

Discrimination of Malicious Ddos Attack Traffic

Flow From Normal TCP Flow

D . J . Anusha
1
, D . J . Prathyusha

2
, A . Supriya

3
,

Academic Consultant, M.Tech Student, Academic Consultant,

Department of CSE, Department of CSE, Department of CSE,

Sri Padmavati Mahila Visvavidyalayam, Sree Vidyanikethan Engineering College, Sri Padmavati Mahila Visvavidyalayam,

Tirupati. Tirupati. Tirupati.

Abstract— Now-a-days, we have experienced a wave of

DDoS attacks threatening the welfare of the internet.

These are attacks presenting an increasing threat to the

global inter-networking infrastructure. While TCP’s

congestion control algorithm is highly robust to diverse

network conditions, its implicit assumption of end-system

cooperation results in a well-known vulnerability to

attack by high-rate non-responsive flows. To defend

against distributed denial of service (DDoS) attacks, one

critical issue is to effectively isolate the attack traffic from

the normal ones. A novel DDoS defense scheme based on

TCP is hereby contrived because TCP is the dominant

traffic for both the normal and lethal flows in the

Internet. Unlike most of the previous DDoS defense

schemes that are passive in nature, the proposal uses

proactive tests to identify and isolate the malicious traffic.

Simulation results validate the effectiveness of our

proposed scheme.

Keywords: DDoS defense, proactive test, TCP. Denial of

service, retransmission timeout, TCP.

1. INTRODUCTION

Distributed denial of service (DDoS) attacks are probably the

most ferocious threats to the integrity of the Internet. It is

well known that it is rather easy to launch, but difficult to

defend against, a DDoS attack. The underlying reasons

include (1) IP spoofing; (2) the distributed nature of the

DDoS attack (a huge number of sources generate attack

traffic simultaneously); (3) no simple mechanism for the

victim to distinguish the normal packets from the lethal

traffic.

Consider the following two scenarios. 1) The high

rate traffic is legitimate while the attack traffic is low-rate.

Rate-limiting is improper in this case. 2) Most flows carry

attack traffic during a flood-based DDoS attack while good

traffic is low-rate. Under this scenario, even imposing fair

sharing of bandwidth does not help the good traffic much

because the majority of bandwidth is consumed by malicious

flows[1]. To ensure good performance and accommodate as

many normal users as possible, it is critical to differentiate

traffic. However, it is by no means trivial to make such a

distinction. Discrimination based on packet headers is

vulnerable to IP spoofing; discrimination based on packet

contents may be thwarted by the increasing use of end-to-end

encryption.

We hereby propose to identify malicious traffic from

their behaviors. We believe that aggressiveness is the salient

feature of DDoS traffic, besides IP spoofing. One example of

the aggressive behavior is that an attack source may not care

about whether it may receive the response from the victim or

not, and it can still conduct an attack by bombarding its target

with a monstrous number of useless packets. Note that

”aggressiveness” is not equivalent to ”high-rate”. It is

possible that a high-rate flow is a normal TCP stream.[2] The

receiver may identify the aggressive behavior by intentionally

testing the response of a source upon certain control signals

from the receiver. Any source that fails to pass such tests is

regarded as a lethal one and can be punished accordingly.

However, a source, which passes the test, may not be

necessarily benign.

 A sophisticated attacker may pass the test by

behaving well initially, and perform deleterious operations

later. To handle this case, the receiver may increase the

frequency of such tests. A better solution is to introduce some

dynamics into the test and randomly determine the frequency

of the test for each flow, especially the high-rate ones. To

accommodate high-rate legitimate traffic better, we set a

threshold that defines the maximal number of successful tests

for a flow. No more tests are conducted on packets from a

flow once the flow successfully passes the specified number

of tests. By actively testing a source, the receiver can

determine with high confidence the nature of a flow from that

source and react accordingly. Filtering based on behavior

brings an attack source into a dilemma: sends packet

aggressively at the risk of being identified and punished, or

reduce the attack rate to meet the requirements of the receiver

so that the effect of an attack is diminished. In so doing, the

receiver may throttle the scope and impact of potential

attacks.

The above design is feasible for TCP solely because

TCP has the built-in congestion control and reliable

transmission mechanism. Note that TCP is the dominant

traffic in the Internet, and as much as 90% of DDoS traffic

uses TCP. Currently, TCP occupies 80% in terms of the

number of flows, and 90% with respect to the number of

packets. It is thus essential for DDoS defense schemes to

accommodate TCP traffic effectively and efficiently[2].

128

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCDMA - 2014 Conference Proceedings

ISSN: 2278-0181

II. LOW-RATE TCP-TARGETED DENIAL OF SERVICE

ATTACKS

 Denial of service (DoS) attacks consume

resources in networks, server clusters, or end hosts, with the

malicious objective of preventing or severely degrading

service to legitimate users. Resources that are typically

consumed in such attacks include network bandwidth, server

or router CPU cycles, server interrupt processing capacity,

and specific protocol data structures. Example DoS attacks

include TCP SYN attacks that consume protocol data

structures on the server operating system; ICMP directed

broadcasts that direct a broadcast address to send a flood

of ICMP replies to target host thereby overwhelming it;

and DNS flood

attacks that use specific weaknesses in DNS protocols to

generate high volumes of traffic directed at a targeted victim.

Common to the above attacks is a large number of

compromised machines or agents involved in the attack and a

“sledgehammer” approach of high-rate transmission of

packets toward the attacked node. While potentially quite

harmful, the high-rate nature of such attacks presents a

statistical anomaly to network monitors such that the attack

can potentially be detected, the attacker identified, and the

effects of the attack mitigated.

TCP congestion control operates on two time-scales.

On smaller time-scales of round trip times (RTT), typically

tens to hundreds of milliseconds, TCP performs additive-

increase multiplicative-decrease (AIMD) control with the

objective of having each flow transmit at the fair rate of its

bottleneck link. At times of severe congestion in which

multiple losses occur, TCP operates on longer time-scales of

retransmission time out (RTO).In an attempt to avoid

congestion collapse, flows reduce their congestion window to

one packet and wait for a period of RTO after which the

packet is resent. Upon further loss, RTO doubles with each

subsequent timeout. If a packet is

successfully received, TCP re-enters AIMD via slow start[3].

To explore low-rate DoS, we take a frequency-domain

perspective and consider periodic on-off “square-wave”

shrew attacks that consist of short, maliciously-chosen-

duration bursts

that repeat with a fixed, maliciously chosen, slow-time-scale

frequency. Considering first a single TCP flow, if the total

traffic (DoS and TCP traffic) during an RTT-time-scale burst

is sufficient to induce enough packet losses, the TCP flow

will enter a timeout and attempt to send a new packet RTO

seconds later.

If the period of the DoS flow approximates the RTO

of the TCP flow, the TCP flow will continually incur loss as

it tries to exit the timeout state, fail to exit timeout, and obtain

near zero throughput. Moreover, if the DoS period is near but

outside the RTO range, significant, but not complete

throughput degradation will occur. Hence the foundation of

the shrew attack is a null frequency at the relatively slow

time-scale of approximately RTO enabling a low average rate

attack that is difficult to detect. In a simplified model with

heterogeneous-RTT aggregated flows sharing a bottleneck

link, we derive an expression for the throughput of the

attacked flows as a function of the time-scale of the DoS

flow, and hence of the DoS flow’s average rate.

III. DEFENDING AGAINST A DENIAL-OF-SERVICE

ATTACK ON TCP

The Internet has undergone a phenomenal growth in

the recent past. However, during this period the

vulnerabilities found in the TCP/IP protocol suite have been

subjected to significant revelation as well. Particularly, the

details of a simple denial-of-service attack popularly known

as “SYNflooding” were published in two underground

magazines and this attack still continues to pose a serious

threat against the availability of TCP services. The SYN-

flooding attack exploits a common TCP implementation issue

and a well-known authentication weakness found in IP[5],

which do not seem correctable in the near future since they

require the modification of the standards.

Preventive approaches such access control, are not

applicable to SYN flooding attacks since the general target is

public services. Network monitors are known to be able to

detect such low-level network based attacks.

The Internet is a worldwide network that uses the

TCP/IP (Transmission Control Protocol/Internet Protocol)

protocol suite for communications. IP is the standard internet

layer protocol of TCP/IP, which provides for transmitting

blocks of data called data grams from sources to destinations,

where sources and destinations are hosts identified by fixed

length addresses. IP is a connectionless protocol. Therefore,

IP data grams may get delivered out of order and there is no

guarantee that a datagram successfully gets its destination. IP

does not either provide address authentication. Actually, any

host can send data grams with any source IP address. Therein

lies most of the threat against the integrity, secrecy and

availability of today’s Internet assets.

 TCP is the connection oriented transport layer

protocol of the TCP/IP suite, designed to

 provide a reliable logical circuit between pairs of

applications in hosts attached to the Internet. TCP assumes

that it can obtain an unreliable datagram service from lower

level protocols. In the Internet, this service is provided by IP.

The primary purpose of TCP is to provide a reliable

connection service on top of a less reliable internet

communication system. For this, TCP supports facilities in

the following areas: reliability, flow control, multiplexing and

connections.

In order to support reliability and flow control, TCP

initializes and maintains certain status information for each

data stream. The combination of this information including

sockets, sequence numbers, and window sizes, is called a

connection. A pair of socket (4 tuple consisting of the client

IP

address, client port number, server IP address and server port

number) specifies the two end points that uniquely identifies

each TCP connection in the Internet. A TCP packet is called a

“segment”.

For a connection to be established, the two TCPs

must synchronize on each other’s sequence numbers. This is

done by exchanging connection establishing segments

carrying a SYN control bit and initial sequence numbers

129

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCDMA - 2014 Conference Proceedings

ISSN: 2278-0181

(ISNs). The synchronization requires each side to send it's

own ISN and to receive an acknowledgment of it from the

other side[3]. Each side must also receive the other side's ISN

and send an acknowledgment (ACK).This is illustrated in

Figure 1.

 Figure 1:TCP 3-way HandShake

A three-way handshake is necessary because the client and

server sequence numbers are not tied to a global clock in the

network, and TCPs may have different mechanisms for

picking ISNs.

The server which receives the first SYN has no way

of knowing whether the segment is an old delayed or not, and

thus it must ask the sender to verify this SYN. TCP servers

are concurrent. A TCP server starts a new process to handle

each client therefore the listening server is always ready to

handle the next coming connection request. However, there is

still a chance that multiple connection requests arrive while

the server starts a new process. In order to handle these

incoming connection requests while the listening application

is busy TCP employs a fixed length queue for the connections

that have not

been accepted by the server application. This is referred to as

the “backlog queue”. However, there is an upper limit to the

number of connection requests waiting in this queue. This

limit is specified by the listening application by calling the

listen() system call.

When a new connection request arrives (i.e., a SYN

segment), TCP acknowledges this if there is room for this

new connection on the requested service's queue. However it

should be noted that the server application will not see these

new connection until the third segment of the 3-way

handshake is received. If there is no room on the requested

service's queue, TCP ignores the received SYN packet. By

ignoring the SYN packet the server forces the client to

retransmit the SYN later, hoping that the queue will then

have room. The SYN-Flooding attack exploits both this

design and the authentication weakness in IP. The attacker

generates several SYN segments with invalid source IP

addresses to a target TCP server. Since the source hosts are

non-existing or closed, the 3-way handshake for these

connections will never complete or be broken (a valid source

host would certainly reset such an unreferenced connection

by sending a RST segment), resulting in several half-open

connections filling up the server's backlog queue. Then, the

target service becomes unavailable (interrupted) until a

connection establishment timer expires.

Denial-of-service attacks consume the resources of a

remote host or network that would otherwise be used for

serving legitimate users. There are two principal classes of

attacks: logic

attacks and flooding attacks. Attacks in the first class, such as

the “Ping-of-Death”, exploit existing software flaws to cause

remote servers to crash or substantially degrade in

performance. Many of these attacks can be prevented by

either upgrading faulty software or filtering particular packet

sequences, but they remain a serious and ongoing threat. The

second class, flooding attacks, overwhelm the victim’s CPU,

memory, or network resources by sending large numbers of

spurious requests. Because there is typically no simple way to

distinguish the “good” requests from the “bad”, it can be

extremely difficult to defend against flooding attacks.

Table 1: A sample of victim responses to typical attacks.

TCP FLOW DIFFERENTIATION
A. Connection Establishment

Whether a connection has been established has a significant

implication to the receiver. A successfully established

connection indicates that both ends have completed the three-

way handshaking procedure, which implies that IP spoofing

is not employed by the source. For an incomplete connection,

on the other hand, the receiver shall be alert, and be

conservative in its resource consumption. Possible measures

to mitigate potential attacks include (1) tightening the total

bandwidth allocated to all incomplete connections, and (2)

significantly reducing the timeout value to avoid buffer

occupied by half open connections for a long time, or no

buffer allocation at all for half-open connections.
B. Benign and Malicious Flows

 TCP is an end-to-end solution that requires close

orchestration between the sender and the receiver. To

characterize the nature of a TCP flow (after a successful

connection), the receiver can actively test the response of the

sender by delaying the ACK packets intentionally. If the

sender is normal, it will take action accordingly and reduce

its sending rate. On the contrary, for a DDoS attack, two

cases may occur. One is that the sender uses forged source IP

addresses, and thus cannot receive the rate-reduction message

from the receiver. It has no idea of the proper sending rate.

 The other scenario is that the sender does receive

the notification, but it neglects it and just keeps sending

130

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCDMA - 2014 Conference Proceedings

ISSN: 2278-0181

packets, thus violating the protocol, and it may be punished

by the recipient to reduce its share or even block its traffic.

This procedure is dynamic.

The protected site can decide the frequency and

extent of rate reduction so that no perpetrator can easily fool

the system to believe that the traffic from the perpetrator is

normal. Fig. 1 depicts the flowchart of the traffic

differentiation procedure.

Upon the arrival of a new incoming packet, the

receiver first determines to which flow the current packet

belongs by checking the tuple of (source IP address, source

port number, destination IP address, destination port number).

If it is the first packet of a flow, the receiver examines

whether the

number of admitted flows reaches the maximum flow count,

a threshold set by the receiver to ensure proper provisioning

of quality of service.

If this does occur, the packet is dropped. Otherwise,

the new packet is admitted after updating the flow table

maintained by the receiver, resulting in an increment of the

flow count by 1, and initialization of several counters, such as

the number of successful tests and the number of failure tests.

 The receiver then checks the behavior history of the

flow. If the number of failure tests is no less than a threshold,

f, the packet will be dropped. An integer larger than 1 is

selected to prevent our scheme from falsely identifying the

behavior of a flow.

 A low value of f may exacerbate packet dropping.

In case of a false identification, subsequent packets from an

innocent flow will be blocked.The following figure shows

that the pictorial representation of traffic differentiation.

Through extensive simulations we found the difference

between proper idefication rate and acceptable performance

impact

Figure 2. Flowchart of the traffic differentiation.

Selecting a too high value is unwise, either. A high f

delays the packet dropping decision, and thus subsequent

packets of a malicious stream may still consume system

resources. Through extensive simulations, we found that f=3

provides a good balance between the proper identification

rate and the acceptable performance impact.For the flow

whose behavior is not so bad in the past, our scheme further

examines whether the flow has passed a certain number of

tests, h. The receiver will admit directly any packet of flows

having passed h tests successfully (Similarly, some tradeoff

has to be made to determine a proper value of h. We set h to 6

by trials and errors). For other flows, we further check the

current state of the flow. If the flow is under a test, its current

rate shall not exceed one half of its previous one (the receiver

enforces this constraint by manipulating the reverse ACK

rate). If the flow conforms to that constraint, the flow passes

the current test and its pass num is incremented by 1.

Otherwise, the flow fails one test. In the case that the

flow is not in the state of testing, its sending rate is compared

with that of the fair share of each flow. The result of the

comparison is used to determine the test probability for that

flow. Obviously, a flow with less bandwidth consumption is

subject to less number of tests. The probability p for a high-

rate flow (over the fair share) is 1/(pass

num+1). At the very beginning, pass num is 0 for all flows.

Therefore, as long as a high-rate flow has not passed a test, its

chance of being tested is 100%. As the number of successful

tests of a flow increases, its test probability reduces. The test

probability p for the less resource-consumption flow is

1/max(m, 2*h), where m is the total number of flows. For the

normal case, m is far greater than 2h; thus, p=1/m. We use the

max(.) function to address the case that only a few flows exist

in the system and ensure that the test probability for a low-

rate flow is at most 1/2 of that of a high-rate one.

Figure 3. Simulation setup for comparison study of the effectiveness of

traffic differentiation.

The rate of a flow is calculated according to the

following formula, num pkt*sz pkt/t, where t is the time

interval (window), num pkt the number of packets received

during this period, and sz pkt the packet size. It is worth

mentioning that the flow rate calculated here is not the

average rate of a flow, as normally used by others, because

we update the starting time of a flow once it passes a test. In

so doing, we can effectively thwart a low-rate DoS attack

which sends a burst of attack packets to incite congestion and

keeps silence for a much longer period to significantly lower

its average rate

in order to escape detection and filtering.

Four scenarios may happen. 1) An attack source always

behaves well, and thus the effect of an attack is greatly

diminished. 2) An attack source behaves well initially and

misbehaves later. When tested, the constraint that the current

rate is at most 1/2 of the previous rate will not be satisfied,

and the source fails the test. 3) An attack source always

misbehaves, that may be easily thwarted by the fail count. 4)

An attack source misbehaves at first and behaves well later.

In this case, the attack source is exposed to more chances of

being tested because its

131

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCDMA - 2014 Conference Proceedings

ISSN: 2278-0181

pass num is off-setted by the fail num once it fails a test. Note

also that a low-rate flow is also subject to test, though at a

lower probability in our design. As time passes by, the chance

that a low-rate flow has never been tested by the receiver is

very low. We enforce this policy to contain the case that

some low-rate streams are malicious[1][5].

IV. SIMULATIONS

To test the effectiveness of our proposed traffic

differentiation, we set up a simulation scenario including 1

FTP source and an attack source, as shown in Fig.3. These

flows pass through the same bottleneck link. The difference is

that one simulation uses a normal FTP sink to accept packets

from both flows, and the other uses our developed TCP sink,

called TCP smart sink. The simulation results are shown in

Fig.4 and Fig. 5.

 Fig. 4 shows the throughput of the attack traffic

using the FTP sink while Fig. 5 presents the throughput of the

attack traffic using our proposed TCP smart sink, in which

the throughput of attack traffic drops drastically after 3.2s.

After 42.3s, the attack traffic is totally blocked. In contrast,

using the FTP sink as the receiver, the attacker may keep the

highest throughput during its lifetime. The result

demonstrates the effectiveness of our proposed traffic

differentiation.

Figure. 4. Attack traffic throughput using FTP Sink

 Figure 5. Attack traffic throughput using TCP Smart Sink

V. CONCLUSION

Denial-of-service attacks remain a significant problem

despite the widespread deployment of perimeter security

devices such as firewalls and IDS. This paper presented a

novel DDoS defense scheme The salient benefits of this

proposal mainly lie in its capability of identifying malicious

TCP flows by proactive tests. Preliminary simulation results

have validated our design.

REFERENCES

[1] Zhiqiang Gao, Member, IEEE, and Nirwan Ansari, Senior Member, IEEE

“Differentiating Malicious DDoS Attack Traffic from Normal TCP
Flows by Proactive Tests” IEEE communication letter, Vol. 10, NO. 11,

Nov 2006 793

[2] P. Mutaf, “Defending against a denial of service attack on TCP,” in
Proc.International Symposium on Recent Advances in Intrusion

Detection (RAID 99)

[3] J. Haggerty, T. Berry, Q. Shi, and M. Merabti, “DiDDeM: a system for
early detection of TCP SYN flood attacks,” in Proc. IEEE GLOBECOM

2004, pp. 2037-2042.

[4] J. Xu and W. Lee, “Sustaining availability of Web services under
distributed denial of service attacks,” IEEE Trans. Comp., special issue

on reliable distributed systems, vol. 52, no. 2, pp. 195-208, Feb. 2003.

[5] D. Yau, J. Lui, F. Liang, and Y. Yan, “Defending against distributed
denial-of-service attacks with max-min fair server-centric router

throttles,” IEEE/ACM Trans Networking, vol. 13,

29-41, Feb. 2005.
[6] A. Kuzmanovic and E. Knightly, “Low-rate TCP-targeted denial of

service attacks (the shrew vs. the mice and elephants),” in Proc. ACM

SIGCOMM 2003, pp. 75-86.
[7] D. Moore, G. Voelker, and S. Savage, “Inferring Internet denial-of-

service

activity,” in Proc. 10th USENIX Security Symposium, pp. 9-22.
[8] M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s initial

window,” Internet RFC 2414, 1998.

[2] M. Allman and V. Paxson, “On estimating end-to-end network path
properties,” in ACM SIGCOMM, Vancouver, BC, Canada, Sep. 1999,

pp. 263–274.

[9] F. Anjum and L. Tassiulas, “Fair bandwidth sharing among adaptive and
non-adaptive flows in the Internet,” in Proc. IEEE INFOCOM, New

York, NY, Mar. 1999, pp. 1412–1420.

[10] R. L. Carter and M. E. Crovella, “Measuring bottleneck link speed in
packet-switched networks,” Perform. Eval., vol. 27, no. 28, pp. 297–318,

1996.

[11] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queueing algorithm,” J. Internetworking: Res. Exp., vol. 1, pp. 3–26,

Sep. 1990.

[12] C. Dovrolis, P. Ramanathan, and D. Moore, “What do packet dispersion
techniques measure?,” in Proc. IEEE INFOCOM, Anchorage, AK,

Apr. 2001, pp. 905–914.

132

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCDMA - 2014 Conference Proceedings

ISSN: 2278-0181

