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Abstract— The wide availability of huge number of documents 

from different domains, real-time and archrivals data documents 

increase as fast as or faster than computing power. Many 

classical algorithms were developed to solve classification 

problem but many of them usually have large time complexity 

and with increasing number of documents it is necessary to find 

algorithm which are able to find solution in reasonable time. 

Because sequential processor can perform a process at a time. 

The parallel processing is a novel technique for scaling up the 

algorithms. Parallel processing for document classification can 

take the advantage of increasing availability of multi-processors 

or multi-cores processors. The Graphics processing unit is 

consists of multi-core processor and they can perform parallel 

process in small amount of time.  

  

I.  INTRODUCTION   

 A large portion of the available information is stored in 

document database which consist of large collections of 

documents from various areas like news articles, research 

papers, books, e-books, e-mails, and Web pages and these can 

be known as document database. Document databases are 

rapidly growing due to the increasing amount of information 

available in electronic form. Nowadays most of the 

information in government, small or large industry, business, 

and other institutions are store in the form of documents. 

Document classification is process of assigning predefine label 

or categories to the documents which include unstructured and 

semi structured information. It is important because, with 

existence of a tremendous number of documents, it is tedious 

and essential to be able to automatically organize such 

documents into classes to facilitate document retrieval and 

subsequent analysis. Document classification is the primary 

process of retrieving, filtering, clustering and extracting 

documents. A general procedure for document classification is 

as follows: First, a set of pre-classified documents is taken as 

the training set. The training set is then analyzed in order to 

derive a classification scheme. Such a classification scheme 

often needs to be refined with a testing process. The so-

derived classification scheme can be used for classification of 

other new documents. 

The implementation of document classification over the 

large set of documents on sequential processor (CPU) takes 

large amount of time for learning and classification. Many 

classical algorithms were developed to solve classification 

problem but many of them usually have large time complexity 

and with increasing number of documents it is necessary to 

find algorithm which are able to find solution in reasonable 

time, Because CPU can perform a calculation one at a time. 

The parallel processing is a novel technique for scaling up the 

algorithms. Parallel processing for document classification can 

take the advantage of increasing availability of multi-

processors or multi-cores processors. The Graphics processing 

unit is consists of multi-processor and they can perform 

parallel process in small amount of time. The GPU is not only 

the used by graphical application but also non-graphics 

application (like classification).  

In this paper, we introduce the parallel process for 

document classification.  For Implementation of such system 

we are using the NVIDIA Compute Unified Device 

Architecture, through a new API, an easy way to take 

advantage of the high performance of GPUs for parallel 

processing [2]. 

The rest of the paper is organized as follows. The section 2 

describes process of document classification, section 3 

introduce details about Graphic Processing Unit. Section 4 

describes the algorithm for suggested in this paper for parallel 

processing. Section 5 contains description of experimental 

results. And remaining sections contains conclusion and 

references. 

 

II.  DOCUMENT CLASSIFICATION  

  

Document classification is process of assigning the 

documents to predefined categories. Let, if a document 

Ddi  belongs to the category Cci  according to the 

knowledge of the correct categories known for subset 

DDT  of training documents, where D is the collection of 

all documents and C is collection of all categories. Generally, 

each document may belong to more than one category and 

each category may contain more than one document [1]. 

The document classification task can be solved by 

automatic classifier. The documents need to be in the form of 

input that classifier accept. Automatic document classifier 

needs several pre-processing steps, which must convert 

document into classification capable form. Pre-processing of 

documents follows several steps, the first step in pre-

processing is preprocessing of words, a creation of vector 

representation of the documents. Each document is parsed out 

and list of used word with their frequency is extracted. Each 

word is compared with list of stop-words, which are useless 

and not take part in classification, because they are presents in 

most of the documents and it increase the length of document. 

Each word has to converted into it canonical form using 
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normalisation algorithm called as stemming, such as Porter 

Stemming Algorithm[23], it propose five rules to convert a 

word into its canonical form called as stem. A word is form by 

two components stem and its prefixes and postfixes, it will be 

more useful for classification if these prefixes and postfixes 

are removed. When these process is finished, the document 

collection is represented as document term frequency matrix ( 

Doci * TFi,j), where Doci refer to the each document in the 

collection and TFi,j refer to the frequency of j term in the 

document i. In this representation, only relation of the term to 

the individual document is concerned, but the classification 

across the document collection must be computed, therefore 

we need to evaluate term importance in individual document 

according the importance of the term in collection and it will 

called as weights. One of the way we may define a weights to 

the terms is according to TF-IDF (term- frequency inverse 

frequency). The weights wi,j of the term j in document i is 

computed as : 

i

jiji

f

F
tw log,,   

Where ti,j is the number of times that the j appears in 

document i,fi is the number of times that the term tj appears in 

the entire document database and F is the number of unique 

terms in document collection. 

The previous paragraph described the process for 

conversion of document collection into (document – term-

weight) matrix, but the number terms with non-trivial weight 

for each document is still large (tenths of thousands). This 

may cause problem with automatic classifiers because of the 

large number of terms to process. Therefore, feature/term 

selection were may be applied. Several approach to feature 

selection were developed in [23] and [24]. One of the popular 

approach is entropy weight scheme. The entropy weighting 

scheme is computed to the each term as a multiplication of the 

local weighting scheme Lij and the global weighting scheme Gj 

of the document i and term j. The definition of the scheme is 

following, 
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Where N is number of document in collection, TFij refers to 

the frequency of the j term in the document i, Fh is a frequency 

of term k in the entire document collection. 

 

III.  GPU 

 In GPU[12], the GPU takes advantage of a large 

number of execution threads to find work to do when some of 

them are waiting for long-latency memory accesses, thus 

minimizing the control logic required for each execution 

thread. Small cache memories are provided to help control the 

bandwidth requirements of these applications so multiple 

threads that access the same memory data do not need to all go 

to the DRAM.  The GPUs are designed as numeric computing 

engines and they will not perform well on some tasks on 

which CPUs are designed to perform well therefore, one 

should expect that most applications will use both CPUs and 

GPUs, executing the sequential parts on the CPU and 

numerically intensive parts on the GPUs. This is why the [10] 

CUDA (Compute Unified Device Architecture) programming 

model, introduced by NVIDIA in 2007, is designed to support 

joint CPU/GPU execution of non graphics application. 
 

IV.  K-NEAREST NEIGHBOUR (KNN)  

  
 K-Nearest Neighbour algorithm(k-NN) is a classification 

technique in data mining. This algorithm is based on a 

majority vote of the k closest training samples in the feature 

space. If k=1, then the object is simply assigned to the class of 

its nearest neighbour. The k‟s value can be anything it is 

depending on what dataset is used for classification. Various 

measures (e.g. Euclidean distance, cosine measurement, KL) 

can be used to compute the distance between two data sample 

points in feature space, the most desirable distance metrics 

may differ in different applications. 

 K nearest neighbour or KNN[5] classification 

determines the decision boundary locally. For only one nearest 

neighbour we assign each document to the class of its closest 

neighbour. For KNN we assign each document to the majority 

class of its k closest neighbours where k is a parameter. The 

work of kNN classification is based on the contiguity 

hypothesis that we expect a test document d to have the same 

label as the training documents located in the local region 

surrounding d. The Voronoi tessellation of a set of objects  

space into Voronoi cells, each object‟s cell will consists of all 

points that are closer to the object than to other objects. In our 

case, the objects are documents. Then Voronoi tessellation  

partitions the plane into |D| set it seems like convex type of 

polygons, each containing its corresponding document , where 

a convex polygon is a convex region in 2-dimensional space 

bounded by lines. For general k ∈ N in KNN, consider the 

region in the space for which the set of k nearest neighbours is 

the same. This again is a convex polygon and the space is 

partitioned into convex polygons, within each of which the set 

of k nearest neighbours is invariant. 

 

A.  Parallel KNN 

 
The parallelization of k-NN is not applied on training 

period but on the prediction of the unknown instances, which 

is given as follows: 

1. Let D be the dataset, Partition the dataset D into P 

blocks like D1,D2, .. ,DP , each processor will handles 

roughly ∥D∥/P 

2. Processor Pr calculates the k nearest neighbours Nr 

with the local training samples Dr. 

3. A global reduction computes the overall k nearest 

neighbours Nglobal from N1,...., NP, and then assign the 

object to the class which most common amongst Nglobal. 
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B.  Algorithm 

 

  As describe in above, Parallel kNN, it partition data set 

D into P processors or cores and each core calculates k nearest 

neighbour for their local documents. The results from all these 

cores, gives the total k nearest neighbour for the test 

document, and this operation is perform by the CPU. 

 
Training: 

 
1. Document Collection into D dataset. 

2. Tokenization of documents, it convert documents  

into set of tokens. 

3. Remove the stop words from documents. 

4. Partition D dataset into T threads, each thread. 

handles ||D||/T number of documents. 

5. Perform stemming for all threads. 

6. Entropy feature selection. 

 
Testing: 

 
 Following are the steps perform by each core to 

calculate K nearest neighbour. 

1. Calculate term frequency TF. 

2. Calculate inverse term frequency  IDF, 

IDFi = log( N/dfi ) 

3. Calculate TFxIDF document vector, it also called as 

a weight, 

Wi,j = tfij X IDFi 

4. Calculate document vector length 
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6. Collect k samples nearer to the test sample. 

 

 

V.  EXPERIMENT AND RESULTS 

 
This section contains description of performed experiments 

on several data sets.  

 

I. Hardware configuration 

 

 In our implementation we used a system with Intel core i5 

processor @2.30 GHz with windows 7 operation system, 

nVIDIA GeForce 520M which has 96 CUDA cores and 2 GB 

RAM. 

 

 

 

Table 1 Technical Specification (NVIDIA GeForce 520M) 

Technical specifications Compute 

capability 
(version)  2.X 

Maximum x-, y-, or z-dimension of a grid of 

thread blocks 

65535 

Maximum dimensionality of thread block 3 

Maximum number of threads per block 1024 

Warp size 32 

Maximum number of resident blocks per 

multiprocessor 

8 

Number of 32-bit registers per multiprocessor 32 K 

Maximum number of 32-bit registers per 

thread 

64 

Maximum amount of shared memory per 

multiprocessor 

48 KB 

Number of shared memory banks 32 

Amount of local memory per thread 512 

Constant memory size 64 KB 

 

VI.  DOCUMENT COLLECTION  

 

 In our implementation, we selected five categories with 

high number of documents. There are 2000 text documents. 

These text documents are collected from the internet. All 

documents are belongs to the only that five categories. The 

categories are research domains/areas in computer science and 

engineering stream. These documents are related to those 

categories. The classes or categories are Artificial Intelligence, 

Text mining, Networking, Data mining, Image Processing. 

There are twelve hundred documents used for training purpose 

and other eight hundred documents are used for testing.   

 We experimented, this data set for several different 

values of k. The accuracy of the classifier is depends on the 

value of k. we experimented for k values with two to twenty 

and results are improved with greater value of k. Accuracy can 

be calculated by using one of the most popular metrics in 

document classification is precision and recall. Precision (Pr) 

is defined as a probability that selected document is classified 

correctly and recall (Re) is defined as a probability that 

randomly selected document is assigned to the correct 

category. Mathematical definitions are as follows: 

FPTP

TP


Pr  

 
FNTP

TP


Re  

Where TP (true positive) is count of correctly classified 

documents, FP (false positives) is count of documents 

incorrectly not assigned into category. And combination of the 

precision and recall is F1 measure, it can be calculated as, 

RePr

RePr2
1




F  

Following table shows the efficiency of the algorithm in 

terms of precision, recall and F1 for each categories or class. 
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Table 2

 

Efficiency of document classification for collected dataset

 

Class

 

Pr

 

Re

 

F1

 

AI

 

0.271

 

0.323

 

0.294

 

TM

 

0.033

 

0.064

 

0.435

 

DM

 

0.703

 

0.391

 

0.502

 

IP

 

0.865

 

0.937

 

0.899

 

NE

 

1.000

 

0.869

 

0.929

 

 

 

VII.

  

CONCLUSION

 

This paper described a document classification algorithm 

using

 

KNN and implemented on GPU. The parallel processing 

is a novel technique for scaling up the algorithms. Parallel 

classification algorithm is developing to take advantage of the 

increasing availability of multi-processor. GPU is good for 

parallel processing operations and faster than CPU. 

Implementation of document classification reduces time 

complexity for learning and testing a huge set of documents.
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