

Dyanamic Load Balancing With Cost And Energy Optimization In Cloud

Computing

Jasnil Bodele

MTech, CSE

IIT Roorkee

Roorkee, India

Anil K. Sarje

Professor, ECD

IIT Roorkee

Roorkee, India

Abstract— Cloud Computing is becoming a backbone of

nearly all enterprises. Companies are using cloud for

their extensive computational work as well as data

storage. However the prime objective is to outsource the

cost of infrastructure and maintenance, as companies

want to focus on their core line of business. Hence they

require not only an efficient cloud infrastructure but

also a cloud which is optimized in terms of cost. This

requirement of companies provides us the idea of

creation of an algorithm, which will be both able to

balance Load as well as optimize total cost of

maintenance.

Keywords— Cloud computing; Dynamic Load

Balancing, Cost/Energy optimization, SLA (service level

agreement) violation, VM (Virtual machine) migration

I. INTRODUCTION

Cloud provides on-demand and pay-as-per-

requirement business model. There are three levels of

services in cloud computing, Infrastructure as a

service (Iaas), Platform as a service (Paas) and

Software as a service (Saas). Iaas is very similar to a

private cloud, except for the fact that clients do not

own the server. Instead, a third party allows client to

install client‘s own virtual server on their IT

infrastructure in exchange for a rental fee. Paas

provides developers with a framework that they can

build upon their own applications or customize

existing Saas applications. In Saas, client uses the

graphical interface of the application and this

application is managed and hosted by a third party.

The focus of this paper will be on Iaas.

Generally a cloud is over provisioned so that it can

handle higher workloads. These high workloads may

occur occasionally [10]. This over provisioning

makes cloud expensive and space consuming. Space

consuming in the sense space/room required to keep a

server. Over provisioning leads to low resource

utilization, wastage in energy and management

overhead. American society of heating, refrigerating

and air-conditioning engineers (ASHRAE)[1]

estimated that by 2014 infrastructure and energy costs

would contribute about 75%, whereas IT would

contribute just 25% to the overall cost of operating a

data center[2]. Thus reduction in this energy cost is

essential for overall cost reduction. The prime focus

of this paper is energy optimization.

Data collected from more than 5000 production

servers over a six-month period have shown that

although servers usually are not idle, the utilization

rarely approaches 100% [3]. Most of the time the

server is only 10-50% utilized leading to wastage of

energy. Even a completely idle server consumes 70%

of its peak power [4]. So keeping the server

underutilized is inefficient from energy saving point

of view. Moreover for each watt of power consumed

by computing resources, additional 0.5-1 W is

required for the cooling system [5]. The high energy

consumption also leads to release of green house gas

CO2 [6]. So, this wastage of energy is not only cost

ineffective but also harmful to the environment.

Such wastage of energy can be avoided by putting the

idle servers to sleep mode. Servers whose utilization

goes below a certain threshold can be put to sleep, if

it is possible to move all of their VMs to some other

servers without making them overloaded. However if

VMs are migrated extensively this may lead to

performance degradation. The response time of the

applications running on VM under migration will

increase which can lead to Service Level Agreement

(SLA) violation established between cloud provider

and the client. A SLA is contract/agreement between

Client and the service provider stating the terms and

conditions of services, payments and penalties etc. As

an example, if a certain agreed service is not provided

within some specified time interval some penalty

needs to be paid by the service provider to the client

for delay in service. Thus too much VM migration for

saving energy, may also lead to increased downtime

of service provided by that VM under migration, thus

attracting SLA violation [10]. Therefore there is a

tradeoff between reduction of energy consumption

and reduction of SLA violation due to VM migration.

Even if a server is 100% utilized then also SLA

violation may occur [10]. If the demand of the

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

1006

application is satisfied then there is no SLA violation,

but if the computational demand of the application is

not met and the cloud‘s VM is restricting its demand

by getting 100% utilized, then it can be an SLA

violation (if stated in agreement). These kinds of

SLA‘s are defined in agreement because cloud may

be unknowingly restricting the computing demand of

the application. Hence if the utilization goes above an

upper threshold there are chances that it may get

100% utilized, which may lead to SLA violation and

thus some of its VMs must be migrated to less loaded

servers.

In this paper we propose an Optimized Load

Balancing algorithm (OLB) which not only balances

the load among the servers but also reduces energy

consumption and SLA violation.

The organization of paper is as follows Section 2

discusses method for host overloading detection.

Section 3 focuses on VM selection strategy for

migration. Section 4 discusses the profit of finding

target host for the selected VMs. Host underloading

detection is discussed in Section 5. Calculation of

imbalance factor is given in Section 6. Simulation

results are presented in Section 7 and conclusion is

given in Section 8.

II. HOST OVERLOADING DETECTION

We need to migrate VMs from over loaded host so

that it will not cause SLA violation. Whenever the

CPU utilization of a host crosses a threshold it is

regarded as overloaded. We can have a static

threshold defined for this purpose. But as discussed in

[10], under dynamic workload environment static

threshold will not give good performance. Therefore

need some dynamic/adaptive threshold based on

history of utilization.

Three methods are suggested in the literature for

adjustment of upper threshold based on historical data

of CPU utilization: Median Absolute Deviation

(MAD) [10], Interquartile Range (IQR) [14] and

Local regression (LR) [11].

Performance evaluation has shown that LR

outperforms MAD and IQR [10]. Hence we use LR

for deciding whether host is overloaded or not.

LR [11] is proposed by Cleveland. The main idea of

this method is fitting simple models such as straight

line or some well known curve to localized subsets of

data to build up a curve that approximates the original

data.

III. VM SELECTION POLICIES FOR MIGRATION

After the host is found to be overloaded, the next step

is to select the VMs to be migrated away from that

host. There are various polices for this, namely

Random Selection (RS) policy, Maximum correlation

policy (MC) and Minimum Migration Time (MMT).

Random selection (RS) [10] as the name suggests

selects VM at random from the host selected for VM

migration. This policy is fairly simple to implement

and also running time is quite low.

Maximum correlation (MC) policy is based on the

idea proposed by Verma et al. [17]. The higher is

correlation between the resource usage by

applications running on an oversubscribed server, the

higher is the probability of the server overloading.

According to this idea, we select those VMs to be

migrated that have the highest correlation of the CPU

utilization with other VMs. Details of calculation of

correlation can be found in Verma et al. [17]. It is

shown in [10] that MC is not as good as MMT.

Minimum Migration Time (MMT) [10] policy

migrates a VM ‗v‘ that requires the minimum time to

complete a migration relatively to the other VMs

allocated to the host. The migration time is estimated

as the amount of RAM utilized by the VM ‗v‘ divided

by the spare network bandwidth available for the host

j currently hosting VM ‗v‘. Let Vj be the set of VMs

currently allocated to the host j. The MMT policy

finds a VM ‗v‘ that satisfies condition 3.1.

Where RAMu(a) is the amount of RAM currently

utilized by the VM a; and NETj is the spare network

bandwidth available for the host j.

If the host j is still overloaded then VM selection

policy is applied again till we can call it ‗not

overloaded‘.

We need a policy which will help us select a VM

requiring minimum migration time. This choice of

VM selection will help us in reducing the downtime

of application on the migrating VM. Thus it will help

us reducing SLA violation. Performance evaluation

proves that MMT outperforms MC and RS in terms

of migration time [10]. Thus we use MMT as our VM

selection policy.

IV. TARGET HOST FOR VM UNDER MIGRATION

Once a VM is selected for migration we need to find

a host for migrating the VM. We should take care that

the target host should not get overloaded after we

place our selected VM. Traditional algorithms focus

mostly only on CPU utilization for deciding whether

host is overloaded or not while allocating VMs [7].

Algorithms proposed by Wood et al. [8], Zheng et al.

[9] and DAIRS (dynamic and integrated resource

scheduling algorithms) [7] consider CPU, network

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

1007

and memory capability of server for calculation of its

integrated utilization.

Wood et al. [8] proposed a method for calculation of

integrated utilization of host combining its CPU,

memory and network bandwidth given by equation

4.1.

Where V is the integrated load and CPUu, MEMu and

NETu are the CPU, memory and network utilization

of the host. The larger the value of V is, the higher is

the integrated utilization. This actually is a strategy of

minimizing integrated resource utilization. This

algorithm suggests that server with lowest value of V

be chosen as target for VM v.

Zheng et al. [9] proposed another integrated load-

balancing measurement B:

The referred physical server m is selected first. Then

each of the other physical servers i is compared to

server m. N1i is the CPU capability, N2i is for

memory capability, N3i is for hard disk. Ci , Mi is for

average utilization of CPU and memory respectively,

Di is for data transferring rate of hard disk, NETi is

for network bandwidth. Constants a,b,c and d are

weighting factors of CPU, memory, hard disk and

network bandwidth respectively. The major idea of

this algorithm is to choose the smallest value B

among all physical servers to allocate VMs.

Now we discuss DAIRS [7] algorithm for finding

target host for VM ‗v‘. DAIRS outperforms

algorithms proposed by Wood et al. and Zheng at al.

in terms of Load Balancing [7]. Thus, we will be

using it as our VM allocation policy (i.e. finding

target host for VM ‗v‘).

1. Average CPU, memory and network

utilization of all servers in datacenter is

calculated (cpuA, memA, netA).

2. For the host under consideration/candidate

find its cpu, memory and network utilization

(cpuUtil, netUtil and memUtil).

3. Calculate integrated average of cpu, memory

and network utilizations :

4. Integrated load imbalance of host is given

by,

5. Now we select host with minimum ILB

value given by equation 4.4

Note: Host will not be considered as

candidate if

a. After assignment it is getting

overloaded.

b. Host is not suitable for VM in terms of

resource specifications.

V. CALCULATING IMBALANCE LEVEL

Average imbalance is defined as the arithmetic mean

of ILB of all servers [7].

Where ‗N‘ is the number of servers, ILBi is the

integrated load imbalance (4.4) of server ‗i‘.

Lower the imbalance value balanced is the load on

that server.

Our goal will be to reduce the average imbalance

iblAvg (equation 5.1).

VI. UNDERLOADED HOST DETECTION

The reason for finding an underloaded host is to

move its VMs to other hosts so that this underloaded

host can be put to sleep thus saving energy/power.

Following is an approach for finding an underloaded

host and its VMs migration [10].

1. Find all overloaded hosts (overHosts) using

overloaded host detection algorithm

described in Section 2. We regard all hosts

which are not ‗overHosts‘ as

‗candidateHosts‘.

2. From ‗candidateHosts‘ find a host i which

has lowest CPU utilization among all

candidateHosts.

3. Let targetList = cadidateHosts – host i.

4. Try to migrate a VM from host i to a host

from ‗targetList‘. Similarly migrate all VMs

from host i to hosts from ‗targetList‘.

Migration is possible if the target host has

sufficient resource requirements (CPU,

memory etc.) for the VM under migration.

5. If all the VMs can be migrated from host i to

hosts from ‗targetList‘ then the host i is put

to sleep else host i is kept active.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

1008

VII. SIMULATIONS

It is very difficult to conduct repeatable experiments

on real infrastructure that is why simulation on

Cloudsim [12] environment was chosen to show the

effectiveness of the proposed scheme. Simulation

time is 30 minutes.

A. Experimental Setup

We selected two server configurations for testing:

a) HP ProLiant ML110 G4 (Intel Xeon 3040, 2

cores * 1860 MHz, 4GB) hereafter referred

as G4.

b) HP Proliant ML110 G5 (Intel Xeon 3075, 2

cores * 2660 MHz, 4 GB) hereafter referred

as G5.

Host B/w= 1GBps and storage=1GB.

Four types of VMs were used.

a) Type1: cpu=25MHz mem=87MB

b) Type2: cpu=20MHz mem=174MB

c) Type3: cpu=10MHz mem=174MB

d) Type4: cpu=5MHz mem=61MB

VM b/w=10Mbps and size=0.25GB

B. Power Model

We utilize real data on power consumption provided

by the results of the SPECpower benchmark [13].

The selected servers G4 and G5 are with low

computing capacity so that a lot of VM migrations

should occur, and we will be able to capture results

effectively.

Power consumption by servers G4 and G5 at different

load levels in Watts against utilization (first column)

in percentage is given in Table I.

Table I

Utilizat
ion

in %

Power consumption
by servers in watts

G4 G5

0% 86 93.7

10% 89.4 97

20% 92.6 101

30% 96 105

40% 99.5 110

50% 102 116

60% 106 121

70% 108 125

80% 112 129

90% 114 133

100% 117 135

Power consumption in watts at different load levels

C. Power Model

Simulation results were obtained for following three

algorithms.

a. Optimized Load Balancing algorithm

(OLB): This is our optimized algorithm

which optimizes between energy

consumption while balancing the load.

b. Dynamic and Integrated Load-Balancing

scheduling algorithm (DAIRS) [7] which is

designed for balancing load among servers.

c. Local Regression with minimum migration

time (LR_MMT) [10] which focuses only on

reduction in energy consumption and SLA

violations.

Fig. 1

Average imbalance level of servers under various algorithms with

various numbers of hosts and VMs.

(see section 5 from calculations)

Fig. 2

Overall Energy Consumption of all servers under various
algorithms with various numbers of hosts and VMs.

Figure 1 provides average imbalance level of all

servers calculated using Equation 5.1. It can be

clearly seen from the figure that our optimal load

balancing algorithm (OLB) has optimal load

balancing capability when compared to DAIRS

(which is highly load efficient) and LR_MMT (which

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

1009

is not at all designed to balance load). The lower the

value of load imbalance on Y-axis, the more balanced

the load is. Figure 2 gives the energy consumption in

KWh. It can be seen from the figure that DAIRS

algorithm is highly energy inefficient; on the contrary

LR_MMT is highly energy efficient. Our OLB has

achieved energy efficiency very close to LR_MMT,

is a significant improvement in energy efficiency by a

load balancing algorithm.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have proposed an optimized load

balancing (OLB) algorithm. This proposed algorithm

optimizes load balancing and energy efficiency.

Results demonstrate the correctness of our OLB

algorithm. The energy efficiency is highly optimized.

However we expect to improve the load imbalance

level further in future research. We also expect to

optimize the number of VM migration.

REFERENCES

[1] Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I.
―Cloud computing and emerging IT platforms: Vision, hype,
and reality for delivering computing as the 5th utility‖. Future
Generation Computer Systems 2009, vol. 25(6), pp. 599-616.

[2] ASHRAE Technical committee 99: ―Datacom equipment
power trends and cooling applications 2005‖.

[3] Barroso LA, Holzle U. ―The case for energy-proportional
computing‖. 2007, vol. 40(12), pp. 33-37.

[4] Fan X, Weber WD, Barroso La. ―Power provisioning for a
warehouse-sized computer‖. Proceedings of the 34ths Annual
international symposium on computer architecture (ISCA
2007), ACM New York, NY, USA, 2007, pp. 13-23.

[5] Ranganathan P, Leech P, Irwin D, Chase J. ―Ensemble-level
power management for dense blade servers‖. Proceedings of
the 33rd International symposium on computer architecture
(2006), Boston, MA, USA, 2006, pp. 66-77.

[6] The green grid consortium 2011. URL
http://www.thegreengrid.org. accessed 7th March, 2013.

[7] Wenhong tian, Yong Zhao, Yuanliang Zhong, Minxian Xu,
chen Jing. ―A dynamic and integrated Load-Balancing
scheduling algorithm for cloud datacenters‖. Proceedings of
IEEE CCIS2011, pp. 311-315.

[8] T. Wood, et. al., ―Black-Box and Gray-box strategies for
virtual machine migration‖ in the proceedings of Symp. On
networked systems design and implementation (NSDI), 2007.

[9] H. Zheng, L. Zhou, J. WU, ―Design and implementation of
Load Balancing in Web Server cluster System‖, Journal of
Nanjing University of Aeronotics & Astronautics Vol. 38 No.
3 Jun. 2006

[10] Anton Beloglazov and Rajkumar Buyya. ―Optimal Online
deterministic algorithms and adaptive heuristics for energy
and performance efficient dynamic consolidation of virtual
machines in cloud data centers‖; published online in Wiley
Interscience (www.interscience.wiley.com). Concurrency and
computation: Practice and experience.2012, vol. 24, pp.
1397-1420.

[11] Cleveland WS. ‖Robust locally wighted regression and
smoothing scatterplots‖. Journal of the American statistical
association 1979, vol. 74(368), pp. 829-836.

[12] Calheiros RN, Ranjan R, Beloglazov A, Rose CAFD, Buyya
R. CloudSim: ―A toolkit for modeling and simulation of
cloud computing environments and evaluation of resource

provisioning algorithms‖. Software: Practice and Experience
2011, vol. 41(1), pp. 23-50.

[13] http://www.spec.org/power_ssj2008. accessed 23rd Feb 2013.

[14] http://www.mathsisfun.com/data/quartiles.html accessed 5th
March 2013.

[15] Kendall MG, Ord JK. ―Time-series‖. Oxford University
Press, Oxford, 1973.

[16] Cleveland WS, Loader C. ―Smoothing by local regression:
Principles and methods. Statistical theory and computational
aspects of smoothing 1996‖, vol. 1049, pp. 10-49.

[17] Verma A, Dasgupta G, Nayak TK, De P, Kothari R. ―Server
workload analysis for power minimization using
consolidation‖. Proceedings of the 2009 USENIX Annual
Technical Conference, San Diego, CA, USA, 2009, pp. 28-
28.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

1010

