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Abstract: 

Duality has an important role in nonlinear programming. It gives a numerical and 

theoretical foundation for many optimization algorithms. Duality method can be 

used to solve NLP directly or indirectly as well as it is also useful for finding the 

upper or lower bound of objective function within its constraints. But duality 

theory has some limitations. When we use duality for convex problem, then it is 

best suited. But when we apply duality to non convex problem including discrete 

and mixed inter problems. It is not always easy to prove weak duality, strong 

duality, strict converse duality and converse duality theorems and zero duality 

gaps. In this paper, I have proposed an enhanced duality theory for nonlinear 

optimization in order to overcome from some limitations of previous dual methods. 

This enhanced duality theory leads to zero duality gap for nonlinear programming 

problem which was not possible through previous available methods. and in the 

last, I have discussed an example which proves that proposed enhanced duality 

theory is more efficient and effective than others available methods. 
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1. Introduction: 

The nonlinear programming problem (NLP) of the following form: 

 

 

 

                

                                  (1) 

Where variable  is the continuous part, and  is discrete part, 

when , Y is finite discrete set of k-element. We assume that the objective 

function f is lower bounded and is continuous and differentiable with respect to x, 

where  

 
T
   and   

T
 are continuous 

in the continuous subspace X for any  The NLP covers all type of nonlinear 

optimization problems. 

                                                            

Duality is an important development for mathematical programming. An important 

issue of duality theory is the existence of duality gap, which is the difference 

between the optimal solution of the original problem and the lower bound obtained 

by solving the dual problem. The duality gap is zero for convex optimization 

problem generally, but in case of non-convex problem, it is not always true. The 

duality gap is generally nonzero for non-convex problems and may be large for 

some problems, in which case the dual approach is not useful. More-over, for 

discrete and mixed inter problems, duality gap may be nonzero even If the 

functions are convex. None zero gaps make the direct dual methods fail and the 

global optimization algorithms such as branch and bound less effective. There is 

number of research paper [3, 17] are available that has given a efficient method for 
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removing duality gap in case non-convex problem and due to some limitations in 

previous works motivated much more for extensive study on this topic. 

 

I have found that some previous dual functions require large penalty values to 

ensure zero duality gaps for non convex problems. The large penalty values gives 

ill conditioned optimization problems and increases the difficulty for obtaining 

optimal solution. Since some previous zero gap results are developed for 

continuous and differentiable problems. Often the parameters for achieving zero-

duality are related the Lagrange’s multipliers [19, 23] do not exist for discrete 

problems. Such result can be applied to discrete or mixed integer’s problems or 

problem with nondifferentiable constraints. However I have developed a duality 

theory in this research for the efficiency and effectiveness on duality gaps. 

2. Pre-requisites and related pervious work: 

Duality in nonlinear programming or for any mathematical programming is, 

generally, speaking, the statement of a relationship of a certain kind between two 

mathematical programming problems. The relationship commonly has three 

aspects. 

One problem the “Primal” is a constraint optimization problem. 

The existence of a solution to one of these problems ensures the existence of a 

solution of the other, in which case their respective extreme values are equal and  

If the constraints of the one problem are consistent while those of the other are not, 

there is a sequence of points satisfying the constraint of the first on which its 

objective function tends to infinity. 

Consider the NLP as: 
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Where  is an open subset to ;  are differentiable. 

 

Wolfe type dual [ ]: 

(WD):   

 

 

  

Wolfe established weak duality under the assumption that f and g are convex at  

Mond and Weir type dual [18]. 

 

In relation to (NLP) Mond and Weir [ ] established its corresponding dual as: 

 

(MWD):  

 

 

                                                                                       

Mond and weir established the weak duality theorem under assumption that f is 

pseudo convex and  is quasi-convex on  

 

Since duality is an important notion for mathematical programming. Let consider 

the following continuous nonlinear programming (CNLP) problem. 

 

(CP):  
T
  

 

    (2) 
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T
 ≤ 0.   

X is compact subset of , f, g, and h are lower bounded and continuous, but not 

necessarily differentiable. 

Then Lagrangian function of the form: 

             (3) 

Dual methods transform the original problem into a dual problem defined as 

follows. 

 

        (4). 

 

Where the dual function  is defined as: 

  

   (5) 

The main results of the duality theory are the following. First, the objective value L 

obtained from solving the dual problem (CP dual) is a lower bound to the optimal 

objective value f of the original problem.There have been a number of studies for 

elimination the duality gaps. A number of previous works have indicated that 

duality gap can be reduced when a problem is decomposed or has certain special 

structures [1.2.21]. 

To remove the duality gaps for nonconvex problems, augmented Lagrangian 

functions [3, 17] were introduced for continuous NLP. Rubinov et al. [19, 23] have 

extended the  penalty function to a class of nonlinear penalty function with zero 

duality gaps, where the function takes the following form. 

 

 
1/γ         

      (6) 
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Where γ > 0 is a parameter. 

Luo et al. [14] have proposed a nonconvex and non-smooth penalty function with 

zero duality gap based on the following formulation, where γ > 0 is a parameter.  

 

 
γ         

      (7) 

 

An exact penalty function with zero duality gaps under certain assumptions is 

proposed by Pang [16] as follows. 

 

 I h1(x) I, I h2(x) I …I hm(x) I, Ig1
+
(x) I,….Igt

+
(x)I }]

γ
  

(8)
     

 

In case of continuous problem as given in (2), most of the existing augmented 

Lagrangian functions and exact penalty functions with zero duality gap for 

nonconvex continuous optimization [5-7, 14-15, 18-20, 23]. 

             (9) 

Where  are Lagrange multiplier vector,  is Nonlinear Lagrangian 

terms, c ≥ 0 is a penalty parameter and  is an augmenting function. A 

general framework that provides a unified treatment for a family of Lagrange type 

functions and conditions for achieving zero duality gap for constrained 

optimization problems under some convexity assumptions is given by Burachik 

and Robonov [1, 5]. A recent work by Nedic and Ozdaglar [15] develops necessary 

and sufficient conditions for  to have zero duality gap based on a 

geometric analysis, which consider the geometric primal problem of finding the 

minimum intercept. The most previous methods for removing the duality gaps use 

a single penalty multiplier c before augmenting term. However a best c is hard to 
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locate and control. In practice a common problem is that the single c is often too 

large, this makes the unconstrained optimization difficult. In this paper I have 

proposed multiple penalty multipliers which effectively reduce penalty values for 

ensuring zero duality gaps. 

 

3. Proposed work for continuous nonlinear programming problem: 

I have develop our results for continuous nonlinear programming problems (CPs) 

(2) given as below. 

 

Definition: 3.1 (Constrained global minimum): 

A point x* in X is a constrained global minimum, if x* is feasible and 

 for all feasible x in X. 

 

Definition: 3.2 The  penalty function for (CP) in (2) is defined as: 

                    (10) 

Where 

 
T
and 

T
 

 Where we defined  for a function , and  and 

 are penalty multipliers. 

 

Definition: 3.3  

The directional derivative of a function  at a point  along a 

direction  is  

                                                         (11) 

 

Definition: 3.4 (Constraint Qualification condition) 
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A point x in X of (CP) satisfies the constraint qualification if there exist no 

direction p ∈ Rn
 along which the directional derivatives of the objective is non-zero 

but the directional derivatives of continuous equality and continuous active 

inequality constraints are all zero. That is, there does not exist p ∈ Rn
  such that  

 Respectively, the 

sets of indices of continuous equality and continuous active inequality constraints. 

The constraint qualification is satisfied if both Ch and Cg are empty. Intuitively, 

constraint qualification at x ensures the existence of finite α and β that lead to a 

local minimum of (10) at x. Consider a neighboring point x + p infinitely close to x, 

where the objective function f at x decreases along p and all active constraints at x 

have zero directional derivative along p. In this case, all the active constraints at x 

+ p are close to zero, and it will be impossible to find finite α and β in order to 

establish a local minimum of (10) at x with respect to x + p. To ensure a local 

minimum of (10) at x, the above scenario must not be true for any p at x. 

We compare our constraint-qualification condition to the well-known regularity 

condition in KKT condition that requires the linear independence of gradients of 

active constraint functions. Of course, the regularity condition only applies to 

differentiable problems, while our constraint-qualification condition does not 

require. 

 

Definition 3.5 (Feasible set and ϵ-extension): 

Let the set of all feasible points of (CP) be:  

 F = {x | x ϵ X, h(x) = 0,g(x) ≤ 0}, (12) , the ϵ-extension of F, where ϵ >0 is a 

scalar value, is: F+ ={ x | x ϵ X, min ( II y-x II) ≤ ϵ}  (12). 

Namely, Fϵ
+
 includes the points in F and all those points whose projection distance 
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to F is within ϵ. Here, II, II denotes the Euclidean norm. 

 

Preposition 3.1: If f (x), h(x) and g(x) in (CP) are differentiable, if a constraint 

global minimum x in X of (CP) is regular, then it satisfies the constraint 

qualification. 

Theorem 3.1 (Enhanced duality theorem for continuous programming): 

Suppose x*ϵ X is a Constrained global minimum to (CP) and x* satisfies the 

constraint qualification, then there is no duality gap for the enhanced dual problem 

defined in (10) and (11), i.e. q*= f (x*). 

 

Proof: First, we have q* ≤ f (x*).Since 

 

=     (13) 

 

Also according to theorem 3.1, there are  ≥ 0 and β** ≥ 0 such that  

 

  (14) 

Since *= f(x*)       

Taking the following DNLP 

(Pd):         min f (y),    Where y = (y1. . . yw)
T
 ϵ Y 

                 Subject to     h(y) = 0 and g(y) ≤ 0,               (15) 

Whose f is lower bounded, Y is a finite discrete set, and f, g and h are not 

necessarily continuous and differentiable with respect to y. 

 

Definition 3.6 (Constrained global minimum of Pd): 
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 A point y*ϵ Y is a CGMd, a constrained global minimum of Pd, if y is feasible and 

f (y*) ≤ f (y) for all feasible y ϵ Y. 

 

Theorem 3.2: Let y* ϵ Y be a constraint global minimum to (DP) , there exist 

finite α* ≥0 and β* ≥ 0 such that 

      (16). 

Proof: 

Given y*, since  = f(y*) for any α* ≥0 and β* ≥ 0, we need to 

prove that there exist finite α* ≥0 and β* ≥ 0 such that  

  

(17) 

We take the α* and β* such that: 

 , i=1, 2…m                (18) 

, j=1, 2…t                 (19) 

Next, we show that f(y*) ≤  

 

For a feasible point y ϵ Y , since h(y) =0 and g(y)≤0,  

We have  

For an infeasible point y ϵ Y, if there is at least one equality constraint hi(y) that 

is not satisfied (|hi(y)| > 0), we have: 

        (21) 

If there is at least one inequality constraint g j (y) that is not satisfied (g j (y) > 0), 

We have: 
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        (22) 

Equation (16) is proved after combining (20), (21) and (22). 

The extended dual problem for Pd is the same in definition 3.2 defined for CP, 

Except that the variable space is Y instead of X. Based on Theorem 3.3, we have 

the following result for discrete-space extended duality, which can be proved in the 

same way as the proof to Theorem 3.2. 

 

Example: 

I have illustrated a continuous problem where there is a duality gap for the 

original duality theory but not for the proposed enhanced extended duality theory. 

Consider the following CNLP: 

 f (x) = x1 + x2 

                         Subject to          h (x) = x1 x2 -1 

It is obvious that f* = 2 at (x1*, x2*) = (1, 1), for the original duality, the dual 

function is: 

 

We have q* = 

 

In contrast using proposed duality theory, the extended dual function is: 

  

It is easy to validate that, for . 

Therefore, we have q* = f*=2 and there is no duality gap for the proposed duality 

approach. 
 

4. Conclusions 

In this paper, we have proposed the theory of duality for nonlinear optimization. 

The theory overcomes the limitations of conventional duality theory by           

providing a duality condition that leads to zero duality gap for general nonconvex 

optimization problems in discrete, continuous and mixed spaces. Based on 

proposed penalty function, the proposed theory requires less penalty values to 

achieve zero duality gap comparing to previous efforts for removing the duality 

gap, thus alleviating the ill conditioning of dual functions.  
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