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Abstract— The SARS-CoV-2 infection has killed over 3.9 

million people, indicating there is an urgent need for effective 

treatment. This, however, cannot be accomplished with present 

drug development or application systems, as it takes several years 

for newly discovered drugs to reach the market. In this project 

we have tried to identify commercially available anti-viral drugs, 

synthetic molecules that could potentially disrupt SARS-CoV-2’s 

viral components. Our aim was to bind our molecule with the 

main enzyme of SARS-CoV-2 slowing the virus’s replication 

process enabling our body to fight against the virus. We first took 

a large number of molecules and fed them to an RNN-LSTM. The 

molecules which would be fed would be in a format similar to a 

string. The RNN would then identify the patterns and rules from 

these molecules using them to generate molecules which are 

currently not in existence but could be synthesized later in the 

future. Later we combined the new molecules and the pre-existing 

molecules, forming a new set. A diverse subset is then selected on 

which molecular docking was then performed with the SARS-

CoV-2 virus’s main protease and potential inhibitors were 

identified. 

 

Keywords—Deep Learning, Natural Language Processing, 

Long Short-Term Memory, Drug Discovery, COVID-19 

I. INTRODUCTION 

The infection of SARS-CoV-2 which originated in Wuhan, 

China has infected more than 180 million people and more 

than 3.9 million have already lost their lives[1] due to the 

infection caused by it referred to as ‘COVID-19’ and the 

resulting complications arising from it. This virus does not 

discriminate between men and women, rich and poor, religion, 

ethnicity; anybody can get infected. The case of its infection 

can prove fatal if the individual is already suffering from 

illnesses such as high-blood pressure, diabetes, lung diseases 

etc. It is said that SARS-CoV-2 originated from bats and 

through an intermediatory animal found its way to humans. As 

of this moment there are no reliable treatment options available 

against this disease. 

There are two approaches we can employ against this virus: 

1. Vaccines 

A vaccination is a biological preparation that induces 

successful acquired immunity to a specific infectious disease. 

A vaccine usually involves an agent that looks like a disease-

causing microorganism and is mostly produced from damaged 

or destroyed versions of the microbe, its toxins, or one of its 

surface proteins. The agent activates the body's immune 

system to recognize and destroy the agent as a danger, as well 

as to recognize and destroy any microorganisms associated 

with that agent that it may meet in the future. If fully 

vaccinated a person is less likely to catch an infection or even 

if one catches it won’t be that severe compared to the original 

infection. The problem with vaccines is that it won’t help 

people that are currently getting infected and it takes a long 

time to fully-vaccinate the entire  population. Also it is difficult 

for poorer nations to procure them. 

2. Small-molecule drug development 

A small molecule is an organic compound with a molecular 

weight less than 900 Daltons. Large structures such as nucleic 

acids, proteins and many polysaccharides are not considered 

small molecules despite the fact that their constituent 

monomers are often regarded as small molecules. 

     Our project takes the second approach to find such small 

molecules which potentially act against SARS-CoV-2. Our 

aim was to find such drugs which can be repurposed for the 

fight against COVID-19 and predict the structure of drugs 

which are not currently in existence but which could be 

synthesized later which can act on this virus. We wanted to 

find molecules which slow down the replication process of the 

virus enabling our immune system to catch up with the virus. 

     Let us understand how this virus enters the host cell. The 

virus’s spike protein attaches to a protein on the surface of 

cells, called ACE2. It is normally involved in blood pressure 

regulation. As the coronavirus binds to it, chemical 

modifications occur that essentially fuse the membranes 

surrounding the cell and the virus, allowing the virus's RNA to 

penetrate the cell. The virus then hijacks the host cell's protein-

making machinery in order to translate its RNA into new virus 

copies. A single cell may be forced to develop tens of 

thousands of new virions in just hours, which then infect other 

healthy cells. Parts of the virus's RNA often encode proteins 

that remain in the host cell. At least three of them are 

identified. One stops the host cell from alerting the immune 

system that it is under threat. Another induces the host cell to 

release newly formed virions. Another aids the virus's 

resistance to the host cell's innate immunity. The virus hijacks 

the host cell’s protein-making machinery with the help of 

enzymes called proteases of the virus. By successfully binding 

our drug with the main-protease of the SARS-CoV-2 we can 

slow down the replication process of the virus enabling the 

immune system to catch-up and defeat the virus. 
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     The generation of new molecules with could act as potential 

inhibitors of SARS-CoV-2  was done with the help of an RNN-

LSTM model.  RNNs have been successful in field of NLP, 

translation, composing music. Much of this success of RNNs 

has been due to the use of LSTM (long short-term memory) 

cells. RNNs based on LSTMs have been successfully used to 

predict protein function from sequence, aqueous solubility of 

molecules with drug like properties. Here we used LSTMs to 

capture the chemical syntax of original molecules to generate 

new molecules. 

     Later, a diverse set of original and generated molecules was 

used in binding with the main protease of SARS-CoV-2 and 

their effectiveness was measured using a metric called binding 

affinity. Binding affinity is the strength of the binding 

interaction between a single biomolecule (e.g. protein or DNA) 

to its ligand/binding partner (e.g. drug or inhibitor). PyRx was 

used to calculate the binding affinity of molecules by which 

they were later ranked to find which were the best among them. 

II. RELATED WORK 

The existing methods and systems help us in providing us 

with the basic knowledge of how we can implement our 

project. We learn from various elaborate explanations and 

intend to improve the existing methodologies and hence come 

up with our system. Following are the various insights 

gathered from different sources which have proved helpful in 

our research. 

     Before starting with our we had to know about the SARS-

CoV-2 in detail. The first paper we referred to was about the 

origin, transmission, and characteristics of Coronaviruses by 

M. A Sheeren from State Key Laboratory of Virology, College 

of Life Sciences, Wuhan University and his team. It 

summarizes and comparatively analyzes the emergence and 

pathogenicity of COVID-19 infection and previous human 

coronaviruses severe acute respiratory syndrome coronavirus 

(SARS-CoV) and middle east respiratory syndrome 

coronavirus (MERS-CoV). It also discusses the approaches for 

developing effective vaccines and therapeutic combinations to 

cope with this viral outbreak. It is also important to know how 

currently drug research and development takes place[2].  

     We have referred to a book, “Introduction to Biological 

Molecule Drug Research and Development”. This book offers 

an overview of the science that underpins effective 

pharmaceutical research and development projects. The book 

first outlines fundamental ideas before comparing and 

contrasting approaches to biopharmaceuticals (proteins) and 

small molecule drugs, providing an explanation of the market 

and management challenges involved with these approaches. 

The second half of the book contains deliberately chosen real-

life case studies that demonstrate how the hypothesis outlined 

in the first half of the book is ultimately put into effect. 

Herceptin/T-DM1,erythropoietin, anti - HIV protease inhibitor 

Darunavir, and other drugs have been studied. By this we came 

to realize how time consuming, cumbersome and expensive 

the current Drug Discovery process is[3]. 

     Thirdly we discuss a paper by Bo Ram Beck and his team 

that talks about drug repurposing. In this study, a pre-trained 

deep learning-based drug-target interaction model called 

Molecule Transformer-Drug Target Interaction (MT-DTI) to 

identify commercially available drugs that could act on viral 

proteins of SARS-CoV-2. Sadly this study does not focus new 

drugs that could act as potential cure for COVID-19 that are 

not currently in existence but which could be synthesized 

later[4]. 

III. METHODOLOGY 

This section provides a detailed explanation of the flow of 

the project involving creation of the molecule generator and 

the which molecules bind best with the main protease of 

SARS-CoV-2. 

 
                                   Fig. 1 Project Workflow 

A. Datasets 

In our project we worked with two datasets ChEMBL[5] 

and MOSES[6]. ChEMBL is a manually curated dataset 

containing biologically active compounds. It combines 

chemical, bioactivity, and genomic data to help in the 

processing of genomic data into successful new drugs. The 

MOSES dataset is based on the ZINC Clean Leads collection. 

It contains 4,591,276 molecules in total, filtered by molecular 

weight in the range from 250 to 350 Daltons, a number of 

rotatable bonds not greater than 7, and XlogP less than or equal 

to 3.5. Molecules containing charged atoms or atoms besides 

C, N, S, O, F, Cl, Br, H or cycles longer than 8 atoms have 

been removed. The molecules were filtered via medicinal 

chemistry filters (MCFs) and PAINS filters. filters. 

B. Data Pre-processing 

Both of these datasets contain molecules in the form of 

SMILES which stands for simplified molecular line entry 

system, it is a format for representing molecules using short 

ASCII strings. We combined 1936962 molecules from 

MOSES and 556134 molecules from ChemBL and removed 

the molecules which were common and were left with 

2493096 molecules, then we sampled 250000 molecules. 

After this we performed pre-processing, we ran a script to 

filter out salts, nucleic acids, long peptides. As we were 

looking to generate new molecules which are not too large and 

not too small, we only retained molecules whose length was 

between 34-128 characters. In the end we were left with nearly 

180000 SMILES which would be used for training our LSTM 

model. 
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Fig. 2. Performing pre-processing 

C. Training our model to generate molecules 

Coming to our RNN-LSTM model. RNNs process a data 

sequence X = x1x2xn by taking each item xi in the sequence 

as input. The RNN processes the input through a series of gates 

to produce some hidden state hi and (optionally) an output 

vector y i. The hidden state hi is transferred from cell to cell 

and indicates which information the RNN has previously seen. 

Furthermore, recurrent connections enable RNNs to learn 

complex temporal relationships. 

LSTMs have three gates input, output and forget. LSTMs 

are able to control which information passes to the  next cell 

through hidden state hi. Important information can pass 

through successive cells unchanged. In this way LSTMs solve 

the vanishing gradient problem that RNNs  face  due to back 

propagation. 

RNN models, which can produce a probability distribution 

across all potential tokens at each time step, may be used to 

construct sequences one token at a time. The RNN's goal is 

usually to predict the next token in a given input. It's worth 

noting that the input might be one or more tokens long; if there 

are m tokens in the input, the model will predict the (m+1)th 

token. Maximum likelihood estimation was used to train 

RNNs. The output vector yi is a probability distribution over 

the possible tokens, and the target vector yi is an array of one-

hot encoded vectors, where each vector represents one token. 

Only one bit of a zero vector of the length of the number of 

tokens in the dataset is set (“hot”) in one-hot encoding. For 

each vector in the array, the model attempts to maximize the 

probability given to the right token. 

Our LSTM model is made up of two layers, each with a 

256-element hidden state vector that is regularized by dropout. 

A dense output layer and a neuron with a softmax activation 

function follow these two layers. The LSTM model receives a 

one-hot encoded sequence of the compound's SMILES string, 

with each string divided into tokens. A ‘G' token (for “go”) is 

added to the beginning of each SMILES string, and a ‘E' is 

appended to the end of the SMILES string. When padding was 

required, the token ‘A' was used. 

 
Fig. 3. LSTM Architecture 

 

Each molecule was padded to the length n of the longest 

SMILES string for training purposes (padding signified by the 

token ‘A'). The input was the first n-1 characters, and the 

destination was the last n-1 characters. To begin Sampling, the 

sentinel token "G" was given. The last sampled character is 

used as the next character in the created sequence at each step 

of the sampling process. The sampling process continues until 

the token ‘E' is generated, which denotes the end of the 

sequence. Below are the equations for calculating the loss error 

L and the softmax function P(yi) with temperature factor T. 

 

 
Fig. 4. A) Training procedure B) Sampling Procedure C) Equations for 

the loss error L 
 

The model was used to generate 10000 molecules and their 

validity, uniqueness and originality was checked, those which 

failed to meet the criteria were removed. About 9700 

molecules were generated which met the criteria. In order to 

compare the generated molecules to the original molecules 

used for RNN training, 24 common physiochemical features 

for the data were calculated. PCA was performed on these 24 

generated features from the training molecules, and the first 

two principal components (PC1, PC2) were selected. The 

coordinates of the generated molecules were transformed 

accordingly. Figure 6 below shows that there is an overlap in 

the chemical subspace between these two sets of molecules 

indicating that they follow the same rules of chemistry as the 

original molecules. 
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Fig. 5. Generating Molecules 

 

 
Fig. 6. Comparing generated and original molecules using PCA. 

D. Molecular Docking 

     After generating molecules our next task was to find out 

molecules with high binding affinity to the viral protease. We 

could not bind all molecules as it would take very long time so 

we decided to take a diverse subset of molecules for binding, 

the similarity metric used for this purpose was Tanimoto 

similarity[7]. 

 

 
 

     We wrote a function that intakes a list of smiles, randomly 

shuffles them, then adds first thirty, then sets a max-similarity 

threshold between any new molecule and existing list and 

iteratively increases the threshold until X components are 

picked to ensure diversity. For better representation of each 

molecule in PyRx we created a four-letter code to order each 

molecule. We later converted all molecules to a sdf file which 

is understood by PyRx. 

     With the help of PyRx binding affinity of these compounds 

to the protease was calculated and results were tabulated and 

saved in a .csv file. This can be said to be our gen0 results. 

After this the top 35 ranked molecules were selected along 

with the molecules similar to them to generate new molecules. 

A diverse subset of training molecules and generated 

molecules was again selected and binding was performed. This 

iterative process was repeated 10 times in total to get the final 

results. 

IV. RESULTS 

In this section we have presented small molecules in 

SMILES format which have the highest binding scores with 

the main protease of SARS-CoV-2, also we have discussed 

what these results convey. 

The following table lists the molecules with the highest 

binding affinities in descending order of their negativity. More 

negative means it binds more strongly. 

 
TABLE I. Generated molecules with highest binding scores 

Sr. 

No 

SMILE Binding 

Affinity 

(kcal/mol) 

1 O=C(NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)O)C1CC2CCC(C

1)C2C(=O)NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)O 

-17.8 

2 O=C(NC1CC2CCC(C1)N2CCc1ccccc1)C1CC2CC(C1)C2C(=O)N

C(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)O 

-17.7 

3 O=C(NC1CC2CCC(C1)N2CCc1ccccn1)C1CC2CCC(C1)C2C(=O)

NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)

O 

-17.6 

4 O=C(NC1CC2CCCC(C1)N2CCc1ccccn1)C1CC2CCC(C1)C2C(=O

)NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)

O 

-17.6 

5 O=C(NC1CC2CCCC(C1)N2CCc1ccccc1)C1CC2CCC(C1)C2C(=O

)NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)

O 

-17.5 

6 O=C(NC1CC2CCC(C1)N2CCc1ccccn1)C1CC2CC(C1)C2C(=O)N

C(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)O 

-17.5 

7 O=C(NC1CC2CCCC(C1)N2CCc1ccccc1)C1CC2CC(C1)C2C(=O)

NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)

O 

-17.4 

8 O=C(NC1CC2CCCC(C1)N2CCc1ccccc1)C1COC2CC(C1)C2C(=O

)NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)

O 

-17.3 

9 O=C(NC1CC2CCC(C1)N2CCc1ccccc1)C1CC2CCC(C1)C2C(=O)

NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)

O 

-17.2 

10 O=C(NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)O)C1CC2CC(C1)

C2C(=O)NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)O 

-17.2 

11 O=C(NC1CC2CCC(C1)N2CCc1ccccc1)C1CC2CC(C1)C2C(=O)N

C(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)N

C(Cc1ccccc1)C(=O)O 

-17.2 

12 O=C(NC1CC2CC(C1)N2CCc1ccccn1)C1CC2CC(C1)C2C(=O)NC(

Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)O 

-17.1 

13 NC(=O)C(Cc1ccccc1)NC(=O)C(Cc1ccccc1)NC(=O)C1C2CC(NC(

=O)C(Cc3ccccc3)C(=O)NC(Cc3ccccc3)C(=O)O)CC1C2 

-17 

14 O=C(O)C(Cc1ccccc1)NC(=O)C(Cc1ccccc1)NC(=O)C1C2CC(NC(

=O)C(Cc3ccccc3)C(=O)NC(Cc3ccccc3)C(=O)O)CC1C2 

-17 

15 CC(O)C(Cc1ccccc1)NC(=O)C(Cc1ccccc1)NC(=O)C1C2CC(NC(=

O)C(Cc3ccccc3)C(=O)NC(Cc3ccccc3)C(=O)O)CC1C2 

-16.9 

16 O=C(O)C(Cc1ccccc1)NC(=O)C(Cc1ccccc1)NC(=O)C(Cc1ccccc1)

NC(=O)C1C2CC(C(O)CC3CC4CCC(C3)N4CCc3ccccc3)CC1C2 

-16.9 

17 CC(C)(C)NC(=O)C1CC2CCC(CC1C(=O)NC(Cc1ccccc1)C(=O)O)

C2CC(O)C(Cc1ccccc1)NC(=O)C1C2CC(NC(=O)C(Cc3ccccc3)C(=
O)O)CC1C2 

-16.7 

18 O=C(NC(Cc1ccccc1)C(=O)O)C1CC2CC(C1)C2C(=O)NC(Cc1cccc

c1)C(=O)NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)O 

-16.5 

19 O=C(NCC1(c2ccccn2)CC1)NC1CC2CC(C1)C2C(=O)NC(Cc1cccc

c1)C(=O)NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)O 

-16.3 

20 O=C(NCC1(c2ccccn2)CC1)NC1CC2CCC(C1)C2C(=O)NC(Cc1ccc

cc1)C(=O)NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)O 

-16.3 

21 O=C(NCC1(c2ccccc2)CC1)NC1CC2CCC(C1)C2C(=O)NC(Cc1ccc

cc1)C(=O)NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)O 

-16.3 

22 O=C(NCC1(c2ccccc2)CC1)NC1CC2CC(C1)C2C(=O)NC(Cc1ccccc

1)C(=O)NC(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(=O)O 

-16.2 

23 COC(=O)N1CC2CCC(CC1C(=O)NC(Cc1ccccc1)C(=O)O)C2CC(O

)C(Cc1ccccc1)NC(=O)C1C2CC(NC(=O)C(Cc3ccccc3)C(=O)O)CC

1C2 

-15.6 

 
TABLE 2. Pre-existing molecules with highest binding scores 

Sr. 

No 

SMILES Binding Affinity 

(kcal/mol) 

1 CC(C)(C)NC(=O)C1CC2CCCCC2CN1CC(O)C(Cc1ccccc1)N

C(=O)C(CC(=O)O)NC(=O)c1ccc2ccccc2n1 

-10.9 

2 CC(C)CN(CC(O)C(Cc1ccccc1)NC(=O)OC1COC2OCCC12)S(

=O)(=O)c1ccc2nc(N)sc2c1 

-10 

3 CC(C)CN(CC(O)C(Cc1ccccc1)NC(=O)OC1COC2OCCC12)S(

=O)(=O)c1ccccc1 

-10 

4 Cc1ccc(S(=O)(=O)N(CC(C)C)CC(O)C(Cc2ccccc2)NC(=O)OC

2COC3OCCC23)cc1 

-9.9 

5 CC(C)CN(CC(O)C(Cc1ccccc1)NC(=O)OC1COC2OCCC12)S(

=O)(=O)c1ccc(O)cc1 

-9.9 

6 CC(C)CN(CC(O)C(Cc1ccccc1)NC(=O)OC1COC2OCCC12)S(

=O)(=O)c1ccccc1 

-9.3 

7 CC(C)CN(CC(O)C(Cc1ccccc1)NC(=O)OC1COC2OCCC12)S(

=O)(=O)c1ccc(N)cc1 

-9.2 

These results were obtained using PyRx, which is a Virtual 

Screening software for Computational Drug Discovery that 

can be used to screen libraries of compounds against potential 

drug targets. 
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Fig 7. Binding our generated molecule with the main protease of SARS-
CoV-2. This generated molecule received the highest binding score 

 

Some of the molecules that were generated have 

significantly higher binding capacity than Remdesivir which 

has binding affinity of about -6.4 kcal/mol which is being 

given to COVID-19 patients. Also these molecules have better 

binding affinity than Pegylated Interferon alpha-2b which has 

binding affinity close to -5.7 kcal/mol. It was recently 

approved by Drug Controller General of India (DCGI) for 

emergency use to treat ‘moderate COVID-19 cases’ by Indian 

pharma company Zydus Cadela[8].  

V. CONCLUSION 

     So with the help of our project we have realized how we 

can use deep learning techniques in the field of 

chemogenomics to identify candidate drugs which can act 

against SARS-CoV-2, slowing down its replication and giving 

our opportunity to catch up with the virus and finish it. We 

with the help of LSTMs we were able to generate unique and 

diverse molecules which followed the same rules of chemistry 

to a very high extent. In the end we believe these compounds 

that we found can developed by pharmaceutical companies and 

can be given to patients after proper clinical trials proving their 

effectiveness. 

VI. FUTURE SCOPE 

With the help of the approach that was used in our project 

in future we can similarly find anti-viral drugs for other viral 

infections. We can further in future use natural processing 

techniques to predict changes in viral RNA/DNA so that we 

are better prepared against the virus in the future. 
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