
 Document Classification using Parallel Processing

 Nikhil R. Vyawahare

MTech CSE-IT

Vishwakarma Institute of technology,

666, Upper Indira Nagar, Bibvewadi, Pune, Maharashtra

411037.

S. G. Lade
Assistant Professor

Vishwakarma Institute of technology,

666, Upper Indira Nagar, Bibvewadi, Pune, Maharashtra

411037.

Abstract— The wide availability of huge number of documents

from different domains, real-time and archrivals data documents

increase as fast as or faster than computing power. Many

classical algorithms were developed to solve classification

problem but many of them usually have large time complexity

and with increasing number of documents it is necessary to find

algorithm which are able to find solution in reasonable time.

Because sequential processor can perform a process at a time.

The parallel processing is a novel technique for scaling up the

algorithms. Parallel processing for document classification can

take the advantage of increasing availability of multi-processors

or multi-cores processors. The Graphics processing unit is

consists of multi-core processor and they can perform parallel

process in small amount of time.

I. INTRODUCTION

 A large portion of the available information is stored in

document database which consist of large collections of

documents from various areas like news articles, research

papers, books, e-books, e-mails, and Web pages and these can

be known as document database. Document databases are

rapidly growing due to the increasing amount of information

available in electronic form. Nowadays most of the

information in government, small or large industry, business,

and other institutions are store in the form of documents.

Document classification is process of assigning predefine label

or categories to the documents which include unstructured and

semi structured information. It is important because, with

existence of a tremendous number of documents, it is tedious

and essential to be able to automatically organize such

documents into classes to facilitate document retrieval and

subsequent analysis. Document classification is the primary

process of retrieving, filtering, clustering and extracting

documents. A general procedure for document classification is

as follows: First, a set of pre-classified documents is taken as

the training set. The training set is then analyzed in order to

derive a classification scheme. Such a classification scheme

often needs to be refined with a testing process. The so-

derived classification scheme can be used for classification of

other new documents.

The implementation of document classification over the

large set of documents on sequential processor (CPU) takes

large amount of time for learning and classification. Many

classical algorithms were developed to solve classification

problem but many of them usually have large time complexity

and with increasing number of documents it is necessary to

find algorithm which are able to find solution in reasonable

time, Because CPU can perform a calculation one at a time.

The parallel processing is a novel technique for scaling up the

algorithms. Parallel processing for document classification can

take the advantage of increasing availability of multi-

processors or multi-cores processors. The Graphics processing

unit is consists of multi-processor and they can perform

parallel process in small amount of time. The GPU is not only

the used by graphical application but also non-graphics

application (like classification).

In this paper, we introduce the parallel process for

document classification. For Implementation of such system

we are using the NVIDIA Compute Unified Device

Architecture, through a new API, an easy way to take

advantage of the high performance of GPUs for parallel

processing [2].

The rest of the paper is organized as follows. The section 2

describes process of document classification, section 3

introduce details about Graphic Processing Unit. Section 4

describes the algorithm for suggested in this paper for parallel

processing. Section 5 contains description of experimental

results. And remaining sections contains conclusion and

references.

II. DOCUMENT CLASSIFICATION

Document classification is process of assigning the

documents to predefined categories. Let, if a document

Ddi belongs to the category Cci according to the

knowledge of the correct categories known for subset

DDT  of training documents, where D is the collection of

all documents and C is collection of all categories. Generally,

each document may belong to more than one category and

each category may contain more than one document [1].

The document classification task can be solved by

automatic classifier. The documents need to be in the form of

input that classifier accept. Automatic document classifier

needs several pre-processing steps, which must convert

document into classification capable form. Pre-processing of

documents follows several steps, the first step in pre-

processing is preprocessing of words, a creation of vector

representation of the documents. Each document is parsed out

and list of used word with their frequency is extracted. Each

word is compared with list of stop-words, which are useless

and not take part in classification, because they are presents in

most of the documents and it increase the length of document.

Each word has to converted into it canonical form using

2665

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21275

normalisation algorithm called as stemming, such as Porter

Stemming Algorithm[23], it propose five rules to convert a

word into its canonical form called as stem. A word is form by

two components stem and its prefixes and postfixes, it will be

more useful for classification if these prefixes and postfixes

are removed. When these process is finished, the document

collection is represented as document term frequency matrix (

Doci * TFi,j), where Doci refer to the each document in the

collection and TFi,j refer to the frequency of j term in the

document i. In this representation, only relation of the term to

the individual document is concerned, but the classification

across the document collection must be computed, therefore

we need to evaluate term importance in individual document

according the importance of the term in collection and it will

called as weights. One of the way we may define a weights to

the terms is according to TF-IDF (term- frequency inverse

frequency). The weights wi,j of the term j in document i is

computed as :

i

jiji

f

F
tw log,, 

Where ti,j is the number of times that the j appears in

document i,fi is the number of times that the term tj appears in

the entire document database and F is the number of unique

terms in document collection.

The previous paragraph described the process for

conversion of document collection into (document – term-

weight) matrix, but the number terms with non-trivial weight

for each document is still large (tenths of thousands). This

may cause problem with automatic classifiers because of the

large number of terms to process. Therefore, feature/term

selection were may be applied. Several approach to feature

selection were developed in [23] and [24]. One of the popular

approach is entropy weight scheme. The entropy weighting

scheme is computed to the each term as a multiplication of the

local weighting scheme Lij and the global weighting scheme Gj

of the document i and term j. The definition of the scheme is

following,



 


otherwise

TFTF
L

ijij

ij

,0

0,log1

N

F

TF

Fj

TFij

G

N

k k

ij

k

log

log1
1








Where N is number of document in collection, TFij refers to

the frequency of the j term in the document i, Fh is a frequency

of term k in the entire document collection.

III. GPU

 In GPU[12], the GPU takes advantage of a large

number of execution threads to find work to do when some of

them are waiting for long-latency memory accesses, thus

minimizing the control logic required for each execution

thread. Small cache memories are provided to help control the

bandwidth requirements of these applications so multiple

threads that access the same memory data do not need to all go

to the DRAM. The GPUs are designed as numeric computing

engines and they will not perform well on some tasks on

which CPUs are designed to perform well therefore, one

should expect that most applications will use both CPUs and

GPUs, executing the sequential parts on the CPU and

numerically intensive parts on the GPUs. This is why the [10]

CUDA (Compute Unified Device Architecture) programming

model, introduced by NVIDIA in 2007, is designed to support

joint CPU/GPU execution of non graphics application.

IV. K-NEAREST NEIGHBOUR (KNN)

 K-Nearest Neighbour algorithm(k-NN) is a classification

technique in data mining. This algorithm is based on a

majority vote of the k closest training samples in the feature

space. If k=1, then the object is simply assigned to the class of

its nearest neighbour. The k‟s value can be anything it is

depending on what dataset is used for classification. Various

measures (e.g. Euclidean distance, cosine measurement, KL)

can be used to compute the distance between two data sample

points in feature space, the most desirable distance metrics

may differ in different applications.

 K nearest neighbour or KNN[5] classification

determines the decision boundary locally. For only one nearest

neighbour we assign each document to the class of its closest

neighbour. For KNN we assign each document to the majority

class of its k closest neighbours where k is a parameter. The

work of kNN classification is based on the contiguity

hypothesis that we expect a test document d to have the same

label as the training documents located in the local region

surrounding d. The Voronoi tessellation of a set of objects

space into Voronoi cells, each object‟s cell will consists of all

points that are closer to the object than to other objects. In our

case, the objects are documents. Then Voronoi tessellation

partitions the plane into |D| set it seems like convex type of

polygons, each containing its corresponding document , where

a convex polygon is a convex region in 2-dimensional space

bounded by lines. For general k ∈ N in KNN, consider the

region in the space for which the set of k nearest neighbours is

the same. This again is a convex polygon and the space is

partitioned into convex polygons, within each of which the set

of k nearest neighbours is invariant.

A. Parallel KNN

The parallelization of k-NN is not applied on training

period but on the prediction of the unknown instances, which

is given as follows:

1. Let D be the dataset, Partition the dataset D into P

blocks like D1,D2, .. ,DP , each processor will handles

roughly ∥D∥/P

2. Processor Pr calculates the k nearest neighbours Nr

with the local training samples Dr.

3. A global reduction computes the overall k nearest

neighbours Nglobal from N1,...., NP, and then assign the

object to the class which most common amongst Nglobal.

2666

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21275

B. Algorithm

 As describe in above, Parallel kNN, it partition data set

D into P processors or cores and each core calculates k nearest

neighbour for their local documents. The results from all these

cores, gives the total k nearest neighbour for the test

document, and this operation is perform by the CPU.

Training:

1. Document Collection into D dataset.

2. Tokenization of documents, it convert documents

into set of tokens.

3. Remove the stop words from documents.

4. Partition D dataset into T threads, each thread.

handles ||D||/T number of documents.

5. Perform stemming for all threads.

6. Entropy feature selection.

Testing:

 Following are the steps perform by each core to

calculate K nearest neighbour.

1. Calculate term frequency TF.

2. Calculate inverse term frequency IDF,

IDFi = log(N/dfi)

3. Calculate TFxIDF document vector, it also called as

a weight,

Wi,j = tfij X IDFi

4. Calculate document vector length





m

i

jij wd
1

.
2||

5. Calculate document cosine similarities, using

||.||

.

||.||

.
),(0

kj

m

i

ikij

kj

kj
kj

dd

ww

dd

dd
ddsim




6. Collect k samples nearer to the test sample.

V. EXPERIMENT AND RESULTS

This section contains description of performed experiments

on several data sets.

I. Hardware configuration

 In our implementation we used a system with Intel core i5

processor @2.30 GHz with windows 7 operation system,

nVIDIA GeForce 520M which has 96 CUDA cores and 2 GB

RAM.

Table 1 Technical Specification (NVIDIA GeForce 520M)

Technical specifications Compute

capability
(version) 2.X

Maximum x-, y-, or z-dimension of a grid of

thread blocks

65535

Maximum dimensionality of thread block 3

Maximum number of threads per block 1024

Warp size 32

Maximum number of resident blocks per

multiprocessor

8

Number of 32-bit registers per multiprocessor 32 K

Maximum number of 32-bit registers per

thread

64

Maximum amount of shared memory per

multiprocessor

48 KB

Number of shared memory banks 32

Amount of local memory per thread 512

Constant memory size 64 KB

VI. DOCUMENT COLLECTION

 In our implementation, we selected five categories with

high number of documents. There are 2000 text documents.

These text documents are collected from the internet. All

documents are belongs to the only that five categories. The

categories are research domains/areas in computer science and

engineering stream. These documents are related to those

categories. The classes or categories are Artificial Intelligence,

Text mining, Networking, Data mining, Image Processing.

There are twelve hundred documents used for training purpose

and other eight hundred documents are used for testing.

 We experimented, this data set for several different

values of k. The accuracy of the classifier is depends on the

value of k. we experimented for k values with two to twenty

and results are improved with greater value of k. Accuracy can

be calculated by using one of the most popular metrics in

document classification is precision and recall. Precision (Pr)

is defined as a probability that selected document is classified

correctly and recall (Re) is defined as a probability that

randomly selected document is assigned to the correct

category. Mathematical definitions are as follows:

FPTP

TP


Pr

FNTP

TP


Re

Where TP (true positive) is count of correctly classified

documents, FP (false positives) is count of documents

incorrectly not assigned into category. And combination of the

precision and recall is F1 measure, it can be calculated as,

RePr

RePr2
1




F

Following table shows the efficiency of the algorithm in

terms of precision, recall and F1 for each categories or class.

2667

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21275

Table 2

Efficiency of document classification for collected dataset

Class

Pr

Re

F1

AI

0.271

0.323

0.294

TM

0.033

0.064

0.435

DM

0.703

0.391

0.502

IP

0.865

0.937

0.899

NE

1.000

0.869

0.929

VII.

CONCLUSION

This paper described a document classification algorithm

using

KNN and implemented on GPU. The parallel processing

is a novel technique for scaling up the algorithms. Parallel

classification algorithm is developing to take advantage of the

increasing availability of multi-processor. GPU is good for

parallel processing operations and faster than CPU.

Implementation of document classification reduces time

complexity for learning and testing a huge set of documents.

ACKNOWLEDGEMENT

We are thankful to the computer department of

Vishwakarma Institute of Technology, Pune for their valuable

support.

REFERENCES

[1]

Vandana Korde,C Namrata Mahender,"Text Classification And

Classifiers: A Survey", International Journal Of Artificial Intelligence &
Applications (IJAIA), Vol.3, No.2, March 2012.

[2]

David B. Kirk and Wen-mei W. Hwu,"Programming Massively Parallel

Processors A Hands-on Approach"

[3]

Jan Platos, Vaclav snasel, Tomas Jezowicz, Pavel, Ajith Abraham "A

PSO-Based Document Classification Algorithm accelerated by the

CUDA Plateform" in IEEE International Conference on Systems, Man
and Cybernetics, October 14-17, 2012, COEX, Seoul, Korea.

[4]

Han Xiao "Towards Parallel and Distributed Computing in Large-Scale

Data Mining: A Survey" April 8, 2010.

[5]

M. Connor and P. Kumar.” Parallel construction of k-nearest neighbour

graphs for point clouds. In Eurographics Symposium on Point-Based

Graphics”, 2008.

[6]

Jesse St. Charles, Robert M. Patton, Thomas E. Potok, And Xiaohui Cui

"Flocking-Based Document Clustering On The Graphics Processing

Unit" published in U.S. Department of Energy Journal of Undergraduate
Research, 2009.

[7] Thanh-Nghi Do, Van-Hoa Nguyen, and François Poulet "Speed Up

SVM Algorithm for Massive Classification Tasks", ADMA 2008, LNAI
5139, pp. 147–157, 2008.

[8] Joseph M. Cavanagh, Thomas E. Potok, Xiaohui Cui "Parallel Latent

Semantic Analysis using a Graphics Processing Unit", GECCO‟09, July
8–12, 2009, Montréal Québec, Canada.

[9] Yongpeng Zhang, Frank Mueller, Xiaohui Cui and Thomas Potok

"GPU-Accelerated Text Mining" in EPHAM‟09, March 22-25, 2009,
Seattle, Washington.

[10] Bryan Christopher Catanzaro, Narayanan Sundaram and Kurt Keutzer

"Fast Support Vector Machine Training and Classification on Graphics
Processors" UCB/EECS-2008-11.

[11] T.L. Griffiths, M. Steyvers, D.M. Blei, and J.B. Tenenbaum.” Integrating

topics and syntax. Advances in neural information processing systems”,
17:537–544, 2005.

[12] S. Manavski and G. Valle.” CUDA compatible GPU cards as efficient

hardware accelerators for Smith-Waterman sequence alignment. BMC
bioinformatics”, 9(Suppl 2):S10, 2008.

[13] D. Newman, A. Asuncion, P. Smyth, and M. Welling. “Distributed

inference for latent dirichlet allocation”. Advances in Neural

Information Processing Systems, 20:1081–1088, 2007.

[14] Y.Wang, H. Bai, M. Stanton,W.Y. Chen, and E.Y. Chang. “ PLDA:

Parallel Latent Dirichlet Allocation for Large-Scale Applications”.
AAIM, June, 2009.

[15] Reza Farivar, Daniel Rebolledo, Ellick Chan, Roy Campbell "A Parallel

Implementation of K-Means Clustering on GPUs", 2009.
[16] Erik Lindholm, John Nickolls, Stuart Oberman “Nvidia Tesla:Aunified

Graphics And Computing Architecture” Published by the IEEE
Computer Society.0272-1732/2008 IEEE.

[17] J. Montrym and H. Moreton, „„The GeForce 6800,‟‟ IEEE Micro, vol.

25, no. 2, Mar./ Apr. 2005, pp. 41-51.
[18] J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel

classifier for data mining. In Proceedings of the International

Conference on Very Large Data Bases, pages 544–555. Citeseer, 1996.
[19] B. Catanzaro, N. Sundaram, and K. Keutzer. Fast support vector

machine training and classification on graphics processors. In

Proceedings of the 25th international conference on Machine learning,
pages 104–111. ACM, 2008.

[20] E.Y. Chang, K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu, and H. Cui. Psvm:

Parallelizing support vector machines on distributed computers.
Advances in Neural Information Processing Systems, 20, 2007.

[21] R. Jin and G. Agrawal. A middleware for developing parallel data

mining implementations. In Proceedings of the first SIAM conference
on Data Mining. Citeseer, 2001.

[22] Wei Zhanga, Feng Gao,"An Improvement to Naive Bayes for Text

Classification", doi : 10.1016 / j.proeng . 2011 . 08 . 404.
[23] Ms. Anjali Ganesh Jivani,"A Comparative Study of Stemming

Algorithms",IJCTA | NOV-DEC 2011.

[24] Y. Saeys, I. Inza, and P. Larraaga, “A review of feature selection
techniques in bioinformatics”, Bioinformatics, vol. 23, no, 19, pp. 2507-

2517, 2007.

[25] Y. Yang and J. Pedersen, Feature selection in statistical learning of text
categorization, Morgan Kaufmann, 1997, pp, 412-420.

2668

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21275

