Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

International Journal of Engineering Research & Technology (IJERT)

| SSN: 2278-0181
Vol. 14 |ssue 12 , December - 2025

Dolphin: Devopify Infrastructure As A
Service (DIASS)

Dr. Ravikumar G. K Aditya Srinivasan Dr. Manjula
Department of CSE Department of CSE Department of CSE
BGSCET BGSCET BGSCET

Bengaluru, India

Manoja D
Department of CSE
BGSCET
Bengaluru, India

Abstract - Dolphin is a people-friendly service, which is easy to
deploy and scale server applications in the cloud. Previously
developers had to cope with several instance of AWS or complex
AWS Kubernetes configurations workload which necessitated a
high level of expertise in cloud architecture and DevOps practices.
Dolphin takes a different direction in which applications are
defined based on source code and runtime environments and that
the basic units of deployment are Docker containers. Once an
application is whether specified in Dolphin, it handles deployment
and automatically scales capacity based on user demand
variations, eliminating low-level infrastructure concerns on the
part of the developer. The paper presents the system architecture
of Dolphin, its major components and the details of its
implementation and discusses how the system enables the
development and operation teams to work together, with the
developers focusing on the development of application logic and
features, and Dolphin being in charge of operational activities. The
ultimate goal is to accelerate the application scaling and it
minimizes the labor in charge of managing infrastructure. Dolphin
is designed to streamline the deployment of a cloud-native
application that is simple and resilient.

L INTRODUCTION

The method of software construction and usage has been
changed by cloud computing. The current demands of people
are that the apps have to be loaded fast, reliable and have to be
always at their fingertips. Want to blow something up! This
imposes a tone of pressure on the developers to scale out the
system and accommodate additional users at the start.
Nonetheless, it is not a simple task to develop an app that would
be actually scaled. It is normally associated with new servers
being added, load balancers being brought on, and complicated
scripts to execute deployment. All that takes time, talent and
labor that would be better applied towards enhancing the real
product.

That’s where Dolphin comes in. It is a developer-centric
infrastructure that is meant to eliminate the effort of maintaining
infrastructure. The developers do not have to worry about
complex setup and server maintenance, but can merely state
what their application should occur and they have the rest taken
care of. Other aspects such as deploying and scaling of the

IJERTV 141 S120367

Bengaluru, India

Bengaluru, India

Vilas C.P
Department of CSE
BGSCET
Bengaluru, India

containers, and all the running of the containers are all obviated
by Dolphin. This will enable you to execute your app with ease
across all locations without giving a second or third thought to
any form of low level technicals that are usually prone to
messing up with various cloud infrastructures.

Dolphin is simple enough to be used and comprehended by all.
There is no longer a necessity of worrying about the backend
configuration and server maintenance as developers. They are
able to spend more of their time creating quality aspects,
developing their applications. The remaining posts will delve
into the various factors about establishing Dolphin, the way it
goes about doing all its magic behind the scenes, its main parts,
system architecture and interrelationship that it has about
development and operation to worry free deployment to the
cloud.

IL. LITERATURE REVIEW

Cloud computing has become one of the chief support
frameworks of modern distributed system design and it gives
the development staff the scaling property, the shares
dynamically of the resources, and the dynamically reacts to the
frequent alterations in workload intensity. Among the first
frameworks, assisting to understand the specified paradigm,
Mahmood [1] presents the key features of cloud computing such
as virtualization, an elasticity that is fast, and resource pooling
and separates the models of deployment into the following: the
public, the private, the hybrid and the community clouds. The
concept has continued to be a guideline to system engineers and
architects on the type of deployment strategies to be adopted
whenever the workload requirements vary.

Continuing these principles, Guo et al. [2] also gave a glimpse
at the impact of the shift to monolithic architecture and
increased autonomy of service structures. Their proposed
cloudware architecture is based on the application of the
microservices, small and specialized components that are
deployed to enhance the application agility, resilience and
scalability of applications. Such a separation of applications
into such small units enables a more finer control of the
deployment process and scaling process and this factor has led

Page 1

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

to the increase in the use of containerization technologies. All
told and said, the move of monolithic software towards
microservice-based architectures will be a ground-breaking
process when it comes to realizing the potential of cloud-native
computing to the fullest.

Containerization has in many ways changed the deployment of
applications. Containers unlike virtual machines do not package
application components with exorbitant overhead hence
providing lightweight and portable environments and
reproducible environments. Wan et al. [3] created a system
architecture on the launch of applications that are founded on
microservices and Docker container architecture. They have
demonstrated that the purpose behind the structures being
container-based make configuration management easier and
dependency conflicts addressed. They placed emphasis on
portability of Docker images that implied that a team could
create a seamless experience of deployment on development,
staging and production with minimal variation. Here
Taherizadeh and Stankovski [4] furthered their idea to propose
a multi-level dynamic auto scaling of containerized systems.
Their model dynamically commissioned the computing
resources to the intensity of workload in a way that it possessed
responsive provisioning capabilities which was effective in
ensuring the efficiency of the system besides reducing the idle
capacity justification. These publications rendered
containerization one of the central ideas of a scalable cloud-
native environment.

As the cloud environment evolved, researchers began to
investigate how these models can be applied to scaling methods
with respect to intelligent decision-making and predictive
capabilities. To study the most efficient scaling intervals,
Chouliaras and Sotiriadis [5] suggested a workload-based
scaling behavior that used the statistics about the runtime,
which includes the CPU utilization, latency, and throughput to
conduct the study. They found out that reactive scaling can be
able to handle the overload though can add delays in the
assignment of the resources. That can be corrected by the
predictive and workload-sensitive scaling that anticipates future
changes in loads. Huaijun et al. [6] have proposed in this
concept a container scaling strategy that is driven by the
principles of reinforcement learning (RL). It is also a system
which learns based on performance feedback and scales policies
particularly with time. The performance to cost ratio was
improved through the strategy as there was very little over-
provisioning or under-provisioning. Shi et al. [7] then extended
this theme to the geo-distributed configuration through which
an auto scaling architecture was suggested, taking into
consideration network latency, network bandwidth fluctuation,
and geographical dispatchment fluctuation of demand
distributed among many data centers. They determined that
scaling in distributed clouds in the context that it does not have
to be workload-intensive although there is some consideration
of geographical factors.

At the same time, Gwydion developed by Santos et al. [8] is
based on the idea of scalability of auto-scaling containerized
workloads of large scale, or complex scale. Gwydion contains
decision making modules, which can differentiate between
temporary and any constant workload spikes and undertake
more accurate scaling measures. It has been found to be
significantly lower in orchestration delays in the experiment
than in traditional methods and this means that it is more
appropriate in real time scale in production processes.

IJERTV 141 S120367

International Journal of Engineering Research & Technology (IJERT)

| SSN: 2278-0181
Vol. 14 |ssue 12 , December - 2025

Altogether, these papers indicate a new way of cloud scaling
research, which a more advanced approach is sought, and an
extended development of the cloud scaling models as aspects of
intelligence, context-sensitive, and self-optimizing models that
operate effectively in dynamic environments is desirable.

Container orchestration is no longer young, and that is what has
motivated the incorporation of DevOps practices and
containerized frameworks as a necessity to continuous delivery
and operational occurrences. Ugwueze and Chukwunweike [9]
examined various strategies of continuous integration and
continuous deployment (CI/CD). They have decided that the
only way in which they can give liberty to the build, test and
deployment procedures is through the automation to enable the
process of software release to be fastened. They have found this
adequate to that of Mustyala [10] who had suggested that even
the usage of serverless models could be enhanced with the
incorporation of DevOps that would enable swift application
deployment without having to directly manage servers. In a
systematic review, Azad et al. [11] discovered some critical
facets of DevOps success, i.e. coordinate activity of team
members, monitoring activities and automated feedback loops.
They noted that automation of technical processes will not make
DevOps flourish without backing by the organization.
Similarly, as the hybridized DevOps paradigm created by
Multiple Authors proved [12], the incorporation of agile
principles in the ecology of DevOps will contribute to
flexibility, in which the teams can respond faster to dynamic
needs and make projects more reliable.

The study by Patil et al. [13] proposed a viable model of
implementing the scientific workloads on open stack and
showed how the demands of the research workloads with heavy
computing and storage could be supported by IaaS systems.
Their architecture; which embraced the use of modular building
blocks of storage, compute and networking of OpenStack meant
that they had adopted a scalable approach that would enable
them to handle large scientific data sets. Their argument was
very simple: being a mixture of DevOps processes and cloud
orchestration, they were able to develop one system that is
capable of supporting both enterprise applications and research
systems.

Nevertheless, there are still some significant obstacles. Most
autoscaling solutions are pretty on paper, but difficult to
implement in real life scenarios - they usually require elaborate
configurations and expertise. Cloud providers and tools (such
as AWS, Microsoft Azure, Kubernetes, or AWS Elastic
Beanstalk) can provide immense power, but they also may need
to be tuned by hand and team members must have substantial
experience of infrastructure to get their policies and limits right.
Even more so, the vast majority of the presented frameworks
are centered on the automation of the back end and do not pay
much attention to usability: they seldom provide convenient
means of visualizing or controlling an applications architecture.
The aspect of lack of alignment between the desires developers
wish to create and the way infrastructure actually acts continues
to demonstrate that development and operations do not interface
with one another.

That is an area that Dolphin attempts to bridge. It is a newer
generation deployment platform, having a visual, diagram-
based interface, which allows developers to design their
application structure without fussing with scripts or command
line applications. Dolphin uses Docker containers as its

Page 2

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

fundamental units therefore deployments remain lightweight
and portable. The workloads watched by Dolphin automated
scaling engine then automatically manages resources
eliminating much of the configuration and manual control that
would otherwise be required. Dolphin simplifies DevOps
activities and therefore eases the technical load on developers,
as well as simplifying the process of making successful, fault-
tolerant deployments with ease and without the need to have
specific expertise of an infrastructure.

Concisely, the literature demonstrates that orchestration and
scaling are becoming increasingly complicated and how
complexity is a practical hindrance to lots of developers.
Dolphin reacts to that by integrating automation, scalability,
and usability in one, developers-centric platform. It is a smart,
graphic substitute that will assist in gearing cloud deployment
less complex and also assist in closing the historic divide
between operations and software development.

I1I. PROBLEM STATEMENT

Deploying and scaling cloud applications is often much more
difficult than it seems. Developers often struggle with setting
up servers, writing configuration scripts, and managing multiple
container tasks, all of which take a lot of time and require deep
DevOps knowledge.

Even though tools like Docker make packaging and distributing
applications easier, they don’t completely remove the
challenges of setting up, managing, and scaling many
containers. Moving an app from a local setup to a reliable,
production ready cloud service is still a difficult process, with
many tricky and error prone steps.

Dolphin was created to fill this gap. The platform automates the
deployment and scaling of containerized applications, freeing
developers from the hard work of managing infrastructure. This
automation ensures reliable, cloud ready deployments while
letting development teams focus on writing code, building
features, and speeding up delivery instead of dealing with
maintenance and troubleshooting.

OBIJECTIVES

e To make cloud deployment and scaling easier, we offer
a simple platform that automatically manages
application instances using Docker containers.

e This bridges the gap between development and
operations. Developers can focus on writing code while
Docker takes care of infrastructure setup and scaling

e We also offer better scalability and performance for
server based applications by automatically managing
resources and coordinating containers, without
requiring deep DevOps knowledge.

IV. DESIGN TECHNIQUES

Dolphin is a scaling and flexible architecture which eases things
and creates less cognitive burden to the developers. The site
specifically specifies the difference between its frontend and the
backend: the former deals with interaction with users, display,
and monitoring of the system; the latter is in charge of the
management of resources, optimization of the work with

IJERTV 141 S120367

International Journal of Engineering Research & Technology (IJERT)

| SSN: 2278-0181
Vol. 14 |ssue 12 , December - 2025

containers, and their isolation. This decoupling makes systems
easier to manage on a global scale and each of the components
can be scaled on its own i.e. any change or an increase in one
area will not impact on the pace of the other.

The primary concept of Dolphin is with the help of container.
Applications are in their individual Docker containers and this
provides stability as well as predictability of the environment.
This division allows the applications to expand or contract
without impacting other applications, and such makes the
system a trustworthy and secure system with demand
fluctuation.

Dolphin has a web based terminal, which is a real time terminal
to facilitate development. This allows developers to do
commands directly in the browser and immediately get a
response, not worrying about the underlying server and
container communication. None of these technicals allows
Dolphin to free developers to write code and create features
rather than manage infrastructure.

The modularity and intuitiveness of the platform underscores
the designer-oriented philosophy of the platform. The interface
has reusable parts, intuitive displays on dashboards, and easy-
to-access monitoring systems that render complicated technical
measurements into the actions that can be taken. Basically,
Dolphin hides the complexity inherent in deploying and scaling
of the cloud, and allows developers full control of its operation
with minimum friction and maximum efficiency.

V. IMPLEMENTATION

The environment around Dolphin is easy, user friendly and
high performing, thus allowing the developer to focus on
creating features instead of dealing with infrastructure. Next.js,
Reactjs and TailwindCSS are used to do the frontend. Dolphin
can be used by the developers using dashboard and a series of
structured landing pages that simplifies the configuration
process, the launching process and the monitoring process of
application instances and it is simple to take everything under
one roof. The design gives developers freedom to concentrate
on the logic part of the app, but without much effort on how the
app runs, it makes it more productive and causes a reduction in
mental stress.

Fig 1. Our Client App Instance Dashboard

Page 3

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

Dolphin also has a browser-based terminal that is developed
using Xterm.js thus providing developers with an easy to use
and interactive command-line interface. Web browsers are not
capable of opening direct SSH connections with containers and
this makes Dolphin use the Socket.IO library to open a secure
WebSocket connection between the client browser and the
server.

A command typed by a user in the browser terminal is
forwarded to the server by a WebSocket connection. The
command is executed on the server on the right Docker
container and the result is relayed back to the browser in real-
time. This provides immediate feedback and it acts just as using
a regular terminal, although there is no need to log in to remote
servers. Consequently, Dolphin simplifies the process of
managing containers, and does so in a very rapid fashion, and it
is through a very simple web-based interface.

Fig 2. Our Client App Web-Based Terminal

At its core, Dolphin leverages Docker containers as the runtime
foundation for all application instances. Containers are
inherently lightweight and portable, offering a consistent
execution environment that bridges the gap between
development and production stages. When an additional
instance is requested, Dolphin communicates with Docker to
instantiate a new container configured with the specified
computational resources.

Each container operates in isolation from others, ensuring both
stability and security across the system. This isolation prevents
resource contention and minimizes the risk of interference
between concurrently running applications. Moreover, Dolphin
dynamically manages container scaling automatically
provisioning or terminating instances in response to real-time
demand. This adaptive mechanism maintains efficient resource
utilization while preserving predictable performance and
uniform behavior across all deployments.

The broader software architecture is centered on a model of
resource allocation, where clients will request resources from a
central pool of servers to spin up their applications. There is a
database used to track metadata like available ports, security
policies, and resource usage; and to help track and administer
individual instances. After a Docker container is running,
developers are able to deploy and manage their application
through the web terminal; thus, the developer/user is given a

IJERTV 141 S120367

International Journal of Engineering Research & Technology (IJERT)

| SSN: 2278-0181
Vol. 14 |ssue 12 , December - 2025

flexible, easy-to-use, and automated environment for

deployment in a cloud service.

o Server Server Warehouse,

Fig 3. Flow diagram of system architecture

VL CONCLUSION

This article introduces Dolphin, a system that aims to
simplify the deployment or scaling of containers in the cloud.
Unlike current tools that require users to have an advanced
aptitude for DevOps or time-intensive manual configurations of
cloud resources, Dolphin utilizes Docker containers to
automatically configure the architecture of the application and
allocate cloud resources in a manner that corresponds to the
workloads/usage patterns of the application. Dolphin abstracts
infrastructure complexity and allows developers to focus on
writing the functional code while Dolphin ensures their
applications remain scalable, responsive, and efficient when the
workloads/usage changes; and to able to take advantage of
predictive scaling introduced by machine learning in the
forthcoming future offering even broader functionality such as
multi-cloud deployments, edge-to-cloud integration, security-
aware auto-scaling, etc., enhancing Dolphin's flexibility and
reliability.

This research also notes Dolphin may evolve into a greater
cloud orchestration ecosystem. Dolphin focuses on simplifying
the management of cloud-native applications with automation,
intelligence, and simplicity in demanding and challenging
distributed systems as a practical response developers and the
organizations for which they work increasingly seek
deployment strategies that are efficient, resilient, and scalable.

VIL FUTURE SCOPE

The Dolphin platform exhibits substantial promise in easing
the process of deploying and scaling containerized applications,
but there are various opportunities to improve the platform. One
key direction is to add intelligent predictive scaling through
reinforcement learning and time-series forecasting. This means
Bayesian optimization to predict traffic patterns, to allow
Dolphin to provision resources in advance of spikes and provide
lower latency and costs. Also, increased multi-cloud and hybrid
cloud orchestration support would allow applications to
determine how to distribute work across heterogeneous cloud
providers (or hybrid) dynamically, to achieve improved
resilience, fault-tolerant, and cost-optimized geo-distributed
deployments. In addition, automating CI/CD pipelines based on
application architecture, characteristics, and dependencies

Page 4

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

would further reduce the amount of manual DevOps effort
while achieving increased reliability and performance.

Alongside automation and scaling, Dolphin may offer resource-
aware microservice scheduling for CPU, GPU and memory
allocated to containerized components, especially for compute-
intensive workloads in Al / ML inference and real-time
analytics. Explainable Al methods would enable developers to
see the 'why' and 'how' products made the scaling decision, and
more effectively debug performance, cost tune, and maintain
compliance with SLAs. Extending Dolphin to afford edge-to-
cloud deployments would enable optimized bandwidth usage,
lower latency, and real-time analytics for IoT and latency-
sensitive applications. This may enable expanded use of
Dolphin in distributed and hybrid solutions.

In summary, enhancing security-aware auto-scaling will allow
Dolphin to automatically scale container instances based on
identified anomalies or potential attack vectors - thereby scaling
with automated threat mitigation. Collectively, these
improvements would revolutionize Dolphin from a deployment
tool for developers to an intelligent, fully autonomous, and
secure orchestrator for the cloud. If predictive scaling were
added, multi-cloud, and edge integration, automated DevOps,
and unobtrusive Al-powered decisions and actions were
implemented, Dolphin could be viewed as a full platform for a
new generation of cloud-native applications management.

REFERENCES

[11 Wan, X, et al. (2018). "Application deployment using Microservice and
Docker containers: Framework and optimization." Journal of Network
and Computer Applications, 119, 97-120.

[2] Taherizadeh, S., & Stankovski, V. (2019). "Dynamic Multi-level Auto-
scaling Rules for Containerized Applications." The Computer Journal,
62(2), 174-197.

[3] Chouliaras, S., & Sotiriadis, S. (2022). "Auto-scaling containerized cloud
applications: A workload-driven approach." Simulation Modelling
Practice and Theory, 121, 102651.

[4] Santos, J., et al. (2025). "Gwydion: Efficient auto-scaling for complex
containerized applications." Journal of Network and Computer
Applications, 206, 103443.

[5] Huaijun, W., et al. (2023). "Container Scaling Strategy Based on
Reinforcement Learning." Wireless Communications and Mobile
Computing, 2023, 7400235.

[6] Shi, T., et al. (2023). "Auto-Scaling Containerized Applications in Geo-
distributed Clouds." IEEE Transactions on Parallel and Distributed
Systems, 34(10), 2847-2860.

[71 Guo, D., et al. (2016). "Microservices Architecture Based Cloudware
Deployment Platform." Proceedings of the 2016 IEEE International
Conference on Web Services, 358-365

[8] Ugwueze, V. U., & Chukwunweike, J. N. (2025). "Continuous Integration
and Deployment Strategies for Streamlined DevOps in Software
Engineering and Application Delivery." International Journal of
Computer Applications Technology and Research, 14(1), 1-24

[91 Azad, N, et al. (2023). "DevOps critical success factors — A systematic
literature review." Information and Software Technology, 157, 107150

[10] Mustyala, A. (2023). "Serverless Computing and DevOps: Streamlining
Application Deployment." SSRN Electronic Journal

[11] Mahmood, Z. (2011). "Cloud Computing: Characteristics and
Deployment Approaches." Proceedings of the 2011 11th IEEE
International Conference on Computer and Information Technology,
121-126

IJERTV 141 S120367

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 14 |ssue 12 , December - 2025

[12] Patil, M., et al. (2021). "OpenStack Cloud Deployment for Scientific
Applications." Proceedings of the 2021 IEEE International Conference
on Electronics, Computing and Communication Technologies

[13] Multiple authors (2022). "Implementation of DevOps based Hybrid

Model for Project Delivery." International Journal of Computer Science
and Network Security, 22(8), 251-263

Page 5

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

