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Abstract—the objective of this paper is to use different 

optimization strategies on multicore GPU architecture. Here for 

performance evaluation we have used parallel reduction 

algorithm. GPU on-chip shared memory is very fast than local 

and global memory. Shared memory latency is roughly 100x 

lower than non-cached global memory (make sure that there are 

no bank conflicts between the threads). We have used on chip 

shared memory for actual operations. One of the most common 

tasks in CUDA programming is to parallelize a loop using a 

kernel. To efficiently parallelize this, we need to launch enough 

threads to fully utilize the GPU. Instead of completely 

eliminating the loop when parallelizing the computation, we 

used grid-stride loop. By using grid stride loop we can process 

more data elements with limited number of threads. Grid stride 

loop provide scalability and thread reusability. A different 

strategies used to optimize parallel reduction algorithm. Here in 

this paper we tried to compare time and bandwidth of each 

version. In next each version we observed significant 

improvement. 

Keywords—GPU, CUDA, Multicore, Shared Memory, Multi 

threading, parallel reduction 

I. INTRODUCTION 

  In the past few years new multicore heterogeneous 

architectures have been introduced in high-performance 

parallel computing. Examples of such architectures include 

Graphics Processing Units (GPUs). GPUs are small devices 

with hundreds of computing cores which are designed for high 

performance computing. GPU computing is the use of a GPU 

(graphics processing unit) as a co-processor to accelerate 

CPUs for general purpose scientific and engineering 

computing. The GPU accelerates applications running on the 

CPU by offloading some of the compute intensive and time 

consuming portions of the code. The rest of the application 

still runs on the CPU.  From a user’s perspective, the 

application runs faster because it is using the massively 

parallel processing power of the GPU to boost performance. 

This is known as heterogeneous or hybrid computing 

architecture. GPUs usually contribute to the overall 

computation in two different ways: carrying out some specific 

tasks through user-designed kernels or executing some data-

parallel primitives provided by a growing number of libraries 

(e.g. CUDPP, CLPP, GPULib, Thrust…). GPU provide 

different types of memory for application. We can boost 

performance accordingly application need.  

When we implement any algorithm with GPU then it will be 

definitively faster than CPU. Here we are not compare CUP 

and GPU code, instead of that we tried to compare different 

version of GPU code only. 

 

In this paper we tried to optimize the basic parallel reduction 

algorithm using multicore heterogeneous architecture known 

as compute unified device architecture (CUDA).  

 

Summarize a set of input values into one value is called 

reduction.  For example sum of 1 to N numbers, finding MAX 

or MIN from list, average of numbers given in array. In this 

paper we take sum of 1 to N number as reduction algorithm. It 

is most important that which operator is used in parallel 

reduction. The operator used in algorithm that must be a 

binary and associate. + Operator is binary and associate. 

Algorithm will take array of N data [A [0], A [1]…A [N-1]] as 

input and will product one value as output. Here we compared 

different parallel version of code. We used five different 

strategies for optimization of parallel code.  

 

Serial version of reduction is very straight forward.  In serial 

reduction, each iteration is dependent on the previous 

iteration.  We have a serial variable named sum, we initialize 

it to zero. We then loop throughout set of elements and on 

each iteration. Add the current element to the previous sum. 

So, in the first iteration, we do this first add here, and we take 

the result on the second iteration. Do a second add here on the 

third iteration, we do a third add, and so on. So, that this adds 

operation is dependent on the previous one. So complexity of 

basic reduction is O (N).  

 

Here we used tree based structured for parallel reduction given 

in figure 1. We done like that by first computing A[0] plus 

A[1], and perhaps at the same time, computing A[2] plus A[3] 

and then add the results together. We done to do parallel 

reduce, is regrouping these operations in a different order, and 

this exposes more concurrency. We now have the ability to 

run multiple operations in parallel at the same time. In tree 

based structure, if we have N elements for reduction than N/2 

operations will do concurrently. Results of N/2 operations 

again reduce in second step so in second step N/4 operation 

will performed concurrently. So potentially, we can run this 

with parallel hardware, and it will complete faster. Parallel 

implementation time complexity is O (logN).  
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Figure: 1: Tree based version of parallel reduction. 

 

 
Main aim of this paper is to compare different parallel 

versions of reduction. We are comparing two parameters one 

is time and second is bandwidth. Performance measured on 

GforceGTX 480.   

GeForceGTX 480 having 15 Multiprocessor and each 

multiprocessor having 32 cores so total 480 Cores. 

 

II. RELATED WORK 

The kernels presented by Harris [2] are the most popular CUDA 

implementations for the reduction primitive. They are actually 

included as project examples in every CUDA SDK release. His 

document introduces seven kernels from a didactic perspective, 

in such a way that each kernel improves the performance of the 

previous one. Nevertheless, many of them require the operator to 

be commutative. 

The kernels presented by Pedro [1] are represented segmented 

version of CUDA implementations for the reduction. In this 

segmented version, the input array is divided into segments of 

consecutive data, and the output is the individual reduction of 

each segment. Thus, the output size is the number of segments 

included in the given input. Author observed that the segmented 

primitive could be easily implemented in terms of the unsegment 

primitive, by extracting each segment and reducing it, isolated 

from the global input, with unsegment primitive. 

 

The different optimization strategies used by Shane Ryoo [3]. 

For optimization author considered manage resources include the 

number of register, and amount of memory used per thread 

block.  

They also obtained increased performance by reordering access 

to on chip memory and applied classical optimizations to reduce 

the number of executed operations. They applied these strategies 

across various applications and achieved 10X to 450X speedup 

in different kernel codes. 

 

In this paper [4] author presented different CUDA architectures, 

including Fermi, and optimized a set of algorithms for each 

using widely-known optimization techniques. They used fast 

prototyping tool, for an effortless process. The result of analysis 

can guide researchers on the right path towards efficient code 

optimization. Preliminary results show that some optimizations 

recommended for older CUDA architectures may not be useful 

for the newer ones. 

 

 

 

III ARCHITECTURE OVERVIEW 
 

The CUDA (Compute Unified Device Architecture) 

programming model used in NVIDIA GPU architecture. GPU 

(Graphics Processing Unit) works as co-processor with CPU. 

Basically program execution start with CPU and computational 

intensive parts of the code execute with GPU and still rest of the 

serial code execute with CPU. In this way we can get higher 

performance of algorithms. CUDA programming model support 

different types of memories. By default when we transfer data 

from CPU to GPU it will be store in global memory. Global 

memory is off chip memory. GPU performance is influenced by 

the architectural organization of the hardware platform. NVIDIA 

suggests that achieving the highest GPU occupancy and 

optimizing the use of the memory hierarchy are the two main 

factors behind GPU performance [7]. In fact, both of them are 

related since maximizing the occupancy can help to cover 

latency during global memory loads. We present several 

experiments aimed at analysing their relative importance. Our 

results indicate that code that target efficient memory usage are 

the major determinant of actual performance. Overall, they 

ensure the best performance even if some resources remain 

unutilized. Therefore, maximizing occupancy should be 

examined at a later stage in the compilation process, once data 

related issues have been properly addressed. Figure 2 shows 

memory hierarchy of CUDA architecture. To achieve high 

bandwidth, shared memory is divided into equally-sized memory 

modules, called banks, which can be accessed simultaneously. 

Any memory read or write request made of n addresses that fall 

in n distinct memory banks can therefore be serviced 

simultaneously, yielding an overall bandwidth that is n times as 

high as the bandwidth of a single module. Here we tried to get 

maximum benefit of shared memory.  

Figure: 2:  Memory hierarchy of CUDA architecture.
 

 

 
 

CUDA Execution model consist of Grid, thread blocks, and 

Threads. Entire grid is handled by a single GPU chip. The GPU 

chip is organized as a collection of multiprocessors (MPs), with 

each multiprocessor responsible for handling one or more blocks 

in a grid. A block is never divided across multiple MPs.  Each 

MP is further divided into a number of stream processors (SPs), 

with each SP handling one or more threads in a block. 

NVIDIA CUDA SDK has been designed for running parallel 

computations on the device hardware: it consist of a compiler, 

host and device runtime libraries and a driver API. CUDA 

software stack is composed of several layers: a hardware driver 

(CUDA Driver), an API and its runtime (CUDA Runtime), two 

higher-level mathematical libraries (CUDA Libraries) of 

common usage. 
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IV OPTIMIZATION STRATEGIES 

 

Very first we will transfer data from CPU to GPU. When we 

transfer data by default it will be load in global memory. We 

are using 32MB data for reduction. 

cudaMemcpy(d, hIn, size, cudaMemcpyHostToDevice); 
 

Version 1:  In first parallel reduction shared memory is used 

so  required again data transfer from global memory to shared 

memory. Then operation will be performed with shared 

memory. Kernel will be called with dynamic shared memory. 

 

version1<<<dimGrid,dimBlock,smemSize>>>(d); 
 

Shared memory is used for operation so actual code having 

two parts. One is load shared memory and second is do actual 

reduction in shared memory. 
 

__global__ void version1(int *d) 
{ 
extern __shared__ int sm[]; 
//First part: 
// load shared mem 
unsigned int tid = threadIdx.x; 
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x; 
sm[tid] = d[i]; 
__syncthreads(); 
//second part: 
// do reduction in shared mem 
for(unsigned int stride=1;stride<blockDim.x;stride*=2) 
{ 
if ((tid % (2*stride)) == 0) sm[tid]+=sm[tid+stride]; 
__syncthreads();   } 
// write result for this block to global mem 
if (tid == 0) d[blockIdx.x]=sm[0];  } 
 

First version is used Interleaved Addressing. 

Stride grid loop is used to process data elements with threads. 

In first stride (step 1) N/2 elements will be added. Interleaved 

threads will added. Same process recursively repeat until all 

data add with threadIdx 0. Partial result will save with 

threadIdx 0 for all blocks. Now last step is transfer partial 

result to global memory and then do final sum with global 

memory. 

 

Version 2:  In version 1 branch divergence occurs due to 

interleaved branch decisions.  Due to branch divergence some 

of the threads will do task and some of them idle, so threads 

may perform work serially which leads to performance loss. 

Version 2 is implemented with stride index and non-divergent 

branch. 

// do reduction in shared memory 
for(unsigned int stride=1; stride<blockDim.x; stride*=2) 
{ 
int index=2*stride*tid; 
if (index<blockDim.x) 

sm[index]+=sm[index+stride]; 
__syncthreads(); 
} 
 

Above code use stride index, remove branch divergence and 

remove % operator so code is optimized. 
 

Version 3: Actual operation doing with shared memory so in 

version 2, there is bank conflict which leads to performance 

loss. Version 3 implemented with linear addressing that 

remove bank conflicts.  

 
// do reduction in shared mem 
for (unsigned int 
stride=blockDim.x/2;stride>0;stride>>=1) 
{ 
if (tid<stride) 
sm[tid]+=sm[tid+stride]; 
__syncthreads(); 
} 
 

Version 4:  Here in version4 reduction portion as it is 

optimized in version 3, instead of that load shared memory 

data portion is optimized. Here first operation does with 

global memory and result only transfer to the shared memory. 

So only half of the threads with used shared memory and rest 

of reduction operation as it are used. With this optimization 

half of threads will reduce in shared memory so we can get 

maximum use of threads.  
 

// With two loads and first add of the reduction 
unsigned int tid = threadIdx.x; 
unsigned int i = blockIdx.x*(blockDim.x*2)+threadIdx.x; 
sm[tid] = d[i]+d[i+blockDim.x]; 
__syncthreads(); 
 
Version 5:  in this version again just optimized do reduction 

in shared memory portion of code. With two loads and first 

add of the reduction code we just used that is last optimized. 

Here loop unrolling technique is used. By this technique no. of 

iterations is reduced and ultimately code is optimized.  

 

// do reduction in shared mem 
for (unsigned int s 
{ if (tid<stride) sm[tid]+=sm[tid+stride]; 
__syncthreads(); } 
if (tid < 32) 
{ sm[tid]+=sm[tid+32]; 
sm[tid]+=sm[tid+16]; 
sm[tid]+=sm[tid+8]; 
sm[tid]+=sm[tid+4]; 
sm[tid]+=sm[tid+2]; 
sm[tid]+=sm[tid+1]; 
} 
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V COMPARISON OF DIFFERENT OPTIMIZATION STRATEGIES 

 
Figure: 3: Time measurement of different versions. 

 

 
 

Figure : 4 : Bandwidth measurement of different versions. 

 

 
 

 

VI CONCLUSION 

 

Parallel approaches have a better performance than serial 

dependence reduction. With regards of shared memory usage we 

can get higher performance. When using shared memory should 

take about bank conflict. Bank conflict may leads performance 

overhead. Loop unrolling is good optimization technique just by 

rearranging loop structure. This work presents general principles 

for optimizing application with CUDA architecture. We also 

present an application suite that has been ported to shared 

memory. 
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