
DISSEMINATION OF SENSITIVE DATA

1
K Bindu Susan ,

2
 M.Raja Babu

1
Department of computer Science, Aditya Engineering College,JNT University,Kakinada.

1
Department of computer Science,JNT University, Kakinada.

Abstract

 Defending sensitive data dissemination

(anonymizing) from adversary's activities like

Record, Attribute, Table linkages is an enforcing

aspect for better prospects. Existing popular

protective measures like k-anonymity and l-diversity

perform better in achieving overall data utility

maximization by reducing the information loss

incurred in the anonymizing process. Unfortunately

their strengths are confined to fixed schema data sets

with low dimensionality. Earlier two novel

anonymization methods such as approximate nearest-

neighbor (NN) search using locality-sensitive hashing

(LSH) and data transformation techniques like

reduced band matrix , gray encoded sorting are used

to parse high-dimensional spaces. The random

projection feature of LSH is a computation overhead.

So we propose to replace the former method with a

variant of a k-d Tree (Spill tree) that uses an

overlapping splitting area to find nearest-

neighbor(NN). NN-search using Spill trees has

significant performance boost with superior data

utility and best execution time. We show

experimentally by using both real data sets (from

UCI and KDD repositories) and also synthetic data

sets designed to exercise the algorithms in various

ways.

1. INTRODUCTION

Privacy preserving has received

considerable attention from the database community

in the past few years. Existing privacy-preserving

techniques focus on anonymizing personal data,

which have a fixed schema with a small number of

dimensions. Through generalization or suppression,

existing methods prevent attackers from re-

identifying individual records. Generalization is a

popular method of thwarting linking attacks. It works

by replacing quasi identifier(QI)-values in the

microdata with fuzzier forms. let T be a table

containing sensitive information. The objective is to

release a modified version of T such that modified

versions forbids adversaries from inferring the

sensitive data of T confidently then table T is often

called microdata.

 A microdata relation can be generalized in

numerous ways. generalization needs to be guided by

an anonymization principle, which is a criterion

deciding whether a table has been adequately

anonymized. Most notable principles include k-

anonymity , l-diversity. Existing principles work for a

single sensitive attribute, whereas we need to

consider a larger number of sensitive items.

 Later nearest neighbor (NN) search and

data transformation techniques are applied for

anonymizing sensitive information. NN search is

based on locality sensitive hashing which

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

1www.ijert.org

outperforms in terms of data utility, but incurs

slightly higher computational overhead.

 In this paper, we replace the existing method

with K-D tree variant is implemented which performs

nearest neighbor search. Significant efficiency

improvement has been observed comparing to LSH

(localify sensitive hashing), the state of art

approximate k-NN algorithm.

2. RELATED WORK

k-anonymity prevents re-identification of

individual records, but it is vulnerable to

homogeneity attacks, where many of the records in an

anonymized group share the same sensitive attribute

(SA) value. l-diversity addresses this vulnerability,

and creates anonymized groups in which at least SA

values are well-represented. Any k-anonymity

technique can be adapted for l-diversity; however,

this approach typically causes high information loss.

A framework is proposed based on dimensionality

mapping, which can be tailored for k-anonymity and

l-diversity, and outperforms other generalization

techniques. However, dimensionality mapping is only

effective for low-dimensional QIDs, hence the

method is not suitable for transactional data.

Furthermore, existing l-diversity methods work for a

single sensitive attribute, whereas in our problem, we

need to consider a larger number of sensitive items.

External knowledge is available to an adversary, in

the form of logical constraints on data records.

However, the solution proposed targets relational

(i.e., low-dimensional) data.

Locality-sensitive hashing (LSH) which

represents documents as bit-signatures, such that two

similar documents are likely to have similar

signatures. A sort-based sliding window algorithm on

permutations of bit signatures is used to extract

similar pairs. LSH provides a tradeoff between

effciency and effectiveness by usercontrolled

parameters, and can be straightforwardly parallelized

since multiple randomizations run independently.

weakness of LSH approaches in general is that they

present a bewildering number of parameters that need

to be set, and provide little guidance for an

application developer approaching new problems and

causes overheads.

3. INTRODUCTION TO KD-TREE

A kd-tree is a data structure for storing a

finite set of points from a k-dimensional space. A kd-

tree is a binary tree. The exemplar set E is

represented by the set of nodes in the kd-tree, each

node representing one exemplar. The dom-elt field

represents the domain vector of the exemplar and

the range-elt field represents the range vector. The

dom-elt component is the index for the node. It splits

the space into two subspaces according to the

splitting hyperplane of the node. All the points in the

left-subspace are represented by the left subtree and

the points in the right-subspace by the right subtree.

The splitting hyperplane is a plane which passes

through dom-elt and which is perpendicular to the

direction specified by the split field. Let i be the

value of the split field. Then a point is to the left of

dom-elt if and only if its ith component is less than

the ith component of dom-elt. The complimentary

definition holds for the right field. If a node has no

children, then the splitting hyperplane is not required.

Given an exemplar set E, a kd-tree can be

constructed by the algorithm. The pivot choosing

procedure of Step 2 inspects the set and chooses a

good domain vector from this set to use as the trees

Table 1: The fields of a kd-tree node

root. The discussion of how such a root is chosen.

Whichever exemplar is chosen as root will not affect

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

2www.ijert.org

the correctness of the kd-tree though the trees

maximum depth and the shape of the hyperregions

will be affected.

4. NEAREST NEIGHBOR SEARCH

A first approximation is initially found at the

leaf node which contains the target point. The target

point is marked X and the leaf node of the region

containing the target is coloured black. As is

exemplified in this case, this first approximation is

not necessarily the nearest neighbour but at least we

know any potential nearer neighbour must lie closer

and so must lie within the circle centred on X and

passing through the leaf node.

Figure 1 :The black dot is the dot which owns the leaf node

containing the target (the cross). Any nearer neighbour must lie

inside this circle.

We now back up to the parent of the current

node. The parent is the black node, We compute

whether it is possible for a closer solution to that so

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

3www.ijert.org

Nearest Neighbor Algorithm in KD-tree.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

4www.ijert.org

far found to exist in this parents other child. Here it is

not possible because the circle does not intersect with

the shaded space occupied by the parents other child.

If no closer neighbour can exist in the other child, the

algorithm can immediately move up a further level

else it must recursively explore the other child.

In this example, the next parent which is

checked will need to be explored, because the area it

covers i.e.,everywhere north of the central horizontal

line does intersect with the best circle so far. The

search will only take place within those portions of

the kd –tree which lie both in the hyper rectangle, and

within the maximum distance to the target. The caller

of the routine will generally specify the in_nite

hyperrectangle which covers the whole of Domain,

and the infinite maximum distance.

The search is depth first and uses the heuristic of

searching first the child node which contains the

target. Step 1 deals with the trivial empty tree case,

and Steps 2 and 3 assign two important local

variables. Step 4 cuts the current hyperrectangle into

the two hyperrectangles covering the space occupied

by the child nodes. Steps 5-7 determine which child

contains the target. After Step 8, when this initial

child is searched, it may be possible to prove that

there cannot be any closer point in the hyperrectangle

of the further child. In particular, the point at the

current node must be out of range. The test is made in

Steps 9 and 10. Step 9 restricts the maximum radius

in which any possible closer point could lie, and then

the test in Step 10 checks whether there is anyspace

in the hyperrectangle of the further child which lies

within this radius. If it is not possible then no further

search is necessary. If it is possible, then Step 10.1

checks if the point associated with the current node

of the tree is closer than the closest yet. Then, in Step

10.2 the further child is recursively searched. The

maximum distance worth examining in this further

search is the distance to the closest point yet

discovered.

The proof that this will find the nearest neighbour

within the constraints is by induction on thesize of

the kd-tree. If the cutoff were not made in Step 10

then the proof would be straightforward: the point

returned is the closest out of (i) the closest point in

the nearer child. (ii) the point at the current node and

(iii) the closest point in the further child. If the cutoff

were made in Step 10, then the point returned is the

closest point in the nearest child, and we can show

that neither the current point, nor any point in the

further child can possibly be closer.

5. PERFORMANCE

The kNN algorithms we consider include an

approximation parameter, which affects their

accuracy. the kd-trees include an approximation

factor ǫ, and the LSH structure includes a success

probability ps. For spill-trees, we can vary the spill

buffer size τ as well as the threshold tm that

determines whether each node is a spill node or a

metric node. We analyze the performance of the kNN

algorithms on the given dataset as we vary these

parameters.

Figure2: Detection rate vs query time

The salient keypoint match detection rate for the

three static kNN algorithms (because there are two

parameters to vary in the case of spill-trees, we select

a few key performance points in order to avoid

cluttering the figure). Here, we see that the

algorithms are able to achieve a maximum accuracy

of around 55%, though kd-trees are able to do so

almost an order of magnitude faster than LSH, which

is itself almost an order of magnitude faster than

spill-trees.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

5www.ijert.org

Figure 3 :Memory vs build time

While the query times are generally similar, when we

additionally consider memory usage and data

structure build times (Figure 2c) we can see that the

kd-tree structure significantly outperforms both LSH

and spill-trees and is therefore the method of choice

for our application. Additionally, memory and build

time are constant for the kd-tree, as the

approximation parameter ǫ affects only the search

algorithm, not the data structure.

6. CONCLUSION

In existing system, the problem of

anonymizing sparse, highdimensional transactional

data is solved through methods based on (i) local

NN-search and (ii) global data reorganization. To

handle well high data dimensionality, LSH-based

anonymization outperforms in terms of data utility,

but incurs slightly higher computational overhead. In

this paper, KD-tree is proposed to replace the existing

technique(LSH). kd-tree-based structures have the

best performance in terms of accuracy, query time,

build time, and memory usage. The primary

contribution of this paper is demonstrating that

building a NN search structure can be fruitfully

viewed. A kd-tree is a data structure for storing a

finite set of points from a k-dimensional space. A kd-

tree is a binary tree. In KD-tree, search is depth first

and uses the heuristic of searching first the child node

which contains the target.

7. REFERENCES

[1] A.Andoni and P. Indyk. Near-optimal hashing algorithms for

approximate nearest neighbor in high dimensions. ommunications

of the ACM, 51(1):117–122, January 2008.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A.

Y. Wu. An optimal algorithm for approximate nearest neighbor

searching in fixed dimensions. Journal of the ACM, 45: 891–923,

1998.

[3] G. Ghinita, Y. Tao, and P. Kalnis, “On the Anonymization of

Sparse, High-Dimensional Data,” in Proc. of ICDE, 2008, pp.

715–724.

[4] R. Agrawal and R. Srikant, “Privacy Preserving Data Mining,”

in Proc. of ACM SIGMOD, 2000, pp. 439–450.

[5] Mayur Datar, Nicole Immorlica, Piotr Indyk_,” Locality-

Sensitive Hashing Scheme Based on p-Stable Distributions”.

[6] Piotr IndykA,”pproximate Proximity Problems

in High Dimensions via Locality-Sensitive Hashing”, Helsinki,

May 2007

[7] Lawrence Cayton, Sanjoy Dasgupta,”A Learning Framework

for Nearest Neighbor Search”.

[8] G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis, “Fast Data

Anonymization with Low Information Loss,” in Proc. of VLDB,

2007, pp.

758–769.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

6www.ijert.org

