
Distributed Pair Programming: A Survey

N. Mohanraj
1
 and A. Sankar

2

Associate Professor at the Department of Computer Applications,

PSG College of Technology, Coimbatore, India.

Abstract - In Software development practice today face the

problems of low user satisfaction and low productivity. Current

practice does not give the user required functionality but spend time

in documentation like requirements specifications, architecture

document, design document and test plans etc. The optimal solution

to a better software development practice is agile software

development methods like Pair programming, Extreme programming

etc. But pair programming has issues like scalability as well as co-

located pairs in the same physical location and this can be addressed

by distributed pair programming. Several research papers are

discussed in this survey paper that discusses topics like Agile

Outsourcing (AO), Agile Dispersed Development (ADD) and

Distributed Agile Development (DAD). Also Pair-programming

environments are discussed to give the user idea about them. A

variant of Extreme Programming is discussed as distributed pair

programming or virtual teaming which can be defined as a group of

people, who work together towards a common goal, but across time,

distance, culture and organizational boundaries. Research works at

various universities like the one at NC State University that is a first

indication that distributed pair programming is a feasible and

efficient method for dealing with team projects. It was discussed that

pair programming reduces the risk of subtle errors that would make

debugging excruciating; It give us a much broader code review and It

provides an opportunity to communicate knowledge between coders.

It has been further discussed about tools of pair programming based

on the open source screen sharing application Virtual Network

Computing (VNC). Also this survey suggests that distributed pair

programming (DPP) can work better than solo programming. Four

causes for dismissal phenomenon have been recognized: the faulty

phone cause, the stranger cause, the two-minds cause, the anarchy

cause. In this paper, we discussed the recent research in distributed

pair programming and our intension is to attack the problem of pair

dismissal where either both or one of the pair trying to omit sharing

of knowledge and lead the team as a solo programmer. As a future

work, we would provide a tool including usage of social networking

platforms to avoid pair dismissal problem.

1. INTRODUCTION

In traditional software development practice, we notice

that there is low user satisfaction and low productivity.

Also such traditional approaches produce large amounts of

documentation like requirements specifications,

architecture document, design document and test plans etc.

instead of giving useful functionality to the end user. Due

to such user unfriendly approaches sometimes projects are

cancelled even before it is deployed. The solution to such

thing is agile software development methods like Pair

programming, Extreme programming etc. When a solo

programmer uses the system, there are not much tools are

required for synchronous of activities, but it is required in

the case of pair-programming or extreme programming.

The tools such as to replicate a user’s desktop onto multiple

computers in particular two in the case of pair

programming. All input output methods should be shared

between multiple computers and the application to be

developed should also be deployed on both or multiple

computers. We should notice that direct communication is

better than documentation. That does not mean that

document is unnecessary. In pair programming the

limitations are scalability as well as co-located pairs in the

same physical location. But due to the development of

internet and social networking, we can foresee an approach

which uses the advantages of such technologies. Hence we

need to address distributed pair programming where there

is a possibility of scalability as well as the users need not

be co-located in the same physical location. Open source

projects like Linux or the Apache Web Server where the

development team members are around the world and they

never met possibly as there is no requirement of such thing

in software development process through extreme

programming.

There is significant dependence on personal

communication and customer collaboration. Agile

Modeling disciplines can be difficult to apply on large

teams (say 30 or more) without adequate tooling support,

when team members are unable to share and collaborate on

models (which would make Agile Software

Development in general difficult) and when modeling skills

are weak or lacking.

2. LITERATURE SURVEY

 In recent times there is much attention in agile

programming and was attracted by lot of researchers. An

overview of research performed in agile environment is

described as follows.

2.1 Agile programming environments

A problem arises to maintain close collaboration

practices and run agile project in a distributed

environment[9]. As a solution to this problem, a suitable

tool support is usually employed; however, it seems

insufficient at the moment. The paper [9] presents a set of

general requirements that become a basis for further

investigation into distributed collaboration needs and

challenges. As a verification of initial assumptions, a new

system was designed and part of it, that is responsible for

supporting distributed pair programmers, implemented and

experimentally evaluated. The first group includes

conferencing applications (e.g. Microsoft NetMeeting),

virtual whiteboards and desktop sharing solutions. The

example of second group tool is TUKAN environment with

a pair programming oriented tool consisting of voice-video

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080002

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1

connection and other communication means. It proposes

the following general requirements for discussed support, a

computer system in turn:

 The system must support (preserve, stimulate, not

suppress) the phenomenon of synergy which is not only

the most valuable but also crucial factor, especially

under the circumstances of a team and distribution of its

pairs.

 The system ought to cover all functions that are

recognized as necessary or useful in the geographically

co-located mode, which stay in accordance with the

primary requirement, including also functions which

are decisive only for the friendliness of it.

 The system must fulfill all requirements for a modern

computer system of its type as long as a conflict with

the primary or secondary requirements (necessary ones)

does not arise.

Agile Studio developed [9], which is meant for

supporting selected agile practices. It has been observed

that every collaboration is likely to take advantage of

certain shared objects. Therefore, the editor is based on

server-client architecture, where server side is responsible

for sharing synchronized instances of the session objects

through source files.

Three general cases for non co-located, Agile aligned

development [10] is shown in Fig 1.

Agile Outsourcing (AO): Where an agile team is created

at an appropriately low cost offshore location.

Requirements are given by onshore team using shared

documents but not shared ownership as commonly

understood.

Agile Dispersed Development (ADD): It is practiced by

much of the Open Source community and even by some

commercial companies.

Figure 1: pair programming aligned vs. not aligned

Developers tend to be physically alone, but connected

through a variety of communication channels. In the open

source case, this results in practices such as Benign

Dictator, and Trusted Lieutenant.

Distributed Agile Development (DAD): Customers are

distributed. One development team is distributed evenly

over several sites to remain close to the customers.

Team members in Distributed eXtreme Programming

(DXP) as well as Distributed Pair Programming (DPP) are

provided with as many communication media as possible

[10]. At least these: individual and conference telephone,

teleconference, video conference, email, IM, wiki, VNC.

Widely separated team members need to maintain a

common identity as technical problem solvers. They need

to share rights and responsibilities toward each others’

work, just as colocated workers do.

Members of a team in one location find it hard to

understand the point of view of members in another

location. Trust and cooperation break down, it is hard for

one local group to work effectively with another. Team

members find it hard to have faith in the good intentions of

remote colleagues. Blamestorming replaces collaboration;

finger pointing replaces problem solving [10].

The following Agile principles allow development teams

to grow with businesses as they globalize.

 Distributed Standup

 Multiple Communication Modes

 Remote Pair

 One Team, One Codebase

 Functional Tests Capture Requirements

 One Team, One Build

 Code is Communication

 Tests Announce Intention

Convention speaks against having two people work

together to develop code – having “two do the work of

one”, as some people see it. Managers view programmers

as a scarce resource, and are reluctant to "waste" such by

doubling the number of people needed to develop a piece

of code and also experienced programmers are very

reluctant to program with another person. Some say their

code is "personal," or that another person would only slow

them down. Others say working with a partner will cause

trouble coordinating work times or code versions.

But it must be noticed as several well-respected

programmers prefer working in pairs, making it their

preferred programming style. Seasoned pair programmers

describe working in pairs as "more than twice as fast”.

Qualitative evidence suggests the resulting design is better,

resulting in simpler code, easier to extend. Even relative

novices contribute to an expert' programming, according to

interviews.

2.2 Pair-programming environments

Pair programming is one of the twelve practices of

Extreme Programming (XP) [3]. In Pair programming it is

assumed that the pairs will be working in front of the same

workstation [4]. If Extreme Programming is to be used for

distributed development of software, co-location becomes a

limitation. A variant of Extreme Programming is used

through distributed pair programming or virtual teaming. A

virtual team can be defined as a group of people, who work

together towards a common goal, but across time, distance,

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080002

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

2

culture and organizational boundaries [5]. This is depicted

in Fig 2.

Figure 2: Typical pair programming environment

Pair programming [1] transforms what has traditionally

been a solitary activity into a cooperative effort. One of the

developers, called the driver, controls the computer

keyboard and mouse. The driver is responsible for entering

software design, source code, and test cases. The second

developer, called the navigator, examines the driver’s

work, offering advice, suggesting corrections, and assisting

with design decisions. The developers switch roles at

regular intervals. Although role switching is an informal

process, a typical interval is 20 minutes.

The experiment conducted at NC State University is a

first indication that distributed pair programming is a

feasible and efficient method for dealing with team projects

[4]. It indicates the following:

 Distributed pair programming in virtual teams is a

feasible way of developing object-oriented software.

 Software development involving distributed pair

programming is comparable to that developed using

co-located Pair programming or virtual teams without

distributed pair programming.

 The two metrics used for this comparison were

productivity (in terms of lines of code per hour) and

quality (in terms of the grades obtained).

 Co-located teams did not achieve statistically

significantly better results than the distributed teams.

 Feedback from the students indicates that distributed

pair programming fosters teamwork and

communication within a virtual team.

The requirements of a typical distributed pair

programming tool [18] are as below.

R1. Synchronous editing of source code. As is the case for

any modern source code editor it should highlight

keywords based on the programming language being used

and provide conventional editing tools such as: Cut, Copy,

Paste, Find, and Replace.

R2. Only two programmers need to collaborate at the same

time.

R3. The system should support the options of compiling

and executing the source code being edited and should

notify the users of the error messages reported by the

compiler.

R4. The source code files to be shared should be stored in

Web repositories to ensure that documents are available to

all members of the development team. Furthermore,

configuration control tools are increasingly being

developed on top of Web servers to take advantage of the

Web’s ubiquity and open standards.

R5. Access to documents being edited should be controlled

at the repository. Mechanisms to request and obtain shared

resources need to be provided.

R6. Pair programming demands frequent communication

between colleagues. The system should support text and

audio-based communication, however, video is not

considered necessary.

R7. Awareness of the presence and state of authors and

documents, as well as access rights pertaining to shared

resources should be provided to the users.

Data were analyzed in terms of productivity and quality.

Also, student feedback formed an important third input for

the experiment. Our goal was not to show that distributed

pair programming is superior to co-located pair

programming for student teams. Our goal was to

demonstrate that distributed pairing is a viable and

desirable alternative for use with student teams,

particularly for distance education students. The results

show that distributed teams had a slightly greater

productivity as compared to co-located teams;

It is to be noted that pair programming should

significantly reduce the risk of subtle errors that would

make debugging excruciating. Also it would give us a

much broader code review than we had ever had; and it

would provide an opportunity to communicate knowledge

between coders.

Also some investigative paths are briefly described:

 Economics: A recent controlled experiment [11]

found only a small development cost for adding

the second person. However, the resulting code

also had fewer defects. The defect removal

savings should more than offsets the development

cost increase.

 Satisfaction: People working in pairs found the

experience more enjoyable than working alone.

 Design quality: The study [11] also found that the

pairs produced shorter programs than their solo

peers, indicating superior designs.

The significant benefits of pair programming are that

[12]·

 many mistakes get caught as they are being typed in

rather than in QA test or in the field (continuous code

reviews);

 the end defect content is statistically lower (continuous

code reviews);

 the designs are better and code length shorter (ongoing

brainstorming and pair relaying);

 the team solves problems faster (pair relaying);

 the people learn significantly more, about the system

and about software development (lineof sight

learning);

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080002

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

3

 the project ends up with multiple people understanding

each piece of the system;

 the people learn to work together and talk more often

together, giving better information flow and team

dynamics;

 people enjoy their work more.

In [12] it is found that for a development-time cost of

about 15%, pair programming improves design quality,

reduces defects, reduces staffing risk, enhances technical

skills, improves team communications and is considered

more enjoyable at statistically significant levels.

2.3 Extreme programming environments

Using DXP(Distributed Extreme Programming) and

open source processes as a baseline, the process of virtual

software teams are, XP teams are usually much more

closely coordinated than open source projects. Hence,

project coordination support is strongly required for DXP.

Here the tasks are assigned to XP team in a coordinated

manner and deadlines are set as well as overview of the

current state of the project is also updated. Team members

access their to-do lists and to perform their tasks they

retrieve relevant information in a coordinated way.

To establish synchronous communication, extensive e-

mails are used as well as audio and video calls and text

chat are also used. In the case of pair programming sharing

of their application is also done. Both pull access as well as

push access of information is done for the user.

The MILOS framework discussed in [2] nicely fits the

requirements on DXP support. Nevertheless, we added the

several extensions for supporting distributed XP like user

stories in which a new product type that represents user

stories was added.

In addition, whenever a new user story is entered,

MILOS ASE automatically adds a task for implementing

this story into the task list. Also release and iteration

planning allows easily defining and changing releases,

iterations, user stories, and tasks. In a distributed setting,

the system provides awareness on what is going on in the

project based on 4 task levels from XP (release, iteration,

user story, and task). Further MS NetMeeting is integrated

to be able to support distributed pair programming and

synchronous communication.

2.4 Tools for Agile development process

The tool described in [1] is based on the open source

screen sharing application Virtual Network Computing

(VNC) [6]. Experiments were conducted [1] with control

group as well as experiment group with students. Students

in the control and experimental groups performed equally

well on the final exam. Although it is not statistically

significant, students who used the tool performed better on

the exam than the students in the control group. Students in

both experimental groups were also equally confident in

their programming solutions. Comments from these

students included:

 "We never had any need to. It was easier to meet

in person."

 "Because we were able to find time together

working on it at one person’s place"

 "It was not necessary for us. It was very easy for

us to meet in lab and talk face to face"

It is observed that the above remarks were given the

students when VNC was used in the same lab and hence

the students find meeting people is easier than using the

tool. But when it is required in projects where the users

don’t meet because of distance, DPP (Distributed pair

programming) is necessary.

The COLLECE (COLLaborative Edition, Compilation

and Execution) system [7] is a groupware tool that enables

users who are located in different workstations to

collaborate in the same time (real time) in the building of a

computer program. COLLECE was used in a study to

compare the activity of Distributed Pair Programmers

(DPPs) [8] and solo programmers. Here in the study

particular attention was given to work productivity and

program quality. It was observed that when the DPPs have

enough experience in the use of the groupware tool and

work collaboratively with their partner, the quality of

programs is better than of those built by solo programmers.

Also DPPs spent more time completing their tasks. They

had to carry out additional interactions in order to

coordinate and communicate in a distributed collaborative

synchronous environment.

2.5 Distributed Systems and its environments:

Schumer and Schumer [13] and Maurer [14] have

conducted research in this area that suggests that

Distributed Pair Programming (DPP) can work. In a work

by Baheti et al. [15] suggests that distributed pairing can be

as effective as collocated pairing. Canfora et al. [16]

studied virtual pairing by having students use a screen

sharing application along with a text-based chat

application. No audio channel was provided to the students.

Stotts et al. [17] provides further evidence of the

potential success of distributed pairing. They describe an

on-going series of experiments and case studies in which

students virtually paired. Although distributed pairs

successfully completed their programming assignments,

they complained of their inability to point or gesture. As

Stotts observed, "pairs need better capabilities for

indicating areas of interest".

A representative sample of like responses [1] includes:

 "Well, besides it allowing us to work in the

comforts of our own homes without ever getting

out of our chairs, it also helped to overcome some

schedule conflicts, and the time that would have

been wasted just walking to the other person's

computer was instead turned into productive

programming time!"

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080002

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

4

 "You don't have to go all the way to a computer

lab to pair program."

 "It made pair programming very easy and

convenient. We didn't have to meet on campus or

at each other's houses so we could always pair

program without the effort of getting together. I

think the class would have required a lot more

time without the tool."

And responses about the use of the tool are as below:

 "If we do not meet in person, this combined with

AIM almost perfectly emulated working side by

side. We could work on it any time and take long

breaks."

 "The pair programming tool allowed us to work

together from two different places. The pointing

function of the program also made it easier to

point out errors and not accidentally type while

my partner was typing."

Comments from this group(while collocated) of students

includes:

 "I like the flexibility it offers in case two partners

can't meet and work together. I liked being able to

work on separate terminals while working side by

side in the lab."

 "Easier than sharing computer”

 "Being able to switch driver/navigator easily"

Typical dislikes about the experiment are as below.

 "Communication with the partner is still

awkward"

 "The tool was difficult to use when we were

programming something we had never

programmed before – for instance, when we first

used arrays."

 "We sometimes wrote over each other's work and

sometimes presenting things in person kept each

others' interest."

 "AIM is not a good way to communicate, even

with the headsets. Sometimes it is difficult to

explain something through the air."

Also some other comments about the tool are:

 "We never had any need to. It was easier to meet

in person."

 "Because we were able to find time together

working on it at one person's place"

 "It was not necessary for us. It was very easy for

us to meet in lab and talk face to face"

 "Too many programs to do a simple thing."

 "It was a hassle trying to get the program up and

running than just simply meeting up with your

partner at the lab. "

In the COPPER System [18], a synchronous source code

editor that allows two distributed software engineers to

write a program using pair programming. COPPER

implements characteristics of groupware systems such as

communication mechanisms, collaboration awareness,

concurrency control, and a radar view of the documents,

among others. It also incorporates a document presence

module, which extends the functionality of instant

messaging systems to allow users to register documents

from a Web server and interact with them in a similar

fashion as they do with a colleague. We report results from

a preliminary evaluation of COPPER which provide

evidence that the system could successfully support

distributed pair programming. The Audio module

establishes and maintains an audio communication channel

between two clients so that their users can hold a

conversation while collaborating.

Agile methodologies stress the need for close physical

proximity of team members. However, circumstances may

prevent a team from working in close physical proximity.

For example, a company or a project may have

development teams physically distributed over multiple

locations. As a result, increasingly many companies are

looking at adapting agile methodologies for use in a

distributed environment [19].

The paper [20] describes the development and study of a

technique tailored for distributed programming teams. The

technique is based on an emerging software engineering

methodology known as pair-programming combined with

nearly 20 years of widespread and active research in

collaborative software systems. Students use interactive

information technology over the Internet, such as

PCAnywhere and NetMeeting, to jointly and

simultaneously control a programming session and to speak

with each other synchronously. The earliest example of a

collaborative computer system was NLS-Augment by

Engelbart [21], an initial version of which was

demonstrated in the early 1960.s. Engelbart.s system used

shared CRTs, audio connections, mouse, and keyboard to

allow crude teleconferencing and shared examination of

text files by users who were not co-located. From these

early beginnings, collaborative software systems became

the subject of widespread research more than 15 years ago,

with the creation of the PC. Ongoing research tends to

focus in three main areas: hardware to provide effective

communications; software concepts that allow sharing of

artifacts; and conceptual models of how people want to or

are able to interact effectively. The success of the simple

DXP platform has led us to construct one that presents

collaborators with a more significant video image,

including the ability to create hyperlinks in a real-time

video stream.

The following hypotheses were examined [22]:

 Distributed teams whose members pair synchronously

with each other will produce higher quality code than

distributed teams that do not pair synchronously. In the

academic backdrop, quality can be assessed by the

grades obtained by the students for their project. A

statistical t-test can be performed to find whether one

of the groups gets statistically significantly better

results at different levels of significance (p < 0.01,

0.05, 0.1 etc.).

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080002

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

5

 Distributed teams whose members pair synchronously

will be more productive (in terms of LOC/hr.) than

distributed teams that do not pair synchronously.

 Distributed teams who pair synchronously will have

comparable productivity and quality when compared

with collocated teams.

 Distributed teams who pair synchronously will have

better communication and teamwork within the team

when compared with distributed teams that do not pair

synchronously.

Five out of six students involved in distributed pair

programming thought that technology was not much of a

hindrance in collaborative programming. Also, about the

same fraction (82%) of students involved in virtual teaming

with or without pair programming felt that there was proper

cooperation among team members. The experiment we

conducted was a classroom experiment among 132

students, including 34 distance-learning students. To be

able to draw statistically significant conclusions, such

experiments have to be repeated, on a larger scale if

possible. However, this experiment has given initial

indications of the viability of distributed pair programming.

The statistical analysis showed a phenomenon we called

the dismissal hypothesis: distributed pairs tend to stop

collaboration and begin working as solo programmer [23].

Further it shows that in distributing pair programming

people need a communication means that owns at least two

features: vocal communication and a blackboard.

Four causes have been recognized: the faulty phone

cause, the stranger cause, the two-minds cause, the anarchy

cause.

 A defective communication is one of the four causes of

the pair dismissal (the faulty phone cause).

 The pair has to present very comparable levels of

competence. A way to obtain such a condition is to

make the pairs work together in many projects. In this

way it is possible also to prevent the stranger cause.

 The meeting should be realized with closing

assessment aiming at verifying that the pair has formed

an unique mind. The unique mind is intended as a

uniform vision of the domain, strategies, goals, and the

overall knowledge to be applied during the project.

This should avoid the two-minds cause.

Second, knowledge needs to manage distributed pair

programming have been pointed out, as listed above:

 Establish a behavioral protocol that defines clearly

the roles in the pair and the switching of roles;

 Couple people with comparable experience and

capabilities;

 Make people familiar in working with each others;

 Plan frequent brainstorming in order to create a

common vision of the project.

Third, some requirements for an environment enabling

distributed pair programming have been outlined:

 Enabling a communication as close as possible to

the actual (co-located) human dialogue;

 Control the versioning of the changes made by

pair programmers.

The following hypotheses were considered in [24]:

 Distributed teams whose member’s pair

synchronously with each other will produce higher

quality code than distributed teams that do not pair

synchronously.

 Distributed teams whose members pair

synchronously will be more productive (in terms

of LOC/hr.) than distributed teams that do not pair

synchronously.

 Distributed teams who pair synchronously will

have comparable productivity and quality when

compared with collocated teams.

 Distributed teams who pair synchronously will

have better communication and teamwork within

the team when compared with distributed teams

that do not pair synchronously.

3. CONCLUSION

Pair programming which is a part of Agile software

development method has been one of the leading research

areas. Mostly such research setup are academic setup

where both the programmers in the pair co-located. This

will not be case when we experiment in real time

programmers in the industry. Hence the need for

attempting distributed pair programming arises. In this

paper, we discussed the recent research in distributed pair

programming and our intension is to attack the problem of

pair dismissal where either both or one of the pair trying to

omit sharing of knowledge and lead the team as a solo

programmer. As a future work, we would provide a tool

including usage of social networking platforms to avoid

pair dismissal problem.

REFERENCES

[1] Brian F. Hanks, Distributed Pair Programming: An Empirical

Study, Extreme Programming and Agile Methods - XP/ Agile

Universe 2004, Proceedings.

[2] D. Wells and L. Williams (Eds.): XP/Agile Universe 2002, LNCS
2418, pp. 13–22, 2002.

[3] K. Beck, “Extreme Programming Explained: Embrace Change”.

Reading, Massachusetts: Addison-Wesley, 2000.
[4] D. Wells and L. Williams (Eds.): XP/Agile Universe 2002, LNCS

2418, pp. 208–220, 2002.

[5] B. George., Y. M. Mansour, “A Multidisciplinary Virtual Team”,
Accepted at Systemics, Cybernetics and Informatics (SCI), 2002.

[6] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood,

and Andy Hopper. Virtual network computing. IEEE Internet
Computing, 2(1):33-38, January-February 1998.

[7] Bravo, C., Duque, R., Gallardo, J., García, J., García, P.: A

Groupware System for Distributed Collaborative Programming:
Usability Issues and Lessons Learned. In: International Workshop

on Tools Support and Requirements Management for Globally
Distributed Software Development, Centre for Telematics and

Information Technology, pp. 50–56 (2007)

[8] Williams, L., Kessler, R.: Pair Programming Illuminated.
Addison-Wesley, Reading (2002).

[9] G. Concas et al. (Eds.): XP 2007, LNCS 4536, pp. 70–73, 2007.

[10] Alistair Cockburn, Laurie Williams, The Costs and Benefits of
Pair Programming,

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080002

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

6

[11] Williams, L., et al., Strengthening the Case for Pair-

Programming, in IEEE Software. submitted to IEEE Software.
Online at

http://www.cs.utah.edu/~lwilliam/Papers/ieeeSoftware.PDF

[12] Alistair Cockburn, The Costs and Benefits of Pair Programming,
Internet source.

[13] Till Schummer and Jan Schummer. Support for distributed teams

in extreme programming. In Giancarlo Succi and Michele
Marchesi, editors, Extreme Pro gramming Examined, pages 355-

378. Addison-Wesley, 2001.

[14] Frank Maurer. Supporting distributed extreme programming. In
Extreme Programming and Agile Methods - XP/Agile Universe

2002, number 2418 in LNCS, pages 13-22. Springer, 2002.

[15] Prashant Baheti, Edward Gehringer, and David Stotts. Exploring
the efficacy of distributed pair programming. In Extreme

Programming and Agile Methods - XP/Agile Universe 2002,

number 2418 in LNCS, pages 208-220. Springer, 2002.

[16] Gerardo Canfora, Aniello Cimitile, and Corrado Aaron Visaggio.

Lessons learned about distributed pair programming: What are

the knowledge needs to address? In Proceedings of the Twelfth
IEEE International Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises (WETICE03), pages

314-319, 2003.
[17] David Stotts, Laurie Williams, Nachiappan Nagappan, Preshant

Baheti, Dennis Jen, and Anne Jackson. Virtual teaming:

Experiments and experiences with distributed pair programming.
In Extreme Programming and Agile Methods - XP/Agile

Universe 2003, number 2753 in LNCS, pages 129-141. Springer,
2003.

[18] Hiroshi Natsu, Distributed Pair Programming on the Web,

Proceedings of the Fourth Mexican International Conference on
Computer Science (ENC’03).

[19] D. Wells and L. Williams (Eds.): XP/Agile Universe 2002, LNCS

2418, p. 283, 2002.

[20] Prashant Baheti, Laurie Williams, Edward Gehringer, Distributed

Pair Programming: Empirical Studies and Supporting

Environments, Report of Department of Computer Science North
Carolina State University Raleigh, NC 27695.

[21] D. C. Engelbart and W. K. English, .A Research Center for

Augmenting Human Intellect,. presented at AFIPS Conference
Proceedings of the 1968 Fall Joint Computer Conference, San

Francisco, CA,, 1968.

[22] Prashant Baheti, Exploring the efficacy of distributed pair
programming.

[23] Gerardo Canfora , Lessons learned about distributed pair

programming: what are the knowledge needs to address,
Proceedings of the Twelfth IEEE International Workshops on

Enabling Technologies: Infrastructure for Collaborative

Enterprises (WETICE’03)
[24] Prashant Baheti, Exploring Pair Programming in Distributed

Object-Oriented Team Projects.

N.Mohanraj received his Master

degree in Computer Applications from

PSG College of Technology,

Coimbatore, India. He is currently

working as Associate Professor at the

Department of Applied Mathematics

and Computational Sciences, PSG

College of Technology, Coimbatore,

India. Since 2008, he is working towards his PhD in

Computer Science from the Faculty of Science and

Humanities, Anna University. His research is focused on

pair programming, agile methodologies, software

engineering and OOAD.

A. Sankar received his PhD in

Computer Science from Bharathiar

University, Coimbatore, India, in 2003.

He is currently working as an Associate

Professor at the Department of

Computer Applications, PSG College

of Technology, Coimbatore, India. He

has more than 24 years of teaching and ten years of

research experience. His research interests include agile

software engineering, data mining, e-learning and

networks.

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080002

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

7

