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Abstract— Now-a-days, we have experienced a wave of 

DDoS attacks threatening the welfare of the internet. 

These are attacks presenting an increasing threat to the 

global inter-networking infrastructure. While TCP’s 

congestion control algorithm is highly robust to diverse 

network conditions, its implicit assumption of end-system 

cooperation results in a well-known vulnerability to 

attack by high-rate non-responsive flows. To defend 

against distributed denial of service (DDoS) attacks, one 

critical issue is to effectively isolate the attack traffic from 

the normal ones. A novel DDoS defense scheme based on 

TCP is hereby contrived because TCP is the dominant 

traffic for both the normal and lethal flows in the 

Internet. Unlike most of the previous DDoS defense 

schemes that are passive in nature, the proposal uses 

proactive tests to identify and isolate the malicious traffic. 

Simulation results validate the effectiveness of our 

proposed scheme. 

 

Keywords: DDoS defense, proactive test, TCP. Denial of 

service,  retransmission timeout, TCP. 

 

 

1. INTRODUCTION 

 

Distributed denial of service (DDoS) attacks are probably the 

most ferocious threats to the integrity of the Internet. It is 

well known that it is rather easy to launch, but difficult to 

defend against, a DDoS attack. The underlying reasons 

include (1) IP spoofing; (2) the distributed nature of the 

DDoS attack (a huge number of sources generate attack 

traffic simultaneously); (3) no simple mechanism for the 

victim to distinguish the normal packets from the lethal 

traffic. 

Consider the following two scenarios. 1) The high 

rate traffic is legitimate while the attack traffic is low-rate. 

Rate-limiting is improper in this case. 2) Most flows carry 

attack traffic during a flood-based DDoS attack while good 

traffic is low-rate. Under this scenario, even imposing fair 

sharing of bandwidth does not help the good traffic much 

because the majority of bandwidth is consumed by malicious 

flows[1]. To ensure good performance and accommodate as 

many normal users as possible, it is critical to differentiate 

traffic. However, it is by no means trivial to make such a 

distinction. Discrimination based on packet headers is 

vulnerable to IP spoofing; discrimination based on packet 

contents may be thwarted by the increasing use of end-to-end 

encryption. 

We hereby propose to identify malicious traffic from 

their behaviors. We believe that aggressiveness is the salient 

feature of DDoS traffic, besides IP spoofing. One example of 

the aggressive behavior is that an attack source may not care 

about whether it may receive the response from the victim or 

not, and it can still conduct an attack by bombarding its target 

with a monstrous number of useless packets. Note that 

”aggressiveness” is not equivalent to ”high-rate”. It is 

possible that a high-rate flow is a normal TCP stream.[2] The 

receiver may identify the aggressive behavior by intentionally 

testing the response of a source upon certain control signals 

from the receiver. Any source that fails to pass such tests is 

regarded as a lethal one and can be punished accordingly. 

However, a source, which passes the test, may not be 

necessarily benign. 

 A sophisticated attacker may pass the test by 

behaving well initially, and perform deleterious operations 

later. To handle this case, the receiver may increase the 

frequency of such tests. A better solution is to introduce some 

dynamics into the test and randomly determine the frequency 

of the test for each flow, especially the high-rate ones. To 

accommodate high-rate legitimate traffic better, we set a 

threshold that defines the maximal number of successful tests 

for a flow. No more tests are conducted on packets from a 

flow once the flow successfully passes the specified number 

of tests. By actively testing a source, the receiver can 

determine with high confidence the nature of a flow from that 

source and react accordingly. Filtering based on behavior 

brings an attack source into a dilemma: sends packet 

aggressively at the risk of being identified and punished, or 

reduce the attack rate to meet the requirements of the receiver 

so that the effect of an attack is diminished. In so doing, the 

receiver may throttle the scope and impact of potential 

attacks. 

The above design is feasible for TCP solely because 

TCP has the built-in congestion control and reliable 

transmission mechanism. Note that TCP is the dominant 

traffic in the Internet, and as much as 90% of DDoS traffic 

uses TCP. Currently, TCP occupies 80% in terms of the 

number of flows, and 90% with respect to the number of 

packets. It is thus essential for DDoS defense schemes to 

accommodate TCP traffic effectively and efficiently[2]. 
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II. LOW-RATE TCP-TARGETED DENIAL OF SERVICE 

ATTACKS 

 

                  Denial of service (DoS) attacks consume 

resources in networks, server clusters, or end hosts, with the 

malicious objective of preventing or severely degrading 

service to legitimate users. Resources that are typically 

consumed in such attacks include network bandwidth, server 

or router CPU cycles, server interrupt processing capacity, 

and specific protocol data structures. Example DoS attacks 

include TCP SYN attacks that consume protocol data 

structures on the server operating system; ICMP directed 

broadcasts that direct a broadcast address to   send  a   flood   

of   ICMP  replies  to   target host thereby overwhelming it; 

and DNS flood 

attacks that use specific weaknesses in DNS protocols to 

generate high volumes of traffic directed at a targeted victim. 

Common to the above attacks is a large number of 

compromised machines or agents involved in the attack and a 

“sledgehammer” approach of high-rate transmission of 

packets toward the attacked node. While potentially quite 

harmful, the high-rate nature of such attacks presents a 

statistical anomaly to network monitors such that the attack 

can potentially be detected, the attacker identified, and the 

effects of the attack mitigated. 

TCP congestion control operates on two time-scales. 

On smaller time-scales of round trip times (RTT), typically 

tens to hundreds of milliseconds, TCP performs additive-

increase multiplicative-decrease (AIMD) control with the 

objective of having each flow transmit at the fair rate of its 

bottleneck link. At times of severe congestion in which 

multiple losses occur, TCP operates on longer time-scales of 

retransmission time out (RTO).In an attempt to avoid 

congestion collapse, flows reduce their congestion window to 

one packet and wait for a period of RTO after which the 

packet is resent. Upon further loss, RTO doubles with each 

subsequent timeout. If a packet is 

successfully received, TCP re-enters AIMD via slow start[3]. 

To explore low-rate DoS, we take a frequency-domain 

perspective and consider periodic on-off “square-wave” 

shrew attacks that consist of short, maliciously-chosen-

duration bursts 

that repeat with a fixed, maliciously chosen, slow-time-scale 

frequency. Considering first a single TCP flow, if the total 

traffic (DoS and TCP traffic) during an RTT-time-scale burst 

is sufficient to induce enough packet losses, the TCP flow 

will enter a timeout and attempt to send a new packet RTO 

seconds later. 

If the period of the DoS flow approximates the RTO 

of the TCP flow, the TCP flow will continually incur loss as 

it tries to exit the timeout state, fail to exit timeout, and obtain 

near zero throughput. Moreover, if the DoS period is near but 

outside the RTO range, significant, but not complete 

throughput degradation will occur. Hence the foundation of 

the shrew attack is a null frequency at the relatively slow 

time-scale of approximately RTO enabling a low average rate 

attack that is difficult to detect. In a simplified model with 

heterogeneous-RTT aggregated flows sharing a bottleneck 

link, we derive an expression for the throughput of the 

attacked flows as a function of the time-scale of the DoS 

flow, and hence of the DoS flow’s average rate.  

 

III. DEFENDING AGAINST A DENIAL-OF-SERVICE 

ATTACK ON TCP 

 

The Internet has undergone a phenomenal growth in 

the recent past. However, during this period the 

vulnerabilities found in the TCP/IP protocol suite have been 

subjected to significant revelation as well. Particularly, the 

details of a simple denial-of-service attack popularly known 

as “SYNflooding” were published in two underground 

magazines and this attack still continues to pose a serious 

threat against the availability of TCP services. The SYN-

flooding attack exploits a common TCP implementation issue 

and a well-known authentication weakness found in IP[5], 

which do not seem correctable in the near future since they 

require the modification of the standards. 

Preventive approaches such access control, are not 

applicable to SYN flooding attacks since the general target is 

public services. Network monitors are known to be able to 

detect such low-level network based attacks. 

The Internet is a worldwide network that uses the 

TCP/IP (Transmission Control Protocol/Internet Protocol) 

protocol suite for communications. IP is the standard internet 

layer protocol of TCP/IP, which provides for transmitting 

blocks of data called data grams from sources to destinations, 

where sources and destinations are hosts identified by fixed 

length addresses. IP is a connectionless protocol. Therefore, 

IP data grams may get delivered out of order and there is no 

guarantee that a datagram successfully gets its destination. IP 

does not either provide address authentication. Actually, any 

host can send data grams with any source IP address. Therein 

lies most of the threat against the integrity, secrecy and 

availability of today’s Internet assets.                          

   TCP is the connection oriented transport layer 

protocol of the   TCP/IP    suite,   designed   to 

 provide a reliable logical circuit between pairs of 

applications in hosts attached to the Internet. TCP assumes 

that it can obtain an unreliable datagram service from lower 

level protocols. In the Internet, this service is provided by IP. 

The primary purpose of TCP is to provide a reliable 

connection service on top of a less reliable internet 

communication system. For this, TCP supports facilities in 

the following areas: reliability, flow control, multiplexing and 

connections. 

In order to support reliability and flow control, TCP 

initializes and maintains certain status information for each 

data stream. The combination of this information including 

sockets, sequence numbers, and window sizes, is called a 

connection. A pair of socket (4 tuple consisting of the client 

IP 

address, client port number, server IP address and server port 

number) specifies the two end points that uniquely identifies 

each TCP connection in the Internet. A TCP packet is called a 

“segment”.       

For a connection to be established, the two TCPs 

must synchronize on each other’s sequence numbers. This is 

done by exchanging connection establishing segments 

carrying a SYN control bit and initial sequence numbers 
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(ISNs). The synchronization requires each side to send it's 

own ISN and to receive an acknowledgment of it from the 

other side[3]. Each side must also receive the other side's ISN 

and send an acknowledgment (ACK).This is illustrated in 

Figure 1. 

 

   Figure 1:TCP 3-way HandShake 

 

A three-way handshake is necessary because the client and 

server sequence numbers are not tied to a global clock in the 

network, and TCPs may have different mechanisms for 

picking ISNs. 

The server which receives the first SYN has no way 

of knowing whether the segment is an old delayed or not, and 

thus it must ask the sender to verify this SYN. TCP servers 

are concurrent. A TCP server starts a new process to handle 

each client therefore the listening server is always ready to 

handle the next coming connection request. However, there is 

still a chance that multiple connection requests arrive while 

the server starts a new process. In order to handle these 

incoming connection requests while the listening application 

is busy TCP employs a fixed length queue for the connections 

that have not 

been accepted by the server application. This is referred to as 

the “backlog queue”. However, there is an upper limit to the 

number of connection requests waiting in this queue. This 

limit is specified by the listening application by calling the 

listen() system call. 

When a new connection request arrives (i.e., a SYN 

segment), TCP acknowledges this if there is room for this 

new connection on the requested service's queue. However it 

should be noted that the server application will not see these 

new connection until the third segment of the 3-way 

handshake is received. If there is no room on the requested 

service's queue, TCP ignores the received SYN packet. By 

ignoring the SYN packet the server forces the client to 

retransmit the SYN later, hoping that the queue will then 

have room. The SYN-Flooding attack exploits both this 

design and the authentication weakness in IP. The attacker 

generates several SYN segments with invalid source IP 

addresses to a target TCP server. Since the source hosts are 

non-existing or closed, the 3-way handshake for these 

connections will never complete or be broken (a valid source 

host would certainly reset such an unreferenced connection 

by sending a RST segment), resulting in several half-open 

connections filling up the server's backlog queue. Then, the 

target service becomes unavailable (interrupted) until a 

connection establishment timer expires.  

Denial-of-service attacks consume the resources of a 

remote host or network that would otherwise be used for 

serving legitimate users. There are two principal classes of 

attacks: logic 

attacks and flooding attacks. Attacks in the first class, such as 

the “Ping-of-Death”, exploit existing software flaws to cause 

remote servers to crash or substantially degrade in 

performance. Many of these attacks can be prevented by 

either upgrading faulty software or filtering particular packet 

sequences, but they remain a serious and ongoing threat. The 

second class, flooding attacks, overwhelm the victim’s CPU, 

memory, or network resources by sending large numbers of 

spurious requests. Because there is typically no simple way to 

distinguish the “good” requests from the “bad”, it can be 

extremely difficult to defend against flooding attacks. 

 

 
Table 1: A sample of victim responses to typical attacks. 

 

TCP FLOW DIFFERENTIATION 
A. Connection Establishment 

Whether a connection has been established has a significant 

implication to the receiver. A successfully established 

connection indicates that both ends have completed the three-

way handshaking procedure, which implies that IP spoofing 

is not employed by the source. For an incomplete connection, 

on the other hand, the receiver shall be alert, and be 

conservative in its resource consumption. Possible measures 

to mitigate potential attacks include (1) tightening the total 

bandwidth allocated to all incomplete connections, and (2) 

significantly reducing the timeout value to avoid buffer 

occupied by half open connections for a long time, or no 

buffer allocation at all for half-open connections. 
B. Benign and Malicious Flows 

 TCP is an end-to-end solution that requires close 

orchestration between the sender and the receiver. To 

characterize the nature of a TCP flow (after a successful 

connection), the receiver can actively test the response of the 

sender by delaying the ACK packets intentionally. If the 

sender is normal, it will take action accordingly and reduce 

its sending rate. On the contrary, for a DDoS attack, two 

cases may occur. One is that the sender uses forged source IP 

addresses, and thus cannot receive the rate-reduction message 

from the receiver. It has no idea of the proper sending rate. 

 The other scenario is that the sender does receive 

the notification, but it neglects it and just keeps sending 
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packets, thus violating the protocol, and it may be punished 

by the recipient to reduce its share or even block its traffic. 

This procedure is dynamic.  

The protected site can decide the frequency and 

extent of rate reduction so that no perpetrator can easily fool 

the system to believe that the traffic from the perpetrator is 

normal. Fig. 1 depicts the flowchart of the traffic 

differentiation procedure. 

Upon the arrival of a new incoming packet, the 

receiver first determines to which flow the current packet 

belongs by checking the tuple of (source IP address, source 

port number, destination IP address, destination port number). 

If it is the first packet of a flow, the receiver examines 

whether the 

number of admitted flows reaches the maximum flow count, 

a threshold set by the receiver to ensure proper provisioning 

of quality of service.  

If this does occur, the packet is dropped. Otherwise, 

the new packet is admitted after updating the flow table 

maintained by the receiver, resulting in an increment of the 

flow count by 1, and initialization of several counters, such as 

the number of successful tests and the number of failure tests. 

 The receiver then checks the behavior history of the 

flow. If the number of failure tests is no less than a threshold, 

f, the packet will be dropped. An integer larger than 1 is 

selected to prevent our scheme from falsely identifying the 

behavior of a flow. 

 A low value of f may exacerbate packet dropping. 

In case of a false identification, subsequent packets from an 

innocent flow will be blocked.The following figure shows 

that the pictorial representation of traffic differentiation. 

Through extensive simulations we found the difference 

between proper idefication rate and acceptable performance 

impact 

        

 
Figure 2. Flowchart of the traffic differentiation. 

Selecting a too high value is unwise, either. A high f 

delays the packet dropping decision, and thus subsequent 

packets of a malicious stream may still consume system 

resources. Through extensive simulations, we found that f=3 

provides a good balance between the proper identification 

rate and the acceptable performance impact.For the flow 

whose behavior is not so bad in the past, our scheme further 

examines whether the flow has passed a certain number of 

tests, h. The receiver will admit directly any packet of flows 

having passed h tests successfully (Similarly, some tradeoff 

has to be made to determine a proper value of h. We set h to 6 

by trials and errors). For other flows, we further check the 

current state of the flow. If the flow is under a test, its current 

rate shall not exceed one half of its previous one (the receiver 

enforces this constraint by manipulating the reverse ACK 

rate). If the flow conforms to that constraint, the flow passes 

the current test and its pass num is incremented by 1. 

Otherwise, the flow fails one test. In the case that the 

flow is not in the state of testing, its  sending rate is compared 

with that of the fair share of each flow. The result of the 

comparison is used to determine the test probability for that 

flow. Obviously, a flow with less bandwidth consumption is  

subject to less number of tests. The probability p for a high-

rate flow (over the fair share) is 1/(pass                                                       

num+1). At the very beginning, pass num is 0 for all flows. 

Therefore, as long as a high-rate flow has not passed a test, its 

chance of being tested is 100%. As the number of successful 

tests of a flow increases, its test probability reduces. The test 

probability p for the less resource-consumption flow is 

1/max(m, 2*h), where m is the total number of flows. For the 

normal case, m is far greater than 2h; thus, p=1/m. We use the 

max(.) function to address the case that only a few flows exist 

in the system and ensure that the test probability for a low-

rate flow is at most 1/2 of that of a high-rate one. 

 
Figure 3. Simulation setup for comparison study of    the effectiveness of 

traffic  differentiation. 

 

The rate of a flow is calculated according to the 

following formula, num pkt*sz pkt/t, where t is the time 

interval (window), num pkt the number of packets received 

during this period, and sz pkt the packet size. It is worth 

mentioning that the flow rate calculated here is not the 

average rate of a flow, as normally used by others, because 

we update the starting time of a flow once it passes a test. In 

so doing, we can effectively thwart a low-rate DoS attack 

which sends a burst of attack packets to incite congestion and 

keeps silence for a much longer period to significantly lower 

its average rate 

in order to escape detection and filtering. 

Four scenarios may happen. 1) An attack source always 

behaves well, and thus the effect of an attack is greatly 

diminished. 2) An attack source behaves well initially and 

misbehaves later. When tested, the constraint that the current 

rate is at most 1/2 of the previous rate will not be satisfied, 

and the source fails the test. 3) An attack source always 

misbehaves, that may be easily thwarted by the fail count. 4) 

An attack source misbehaves at first and behaves well later. 

In this case, the attack source is exposed to more chances of 

being tested because its 
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pass num is off-setted by the fail num once it fails a test. Note 

also that a low-rate flow is also subject to test, though at a 

lower probability in our design. As time passes by, the chance 

that a low-rate flow has never been tested by the receiver is 

very low. We enforce this policy to contain the case that 

some low-rate streams are malicious[1][5]. 

 

IV. SIMULATIONS 

To test the effectiveness of our proposed traffic 

differentiation, we set up a simulation scenario including 1 

FTP source and an attack source, as shown in Fig.3. These 

flows pass through the same bottleneck link. The difference is 

that one simulation uses a normal FTP sink to accept packets 

from both flows, and the other uses our developed TCP sink, 

called TCP smart sink. The simulation results are shown in 

Fig.4 and Fig. 5.  

 Fig. 4 shows the throughput of the attack traffic 

using the FTP sink while Fig. 5 presents the throughput of the 

attack traffic using our proposed TCP smart sink, in which 

the throughput of attack traffic drops drastically after 3.2s. 

After 42.3s, the attack traffic is totally blocked. In contrast, 

using the FTP sink as the receiver, the attacker may keep the 

highest throughput during its lifetime. The result 

demonstrates the effectiveness of our proposed traffic 

differentiation. 

 
Figure. 4. Attack traffic throughput using FTP Sink 

 Figure 5. Attack traffic throughput using TCP Smart Sink 

 

 

V. CONCLUSION 

Denial-of-service attacks remain a significant problem 

despite the widespread deployment of perimeter security 

devices such as firewalls and IDS. This paper  presented a 

novel DDoS defense scheme  The salient benefits of this 

proposal mainly lie in its capability of identifying malicious 

TCP flows by proactive tests. Preliminary simulation results 

have validated our design. 
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