Distress Analysis and Condition Assessment of Roads in Sangli District

Patil Ashish K. P.G. Student Civil – Construction Management Rajarambapu Institute of Technology, Rajaramnagar, Sangli

Abstract:- India is one of the fastest developing country in the world and India has 2^{nd} largest road network in the world. Road network plays important role in transportation sector. This large network is deteriorating fast and needs to be maintained. This needs maintenance management system. For the preparation of Road maintenance management system distress analysis and condition assessment is required.

This study deals with the measurement of distress quantity and distress severity to define the condition of road network in sangli district as a study area. By analyzing this distress data the priorities for the maintenance work for selected road network is defined and is developed maintenance system.

Keywords: Distress analysis, Deterioration, Assessment

I. INTRODUCTION:

Road network play important role in the transportation sector. India has the 2nd largest road network in world in which the part of rural road network is large. Population growth rate of country is high so the percentage of road users increases. So for the safe travelling there is need of well-maintained road network. So in preparation of road maintenance management system distress analysis and condition assessment plays an important role.

Distress type, distress severity and condition of road recommends maintenance and repair plan according to type and age of road section. This paper aim to detection of the distress, calculation of distress quantity, measurement of its severity and define the condition of the road network of sangli district

II. Methodology:

The work undertaken for the study includes detection of distresses in asphalt pavement by physical inspection. The condition analysis of pavement is done by finding pavement condition index for the particular section of pavement. Overall condition assessment is done and rating is give to the pavement. Distress analysis and severity of the distress is measure according to American society of testing material (ASTM D 6433-07).[10]

A. Pavement distress:

Any indication of poor or unfavourable pavement performance or signs of impending failure; any unsatisfactory performance of a pavement short of failure .There are nineteen pavement distress obtained in pavement these are following 1) Alligator cracking 2) Bleeding 3) Block cracking 4) Bumps and sag 5) Corrugation 6) Depression 7) Edge cracking 8) Joint reflection crack 9) Lane/shoulder drop off 10) Long. And trans. Crack 11) Patching Prof. D.S. Patil Professor Department of Civil Engineering Rajarambapu Institute of Technology, Rajaramnagar, Sangli

and utility cut 12) polished aggregate 13) Potholes 14) Railroad crossing 15) Rutting 16) Shoving 17) Swell 18) Slippage cracking 19) Revelling /Weathering

B. Distress analysis:

Distress analysis includes detection of distress in pavement and its measurement. Distress is detected by physical inspection method and the measurement of distress is done according to manual of American Society of Testing Material manual (ASTM).[10] Calculation of distress quantity and its severity is also part of distress analysis

C. Condition assessment:

Pavement condition assessment is done by calculating pavement condition index and rating will be give according to pavement condition index rating scale.

Pavement condition index is calculated according to the (ASTM D 6433-07) [10] manual and pavement condition rating scale is numerically divided in between 0-100. By using this scale the condition of road network is calculated

- D. Total no of state highways in sangli district = 19
- *E.* Total no of MDR in sangli district = 75
- F. Total no of State highways obtained by random sampling = 6
- G. Total no of MDR obtained by Random sampling =23

Sr. No.	Road Number	Chainage from	Chainage till	Chainage in sangli
1	SH-125	106	127.2	21.2
2	SH-150	1.12	84.4	83.28
3	SH-152	0	68.8	68.8
4	SH-155	0	130.3	130.35
5	SH-157	0	25.8	25.8
6	SH-161	0	40	40

Published by : http://www.ijert.org

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 6 Issue 05, May - 2017

Sr.No.	Road	Chainage	Chainage	Chainage in
	Number	from	till	sangli
1	MDR-1	0	33.2	33.2
2	MDR-3	0	12.6	12.6
3	MDR-4	0	21.82	21.82
4	MDR-6	0	18.9	18.9
5	MDR-10	0	17.52	17.52
6	MDR-13	0	16.9	16.9
7	MDR-15	0	22.6	22.6
8	MDR-19	0	49.5	49.5
9	MDR-23	0	54.8	54.8
10	MDR-27	0	6.4	6.4
11	MDR-30	0	37.9	37.9
12	MDR-37	0	6	6
13	MDR-45	0	33	33
14	MDR-46	0	19.2	19.2
15	MDR-47	0	17.48	17.48
16	MDR-52	0	7	7
17	MDR-54	0	22	22
18	MDR-55	0	12	12
19	MDR-61	0	25.5	25.5
20	MDR-75	0	11.2	11.2

H. Measurement of distress severity in flexible pavement:

C	C 1	T	M 11	TT' 1	
Sr.	Crack	Low	Medium	High	Unit of
No	Туре				Measurement
1	Alligator cracking	Fine, longitu dinal hairline cracks	Further develop ment of alligator cracks	Network or pattern cracking has progressed	Alligator cracking is measured in square meters (square feet) of surface area.
		running parallel to each other.	into low severity.	so that the pieces are well defined.	
2	Bleedin g	In that case asphalt does not stick to shoes or vehicle s	Bleedin g has occurred to the extent that asphalt sticks to shoes and vehicles	Asphalt sticks to shoes and vehicles during at least several weeks of the year	Bleeding is measured in square meters (square feet) of surface area.
3	Block crackin g	Blocks are defined by low- severit y cracks	Blocks are defined by medium -severity cracks	Blocks are defined by high- severity cracks	Block cracking is measured in square feet (square meter) of surface area.
4	Bumps and sag	Bump or sag causes low- severit y ride quality	Bump or sag causes medium -severity ride quality	Bump or sag causes high- severity ride quality	Bumps or sags are measured in linear meters (feet).

5	Corruga tion	Corrug ation produc es low- severit y ride quality	Corruga tion produce s medium -severity ride quality	Corrugatio n produces high- severity ride quality	Corrugation is measured in square meters (square feet) of surface area.
6	Depress ion	13 to 25 mm (1/2 to 1 in.)	25 to 50 mm (1 to 2 in.)	More than 50 mm (2 in.)	Depressions are measured in square meters (square feet) of surface area.
7	Edge crackin g	Low or mediu m crackin g with no breaku p or ravelin g	Medium cracks with some breakup and raveling	Considera ble breakup or raveling along the edge	Edge cracking is measure in linear meters (feet).
8	Joint reflecti on crack	width is less than 10 mm (3/8 in.) or filled crack of any width.	Width is greater than or equal to 10 mm (3/8 in.) and less than 75 mm (3 in.)	Width is greater than 75 mm (3 in.).	Joint reflection cracking is measured in linear meters (feet).
9	Lane/sh oulder drop off	the differe nce in elevati on betwee n the paveme nt edge and shoulde r is > 25 mm (1 in.) and< 50 mm	The differen ce in elevatio n is > 50 mm (2 in.) and < 100 mm (4 in.)	The difference in elevation is > 100 mm (4 in.)	Lane/shoulder drop-off is measured in linear meters (feet).
10	Long and trans crackin g	Width is less than 10 mm (3/8 in.)	Width is greater than or equal to 10 mm and less than 75 mm (3/8 to 3 in.).	Width is greater than 75 m (3 in.).	Longitudinal and transverse cracks are measured in linear meters (feet).
11	Patchin g and utility cut	Patch is in good conditi on and satisfac tory.	Patch is moderat ely deterior ated.	Patch is badly deteriorate d.	Patching is rated in square meter (square feet) of surface area.
12	Polishe d aggrega te	No degrees of severit y are			Polished aggregate is measured in square meters (square feet) of surface area.

		defined			
13	Pothole s	The levels of severit y for pothole s less than 750 mm (30 in.) in diamet er.	The depth is 25 mm (1 in.) or less, the holes are consider ed medium -severity	If the depth is more than 25 mm (1 in.), they are considered high- severity.	Potholes are measured by counting the number that are low, medium, and high severity and recording them separately.
14	Railroa d crossin g	Railroa d crossin g causes low- severit y ride quality	Railroad crossing causes medium -severity ride quality	Railroad crossing causes high- severity ride quality	The area of the crossing is measured in square meters (square feet) of surface area.
15	Rutting	6 to 13 mm (1/4 to 1/2 in.)	>13 to 25 mm (>1/2 to 1 in.)	>25 mm (>1 in.)	Rutting is measured in square meters (square feet) of surface area.
16	Shovin g	Shove causes low- severit y ride quality	Shove causes medium -severity ride quality	Shove causes high- severity ride quality	Shoves are measured in square meters (feet) of surface area.
17	Swell	Swell causes low- severit y ride quality.	Swell causes medium -severity ride quality.	Swell causes high- severity ride quality.	The surface area of the swell is measured in square meters (square feet).
18	Slippag e crackin g	Averag e crack width is < 10 mm (3/8 in.)	Crack width is 10 and < 40 mm (3/8 and<1- 1/2 in.).	Crack width is > 40 mm (1- 1/2 in.)	The area associated with a given slippage crack is measured in square meters (square feet).
19	Revelli ng and weather ing	Aggreg ate or binder has started to wear away.	Aggrega te or binder has worn away.	Aggregate or binder has been worn away considerab ly.	Weathering and raveling are measured in square meters (square feet) of surface area.

Pavement condition Index rating scale:

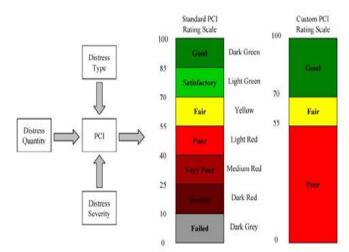


Fig.1 Pavement condition rating scale

- J. Pavement condition index sample calculation:
- 1) MDR-19
- a) (1st patch between Bambwade and Balwadi fata):

```
Total distress Area
```

```
Pavement = _____ X 100
Condition Total area of the patch
```

Index

I.

$$= \frac{2304.6}{5700.64} \times 100$$

b) (2nd patch between Balwadi fata and Vangi):

		Total distress Area		
Pavement	=	——————————————————————————————————————		
Condition		Total area of the patch		
Index				
		1822.27		
	=	X 100		
		5809		
	=	31.37		
		40.43 +31.37		
Average	=			
pavement		2		
condition				
index				
	=	35.9		

Sr. No.	Road Name	Pavement Condition	Pavement Condition
		Index	Rating
1	SH-125	5	Failed
9	MDR-4	5	Failed
10	MDR-6	90	Good
11	MDR-10	28.44	Very poor
12	MDR-13	5	Failed
13	MDR-15	5	Failed
14	MDR-19	35.9	Very poor
15	MDR-23	90	Good
16	MDR-27	29.04	Very poor
17	MDR-30	21.76	Serious
18	MDR-37	90	Good
19	MDR-45	5	Failed
20	MDR-46	17.8	Serious
21	MDR-47	5	Failed
22	MDR-52	90	Good
23	MDR-54	5	Failed
24	MDR-55	29.1	Very poor
25	MDR-61	90	Good
26	MDR-75	5	Failed

IV. . CONCLUSION:

From above research work following points are concluded:

Raveling or weathering is more severe problem in pavement as compared to other distress.

Out of 6 state highways 5 state highways are above satisfactory condition and out of 20 MDR 6 roads are above satisfaction condition and remaining 14 roads are in poor condition. About 60% of roads are in poor condition so they are not fulfilling the safe driving condition.

REFERENCES:

- C. H Juang, and S. N. Amirkhan (May 1991), "Unified Pavement Distress Index For Managing Flexible Pavements". (ASCE)
- [2] Habib Shahnazari, and Mohammad A Tutunchian, and Mehdi Mashayekhi, and Amir A. Amini (Dec 2012), "Application of Soft Computing for Prediction of Pavement Condition Index".
- [3] Ary Setyawan, and Jolis Nainggolan, and Arif Budiarto (Nov 2015), "Predicting the remaining service life of road using pavement condition index". (Science Direct)
- [4] Hakan Sahin, and Paul Narciso, and Narain Hariharan (Jan 2014), "Developing a Five-Year Maintenance and Rehabilitation (M&R) Plan for HMA and Concrete Pavements Networks". (Science Direct)
- [5] Yogesh U. Shaha, and S. S. Jainb, and Devesh Tiwaric, and M.K.Jain (Nov 2013), "Development of Overall Pavement Condition Index for Urban Road Network". (Science Direct)
- [6] Abdullah I. AI-Mansour and Kumares C. Sinha and Thomas Kuczek 3(July 1994)" Effect of Routine Maintenance On Flexible Pavement Condition" (ASCE)
- [7] Jose M. Vassallo and Rafael Izquierdo (Nov 2002)" Modeling Road Maintenance Management and Financing"(ASCE)
- [8] Xueqin Chen and Qiao Dong andHehua Zhu and Baoshan Huang (Nov 2015)" Development of distress condition index of asphalt pavements using LTPP data through structural equation modelling"(ELSEVIER)
- [9] Abhay Tawalare and K. Vasudeva Raju (Jan 2016)" Pavement Performance Index for Indianrural roads" (ELSEVIER)
- [10] American Society of Standard Material "Standard Practice for Roads and Parking Lots Pavement Condition Index"(D 6433-07)