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Abstract 

 Defending sensitive data dissemination 

(anonymizing) from adversary's activities like 

Record, Attribute, Table linkages is an enforcing 

aspect for better prospects. Existing popular 

protective measures like k-anonymity and l-diversity 

perform better in achieving overall data utility 

maximization by reducing the information loss 

incurred in the anonymizing process. Unfortunately 

their strengths are confined to fixed schema data sets 

with low dimensionality. Earlier two novel 

anonymization methods such as approximate nearest-

neighbor (NN) search using locality-sensitive hashing 

(LSH) and data transformation techniques like 

reduced band matrix , gray encoded sorting are used 

to parse high-dimensional spaces. The random 

projection feature of LSH is a computation overhead. 

So we propose to replace the former method with a 

variant of a k-d Tree (Spill tree) that uses an 

overlapping splitting area to find nearest-

neighbor(NN). NN-search using Spill trees has 

significant performance boost with superior data 

utility and best execution time. We show 

experimentally by using both real data sets (from 

UCI and KDD repositories) and also synthetic data 

sets designed to exercise the algorithms in various 

ways. 

 

 

1.  INTRODUCTION 

Privacy preserving has received 

considerable attention from the database community 

in the past few years. Existing privacy-preserving 

techniques focus on anonymizing personal data, 

which have a fixed schema with a small number of 

dimensions. Through generalization or suppression, 

existing methods prevent attackers from re-

identifying individual records. Generalization is a 

popular method of thwarting linking attacks. It works 

by replacing quasi identifier(QI)-values in the 

microdata with fuzzier forms. let T be a table 

containing sensitive information. The objective is to 

release a modified version  of T such that modified 

versions forbids adversaries from inferring the 

sensitive data of T confidently then table T is often 

called microdata. 

 A microdata relation can be generalized in 

numerous ways. generalization needs to be guided by 

an anonymization principle, which is a criterion 

deciding whether a table has been adequately 

anonymized. Most notable principles include k-

anonymity , l-diversity. Existing principles work for a 

single sensitive attribute, whereas we need to 

consider a larger number of sensitive items. 

 Later nearest neighbor (NN) search  and 

data transformation techniques are applied for 

anonymizing sensitive information.  NN search is 

based on locality sensitive hashing which 
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outperforms in terms of data utility, but incurs 

slightly higher computational overhead. 

 In this paper, we replace the existing method 

with K-D tree variant is implemented which performs 

nearest neighbor search. Significant efficiency 

improvement has been observed comparing to LSH 

(localify sensitive hashing), the state of art 

approximate k-NN algorithm. 

 

2.  RELATED WORK 

k-anonymity prevents re-identification of 

individual records, but it is vulnerable to 

homogeneity attacks, where many of the records in an 

anonymized group share the same sensitive attribute 

(SA) value. l-diversity addresses this vulnerability, 

and creates anonymized groups in which at least SA 

values are well-represented. Any k-anonymity  

technique can be adapted for l-diversity; however, 

this approach typically causes high information loss. 

A framework is proposed based on dimensionality 

mapping, which can be tailored for k-anonymity and 

l-diversity, and outperforms other generalization 

techniques. However, dimensionality mapping is only 

effective for low-dimensional QIDs, hence the 

method is not suitable for transactional data. 

Furthermore, existing l-diversity methods work for a 

single sensitive attribute, whereas in our problem, we 

need to consider a larger number of sensitive items. 

External knowledge is available to an adversary, in 

the form of logical constraints on data records. 

However, the solution proposed targets relational 

(i.e., low-dimensional) data. 

Locality-sensitive hashing (LSH) which 

represents documents as bit-signatures, such that two 

similar documents are likely to have similar 

signatures. A sort-based sliding window algorithm on 

permutations of bit signatures is used to extract 

similar pairs. LSH provides a tradeoff between 

effciency and effectiveness by usercontrolled 

parameters, and can be straightforwardly parallelized 

since multiple randomizations run independently. 

weakness of LSH approaches in general is that they 

present a bewildering number of parameters that need 

to be set, and provide little guidance for an 

application developer approaching new problems and 

causes overheads. 

 

3. INTRODUCTION TO KD-TREE 

 

A kd-tree is a data structure for storing a 

finite set of points from a k-dimensional space. A kd-

tree is a binary tree. The exemplar set E is 

represented by the set of nodes in the kd-tree, each 

node representing one exemplar. The dom-elt field 

represents the domain vector of the exemplar and 

the range-elt field represents the range vector. The 

dom-elt component is the index for the node. It splits 

the space into two subspaces according to the 

splitting hyperplane of the node. All the points in the 

left-subspace are represented by the left subtree and 

the points in the right-subspace by the right subtree. 

The splitting hyperplane is a plane which passes 

through dom-elt and which is perpendicular to the 

direction specified by the split field. Let i be the 

value of the split field. Then a point is to the left of 

dom-elt if and only if its ith component is less than 

the ith component of dom-elt. The complimentary 

definition holds for the right field. If a node has no 

children, then the splitting hyperplane is not required.  

Given an exemplar set E, a kd-tree can be 

constructed by the algorithm. The pivot choosing 

procedure of Step 2 inspects the set and chooses a 

good domain vector from this set to use as the trees 

 

Table  1:  The fields of a kd-tree node 

 

root. The discussion of how such a root is chosen. 

Whichever exemplar is chosen as root will not affect 
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the correctness of the kd-tree though the trees 

maximum depth and the shape of the hyperregions 

will be affected. 

 

4. NEAREST NEIGHBOR SEARCH 

A first approximation is initially found at the 

leaf node which contains the target point. The target 

point is marked X and the leaf node of the region 

containing the target is coloured black.  As is 

exemplified in this case, this first approximation is 

not necessarily the nearest neighbour but at least we 

know any potential nearer neighbour must lie closer 

and so must lie within the circle centred on X and 

passing through the leaf node.    

 

 

Figure 1 :The black dot is the dot which owns the leaf node 

containing the target (the cross). Any nearer neighbour must lie 

inside this circle. 

We now back up to the parent of the current 

node. The parent is the black node, We compute 

whether it is possible for a closer solution to that so 
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Nearest Neighbor Algorithm in KD-tree. 
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far found to exist in this parents other child. Here it is 

not possible because the circle does not intersect with 

the shaded space occupied by the parents other child.  

If no closer neighbour can exist in the other child, the 

algorithm can immediately move up a further level 

else it must recursively explore the other child.  

In this example, the next parent which is 

checked will need to be explored, because the area it 

covers i.e.,everywhere north of the central horizontal 

line does intersect with the best circle so far. The 

search will only take place within those portions of 

the kd –tree which lie both in the hyper rectangle, and 

within the maximum distance to the target. The caller 

of the routine will generally specify the in_nite 

hyperrectangle which covers the whole of Domain, 

and the infinite maximum distance. 

The search is depth first and uses the heuristic of 

searching first the child node which contains the 

target. Step 1 deals with the trivial empty tree case, 

and Steps 2 and 3 assign two important local 

variables. Step 4 cuts the current hyperrectangle into 

the two hyperrectangles covering the space occupied 

by the child nodes. Steps 5-7 determine which child 

contains the target. After Step 8, when this initial 

child is searched, it may be possible to prove that 

there cannot be any closer point in the hyperrectangle 

of the further child. In particular, the point at the 

current node must be out of range. The test is made in 

Steps 9 and 10. Step 9 restricts the maximum radius 

in which any possible closer point could lie, and then 

the test in Step 10 checks whether there is anyspace 

in the hyperrectangle of the further child which lies 

within this radius. If it is not possible then no further 

search is necessary. If it is possible, then Step 10.1 

checks if the point associated with the  current node 

of the tree is closer than the closest yet. Then, in Step 

10.2 the further child is recursively searched. The 

maximum distance worth examining in this further 

search is the distance to the closest point yet 

discovered. 

The proof that this will find the nearest  neighbour 

within the constraints is by induction on thesize of 

the kd-tree. If the cutoff were not made in Step 10 

then the proof would be straightforward: the point 

returned is the closest out of (i) the closest point in 

the nearer child. (ii) the point at the current node and 

(iii) the closest point in the further child. If the cutoff 

were made in Step 10, then the point returned is the 

closest point in the nearest child, and we can show 

that neither the current point, nor any point in the 

further child can possibly be closer. 

 

5. PERFORMANCE 

The kNN algorithms we consider include an 

approximation parameter, which affects their 

accuracy. the kd-trees include an approximation 

factor ǫ, and the LSH structure includes a success 

probability ps. For spill-trees, we can vary the spill 

buffer size τ as well as the threshold tm that 

determines whether each node is a spill node or a 

metric node. We analyze the performance of the kNN 

algorithms on the given dataset as we vary these 

parameters.  

 

Figure2: Detection rate vs query time 

The salient keypoint match detection rate for the 

three static kNN algorithms (because there are two 

parameters to vary in the case of spill-trees, we select 

a few key performance points in order to avoid 

cluttering the figure). Here, we see that the 

algorithms are able to achieve a maximum accuracy 

of around 55%, though kd-trees are able to do so 

almost an order of magnitude faster than LSH, which 

is itself almost an order of magnitude faster than 

spill-trees. 
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Figure 3 :Memory vs build time 

While the query times are generally similar, when we 

additionally consider memory usage and data 

structure build times (Figure 2c) we can see that the 

kd-tree structure significantly outperforms both LSH 

and spill-trees and is therefore the method of choice 

for our application. Additionally, memory and build 

time are constant for the kd-tree, as the 

approximation parameter ǫ affects only the search 

algorithm, not the data structure. 

 

6. CONCLUSION 

In existing system, the problem of 

anonymizing sparse, highdimensional transactional 

data is solved through methods based on (i) local 

NN-search and (ii) global data reorganization. To 

handle well high data dimensionality, LSH-based 

anonymization outperforms  in terms of data utility, 

but incurs slightly higher computational overhead. In 

this paper, KD-tree is proposed to replace the existing 

technique(LSH). kd-tree-based structures have the 

best performance in terms of accuracy, query time, 

build time, and memory usage. The primary 

contribution of this paper is demonstrating that 

building a NN search structure can be fruitfully 

viewed. A kd-tree is a data structure for storing a 

finite set of points from a k-dimensional space. A kd-

tree is a binary tree. In KD-tree, search is depth first 

and uses the heuristic of searching first the child node 

which contains the target. 
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