
Different Optimization Strategies and

Performance Evaluation of Reduction on

Multicore CUDA Architecture

Chhaya Patel

CE/IT Department, School of Engineering

RK University

Rajkot, India

Abstract—the objective of this paper is to use different

optimization strategies on multicore GPU architecture. Here for

performance evaluation we have used parallel reduction

algorithm. GPU on-chip shared memory is very fast than local

and global memory. Shared memory latency is roughly 100x

lower than non-cached global memory (make sure that there are

no bank conflicts between the threads). We have used on chip

shared memory for actual operations. One of the most common

tasks in CUDA programming is to parallelize a loop using a

kernel. To efficiently parallelize this, we need to launch enough

threads to fully utilize the GPU. Instead of completely

eliminating the loop when parallelizing the computation, we

used grid-stride loop. By using grid stride loop we can process

more data elements with limited number of threads. Grid stride

loop provide scalability and thread reusability. A different

strategies used to optimize parallel reduction algorithm. Here in

this paper we tried to compare time and bandwidth of each

version. In next each version we observed significant

improvement.

Keywords—GPU, CUDA, Multicore, Shared Memory, Multi

threading, parallel reduction

I. INTRODUCTION

 In the past few years new multicore heterogeneous

architectures have been introduced in high-performance

parallel computing. Examples of such architectures include

Graphics Processing Units (GPUs). GPUs are small devices

with hundreds of computing cores which are designed for high

performance computing. GPU computing is the use of a GPU

(graphics processing unit) as a co-processor to accelerate

CPUs for general purpose scientific and engineering

computing. The GPU accelerates applications running on the

CPU by offloading some of the compute intensive and time

consuming portions of the code. The rest of the application

still runs on the CPU. From a user’s perspective, the

application runs faster because it is using the massively

parallel processing power of the GPU to boost performance.

This is known as heterogeneous or hybrid computing

architecture. GPUs usually contribute to the overall

computation in two different ways: carrying out some specific

tasks through user-designed kernels or executing some data-

parallel primitives provided by a growing number of libraries

(e.g. CUDPP, CLPP, GPULib, Thrust…). GPU provide

different types of memory for application. We can boost

performance accordingly application need.

When we implement any algorithm with GPU then it will be

definitively faster than CPU. Here we are not compare CUP

and GPU code, instead of that we tried to compare different

version of GPU code only.

In this paper we tried to optimize the basic parallel reduction

algorithm using multicore heterogeneous architecture known

as compute unified device architecture (CUDA).

Summarize a set of input values into one value is called

reduction. For example sum of 1 to N numbers, finding MAX

or MIN from list, average of numbers given in array. In this

paper we take sum of 1 to N number as reduction algorithm. It

is most important that which operator is used in parallel

reduction. The operator used in algorithm that must be a

binary and associate. + Operator is binary and associate.

Algorithm will take array of N data [A [0], A [1]…A [N-1]] as

input and will product one value as output. Here we compared

different parallel version of code. We used five different

strategies for optimization of parallel code.

Serial version of reduction is very straight forward. In serial

reduction, each iteration is dependent on the previous

iteration. We have a serial variable named sum, we initialize

it to zero. We then loop throughout set of elements and on

each iteration. Add the current element to the previous sum.

So, in the first iteration, we do this first add here, and we take

the result on the second iteration. Do a second add here on the

third iteration, we do a third add, and so on. So, that this adds

operation is dependent on the previous one. So complexity of

basic reduction is O (N).

Here we used tree based structured for parallel reduction given

in figure 1. We done like that by first computing A[0] plus

A[1], and perhaps at the same time, computing A[2] plus A[3]

and then add the results together. We done to do parallel

reduce, is regrouping these operations in a different order, and

this exposes more concurrency. We now have the ability to

run multiple operations in parallel at the same time. In tree

based structure, if we have N elements for reduction than N/2

operations will do concurrently. Results of N/2 operations

again reduce in second step so in second step N/4 operation

will performed concurrently. So potentially, we can run this

with parallel hardware, and it will complete faster. Parallel

implementation time complexity is O (logN).

1567

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041897

International Journal of Engineering Research & Technology (IJERT)

Figure: 1: Tree based version of parallel reduction.

Main aim of this paper is to compare different parallel

versions of reduction. We are comparing two parameters one

is time and second is bandwidth. Performance measured on

GforceGTX 480.

GeForceGTX 480 having 15 Multiprocessor and each

multiprocessor having 32 cores so total 480 Cores.

II. RELATED WORK

The kernels presented by Harris [2] are the most popular CUDA

implementations for the reduction primitive. They are actually

included as project examples in every CUDA SDK release. His

document introduces seven kernels from a didactic perspective,

in such a way that each kernel improves the performance of the

previous one. Nevertheless, many of them require the operator to

be commutative.

The kernels presented by Pedro [1] are represented segmented

version of CUDA implementations for the reduction. In this

segmented version, the input array is divided into segments of

consecutive data, and the output is the individual reduction of

each segment. Thus, the output size is the number of segments

included in the given input. Author observed that the segmented

primitive could be easily implemented in terms of the unsegment

primitive, by extracting each segment and reducing it, isolated

from the global input, with unsegment primitive.

The different optimization strategies used by Shane Ryoo [3].

For optimization author considered manage resources include the

number of register, and amount of memory used per thread

block.

They also obtained increased performance by reordering access

to on chip memory and applied classical optimizations to reduce

the number of executed operations. They applied these strategies

across various applications and achieved 10X to 450X speedup

in different kernel codes.

In this paper [4] author presented different CUDA architectures,

including Fermi, and optimized a set of algorithms for each

using widely-known optimization techniques. They used fast

prototyping tool, for an effortless process. The result of analysis

can guide researchers on the right path towards efficient code

optimization. Preliminary results show that some optimizations

recommended for older CUDA architectures may not be useful

for the newer ones.

III ARCHITECTURE OVERVIEW

The CUDA (Compute Unified Device Architecture)

programming model used in NVIDIA GPU architecture. GPU

(Graphics Processing Unit) works as co-processor with CPU.

Basically program execution start with CPU and computational

intensive parts of the code execute with GPU and still rest of the

serial code execute with CPU. In this way we can get higher

performance of algorithms. CUDA programming model support

different types of memories. By default when we transfer data

from CPU to GPU it will be store in global memory. Global

memory is off chip memory. GPU performance is influenced by

the architectural organization of the hardware platform. NVIDIA

suggests that achieving the highest GPU occupancy and

optimizing the use of the memory hierarchy are the two main

factors behind GPU performance [7]. In fact, both of them are

related since maximizing the occupancy can help to cover

latency during global memory loads. We present several

experiments aimed at analysing their relative importance. Our

results indicate that code that target efficient memory usage are

the major determinant of actual performance. Overall, they

ensure the best performance even if some resources remain

unutilized. Therefore, maximizing occupancy should be

examined at a later stage in the compilation process, once data

related issues have been properly addressed. Figure 2 shows

memory hierarchy of CUDA architecture. To achieve high

bandwidth, shared memory is divided into equally-sized memory

modules, called banks, which can be accessed simultaneously.

Any memory read or write request made of n addresses that fall

in n distinct memory banks can therefore be serviced

simultaneously, yielding an overall bandwidth that is n times as

high as the bandwidth of a single module. Here we tried to get

maximum benefit of shared memory.

Figure: 2: Memory hierarchy of CUDA architecture.

CUDA Execution model consist of Grid, thread blocks, and

Threads. Entire grid is handled by a single GPU chip. The GPU

chip is organized as a collection of multiprocessors (MPs), with

each multiprocessor responsible for handling one or more blocks

in a grid. A block is never divided across multiple MPs. Each

MP is further divided into a number of stream processors (SPs),

with each SP handling one or more threads in a block.

NVIDIA CUDA SDK has been designed for running parallel

computations on the device hardware: it consist of a compiler,

host and device runtime libraries and a driver API. CUDA

software stack is composed of several layers: a hardware driver

(CUDA Driver), an API and its runtime (CUDA Runtime), two

higher-level mathematical libraries (CUDA Libraries) of

common usage.

1568

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041897

International Journal of Engineering Research & Technology (IJERT)

IV OPTIMIZATION STRATEGIES

Very first we will transfer data from CPU to GPU. When we

transfer data by default it will be load in global memory. We

are using 32MB data for reduction.

cudaMemcpy(d, hIn, size, cudaMemcpyHostToDevice);

Version 1: In first parallel reduction shared memory is used

so required again data transfer from global memory to shared

memory. Then operation will be performed with shared

memory. Kernel will be called with dynamic shared memory.

version1<<<dimGrid,dimBlock,smemSize>>>(d);

Shared memory is used for operation so actual code having

two parts. One is load shared memory and second is do actual

reduction in shared memory.

__global__ void version1(int *d)
{
extern __shared__ int sm[];
//First part:
// load shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sm[tid] = d[i];
__syncthreads();
//second part:
// do reduction in shared mem
for(unsigned int stride=1;stride<blockDim.x;stride*=2)
{
if ((tid % (2*stride)) == 0) sm[tid]+=sm[tid+stride];
__syncthreads(); }
// write result for this block to global mem
if (tid == 0) d[blockIdx.x]=sm[0]; }

First version is used Interleaved Addressing.

Stride grid loop is used to process data elements with threads.

In first stride (step 1) N/2 elements will be added. Interleaved

threads will added. Same process recursively repeat until all

data add with threadIdx 0. Partial result will save with

threadIdx 0 for all blocks. Now last step is transfer partial

result to global memory and then do final sum with global

memory.

Version 2: In version 1 branch divergence occurs due to

interleaved branch decisions. Due to branch divergence some

of the threads will do task and some of them idle, so threads

may perform work serially which leads to performance loss.

Version 2 is implemented with stride index and non-divergent

branch.

// do reduction in shared memory
for(unsigned int stride=1; stride<blockDim.x; stride*=2)
{
int index=2*stride*tid;
if (index<blockDim.x)

sm[index]+=sm[index+stride];
__syncthreads();
}

Above code use stride index, remove branch divergence and

remove % operator so code is optimized.

Version 3: Actual operation doing with shared memory so in

version 2, there is bank conflict which leads to performance

loss. Version 3 implemented with linear addressing that

remove bank conflicts.

// do reduction in shared mem
for (unsigned int
stride=blockDim.x/2;stride>0;stride>>=1)
{
if (tid<stride)
sm[tid]+=sm[tid+stride];
__syncthreads();
}

Version 4: Here in version4 reduction portion as it is

optimized in version 3, instead of that load shared memory

data portion is optimized. Here first operation does with

global memory and result only transfer to the shared memory.

So only half of the threads with used shared memory and rest

of reduction operation as it are used. With this optimization

half of threads will reduce in shared memory so we can get

maximum use of threads.

// With two loads and first add of the reduction
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockDim.x*2)+threadIdx.x;
sm[tid] = d[i]+d[i+blockDim.x];
__syncthreads();

Version 5: in this version again just optimized do reduction

in shared memory portion of code. With two loads and first

add of the reduction code we just used that is last optimized.

Here loop unrolling technique is used. By this technique no. of

iterations is reduced and ultimately code is optimized.

// do reduction in shared mem
for (unsigned int s
{ if (tid<stride) sm[tid]+=sm[tid+stride];
__syncthreads(); }
if (tid < 32)
{ sm[tid]+=sm[tid+32];
sm[tid]+=sm[tid+16];
sm[tid]+=sm[tid+8];
sm[tid]+=sm[tid+4];
sm[tid]+=sm[tid+2];
sm[tid]+=sm[tid+1];
}

1569

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041897

International Journal of Engineering Research & Technology (IJERT)

V COMPARISON OF DIFFERENT OPTIMIZATION STRATEGIES

Figure: 3: Time measurement of different versions.

Figure : 4 : Bandwidth measurement of different versions.

VI CONCLUSION

Parallel approaches have a better performance than serial

dependence reduction. With regards of shared memory usage we

can get higher performance. When using shared memory should

take about bank conflict. Bank conflict may leads performance

overhead. Loop unrolling is good optimization technique just by

rearranging loop structure. This work presents general principles

for optimizing application with CUDA architecture. We also

present an application suite that has been ported to shared

memory.

REFERENCES
1. Pedro J. Martín, Luis F. Ayuso, Roberto Torres, Antonio Gavilanes ,

“Algorithmic Strategies for Optimizing the Parallel Reduction
Primitive in CUDA,” 978-1-4673-2362-8/12, ©2012 IEEE.

2. M. Harris, Optimizing Parallel Reduction in CUDA, (2007),
http://developer.download.nvidia.com/compute/cuda/1_1/Website/proje

c ts/reduction/doc/reduction.pdf.

3. Shane Ryooy Christopher I. Rodriguesy Sara S. Baghsorkhiy Sam S.
Stoney, “Optimization Principles and Application Performance
Evaluation of a Multithreaded GPU Using CUDA”, Center for Reliable
and High-Performance Computing, University of Illinois at Urbana-
Champaign NVIDIA Corporation.

4. Ruymán Reyes , Francisco de Sande, “Optimization strategies in
different CUDA architectures using llCoMP”, Microprocessors &
Microsystems, v.36 n.2, p.78-87, March,
2012 [doi>10.1016/j.micpro.2011.05.006]

5. Javier Setoain1, Christian Tenllado1, Manuel Arenaz, and Manuel
Prieto1, "To wards Automatic Code Generation for GPU architectures",
Computer Architec- ture Group, Department of Electronics and
Systems, University of A Coruna, Spain.

6. NVIDIA CUDA. http://developer.nvidia.com/object/cuda.html.

7. J. Nickolls and I. Buck. NVIDIA CUDA software and GPU parallel

computing architecture. Microprocessor Forum, May 2007

8. K. Kennedy and J. R. Allen. Optimizing compilers for modern
architectures: a dependence-based approach. Morgan Kaufmann
Publishers Inc., 2002.

9. S. Sengupta, M. Harris, HM. GarlandH, “Efficient Parallel Scan
Algorithms for GPUs,” H NVIDIA TR NVR-2008-003H, Dec. 2008.

10. S. Sengupta, M. Harris, Y. Zhang, and J. Owens, “Scan Primitives for

GPU Computing,” Proc. Graphics Hardware (GH 07), ACM, 2007,
 pp. 97-106.

1570

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041897

International Journal of Engineering Research & Technology (IJERT)

