (2L3+L2' K2+2K’)Q’1+V (L4+Ls' K”)Q1 (8)

2.2 Calculation of the constant m

The stress (or strain) distribution is characterized by the crack
function f with the parameters a and m defining stress profiles
in the x and z directions. Since the stress along the z direction
is assumed to be linear, its decay rate m can be estimated
from the condition that the same bending moment is carried
by the cracked beam and the uncracked beam at the crack. (3)

TER60)

3. RESULTS AND DISCUSSIONS

This gives the graphs of time history, spectrum of the forced
response and system resonance in case of simply supported
Euler-Bernoulli beam. These graphs are plotted using
MATLAB codes are developed for generating the graphs as
explained. Section 3 gives the history graph of simply
supported Euler-Bernoulli beam with a forcing frequency of
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3Hz and natural frequencies 28.7Hz and 26.5Hz. Remaining
section give graph of spectrum of the system resonance and
forced response in case of simply supported Euler-Bernoulli
beam for the two forcing frequencies 8Hz and 3Hz.

u (t)—l P + P sinQ + P___ P
f 2 _0? a)lz _02 wzz _Q2

2\ 0 - @
1 2 cos2kQi
7 xS Qk+1)(2k-1)

)
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3.1 Bilinear oscillator:
The time history of the bilinear oscillator is plotted by Egs.
11 and 12 is shown in Fig 3.1. The positive peaks indicate the
crack opening with amplitude varying from 0 to 2e-7. The

negative peak is very small indicating crack closure. Same
cycles get repeated after each interval of the 0.2 sec.
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Fig. 3.1 Time history of a bilinear oscillator with Q=5 Hz, @, =3559

Hz, 0)2 = 1125.4 Hz obtained from numerical simulation

3.2 Forced response of a bilinear oscillator

Spectrum of the bilinear oscillator under forced response is
plotted by Eq. 9 is shown in Fig 3.2 The response consists of
displacements indicated by the peaks. The amplitude
decreases with increase in the frequency and after frequency
range of 20 Hz it almost remains same since time required for
crack opening is less
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Fig.3.2 Spectrum of the forced response of a bilinear
with Q =8Hz, w,=355.9Hz, @, =1125.4Hz

obtained from numerical simulation.

oscillator

3.3. System resonance of a bilinear oscillator

Spectrum of the bilinear oscillator under system
resonance is plotted by Eq.10 is shown in Fig 3.3 At system
resonance the magnitude of amplitude is higher compared to
forced response. Consider a case of the bilinear oscillator

with QQ=8Hz @,=355.9Hz, and @, =1125.4Hz with forcing

frequency €2 =8Hz. At lower frequency the amplitude starts
increasing rapidly dominated by lower stiffness up to
resonant frequency. After resonance the amplitude decreases
due to lack of time for the crack to open sufficiently but at a
lower rate. After resonant frequency range the amplitude is
relatively zero.
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Fig.3.3 Spectrum of the system resonance of a bilinear oscillator for the
frequency range of 380Hz to 480Hz obtained from numerical simulation.

3.4 System resonance of a bilinear oscillator

Spectrum of the bilinear oscillator under system
resonance is plotted by Eq. 10 is shown in Fig 3.4 The change
of frequency scale gives clear plot of amplitude with
frequency scale magnified. Consider a case of the bilinear

oscillator with QQ=8Hz @,=355.9Hz, and @, =11254Hz

with forcing frequency €2=8Hz. In this case amplitudes in
the plots in Fig 3.4 has a increasing and decreasing behavior
due to its different natural frequency.
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Fig. 3.4 Spectrum of the system resonance of a bilinear oscillator for the
frequency range of 1300Hz to 1400Hz obtained from numerical simulation.

3.5 Simply supported Euler - Bernoulli beam

Time history for the first mode of vibration of a
simply supported Euler - Bernoulli beam under the forcing
frequency (2 =3Hz, w,=28.7Hz, and @, =26.5Hz, is plotted
by Egs. 11 and 12 are shown in Fig 3.5 The peaks are rough
due to decreasing and increasing magnitude in small quantity
since there is a varying lag of time between forcing and crack
opening event.
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Fig. 3.5 Time history for the first mode of vibration of a simply supported
Euler-Bernoulli beam under the forcing frequency Q =31z, @), =28.7Hz,

and COZ =26.5Hz obtained from numerical simulation.

3.6 System resonance for the first mode of vibration of a
simply supported Euler - Bernoulli beam

Spectrum of the simply supported Euler-Bernoulli
beam under system resonance for the first mode of vibration
is plotted by Eq.12 is shown in Figure 3.6 The simply
supported Euler-Bernoulli beam case gives a plot with
amplitudes changing even more rapidly. The amplitudes in
the simply supported Euler-Bernoulli beam case is relatively
more compared to bilinear oscillator. The amplitude starts
from zero magnitude.
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FIG. 3.6 Spectrum of the System resonance for the first mode of vibration of a

simply supported Euler-Bernoulli beam under forcing frequency Q =gHz,
@, =28.7Hz, (1, =26.5Hz obtained from numerical simulation.

3.7 Forced response for the first mode of vibration of a
simply supported Euler - Bernoulli beam

Spectrum of the simply supported Euler - Bernoulli
beam under forced response for the first mode of vibration is
plotted by Eq. 11 is shown in Fig 3.7 Consider the first mode
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of vibration of a simply supported Euler - Bernoulli beam
under forcing frequency ()=8Hz, @,=28.7Hz and o,

=26.5Hz. For a forced response the starting amplitude is
highest with all other amplitudes nearly zero since it is the
weakest of all cases due to lack reaction moments.

x10°
14

121 B

i
T
I

Amplituds
o
[24]

Il

0
[
T
I

o
i .4
T
I

0z2r B

0 A
10 15 20 25 20 35 40 45 50
Frequency in Hz

Fig. 3.7 Spectrum of Forced response for the first mode of vibration of a
simply supported Euler-Bernoulli beam under forcing frequency Q =8Hz,
0)1 =28.7Hz, 0)2 =26.5Hz obtained from numerical simulation

3.8 System resonance for the first mode of vibration of a
simply supported Euler - Bernoulli beam

Spectrum of the simply supported Euler - Bernoulli beam
under system resonance for the first mode of vibration is
plotted by Eq. 12 is shown in Fig 3.8 Simply supported Euler
- Bernoulli beam case is the weakest and do not yield
amplitudes for higher frequencies. Thus if the forcing
frequency is changed to Q2 =3Hz from 8 Hz, and all other
parameters are kept unaltered the resulting curve is shown in
Fig 3.8 Amplitude here gives peaks with rapidly rising and
falling magnitudes distributed over a frequency range.
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Fig. 3.8 Spectrum of system resonance for the first mode of vibration of a
simply supported Euler - Bernoulli beam under the forcing Q =31z,
frequency (U =28.7Hz, and (1, =26.5 Hz obtained from numerical

simulation

3.9 Forced response for the first mode of vibration of a
simply

supported Euler - Bernoulli beam

Spectrum of the simply supported Euler - Bernoulli beam
under forced response for the first mode of vibration is
plotted by Eq. 11 is shown in Fig 3.9. To see the forced
response the configuration of the previous case is kept
unaltered except forcing frequency and simply supported
Euler - Bernoulli beam case is simulated numerically
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Fig. 3.9 Spectrum of forced response for the first mode of vibration of a

simply supported Euler - Bernoulli beam under the forcing frequency Q
=3Hz, 0)1 =28.7Hz, and C()z =26.5Hz obtained from numerical simulation

4. CONCLUSIONS

The change of stiffness during free vibration using two
square wave functions has been modeled and a closed-form
solution for the forced vibration of a bilinear oscillator with
constant-amplitude excitation has been studied. The occurred
cracks and their locations effect on the shape and values of the beam
frequency. An attempt is been made to address the problem of
vibrations of a Euler-Bernoulli beam with breathing crack.
Bilinear oscillator model is derived and checked for free and
forced vibrations. The equations specifying spectral pattern
for low frequency forced vibrations derived for both system
resonance and forced response.

The derived equations are then applied to simulate a Euler -
Bernoulli beam with external excitation. Parameter affecting
the amplitude time response is completely known. The study
yielded relations and time amplitude plot of a breathing crack
which can be applied to find the crack growth in a structure
subjected to fatigue.
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