
Device Driver Wrapper

Sweety Raikesh

Dr. C.V. Raman University, Bilaspur (C.G.)

Abstract

A Device Driver Wrapper is software that functions

as an adapter between an operating system and a

driver, such as a device driver, that was not

designed for that operating system. It can enable

the operating system to use technologies for which

no native implementation exists. Our project

objective is to 'wrap' Windows based video device

drivers so that they can be used as drivers in Linux.

Wrapper works by emulating the Windows kernel

and APIs, and dynamically linking the driver to this

implementation. It implements Windows kernel API

and the hardware device specific API within Linux

kernel. A Windows driver for the device is then

linked to this implementation so that the driver

runs natively, as though it is in Windows, without

binary emulation.

1. Introduction

In the current scenario hardware manufacturers

provide drivers for Windows based systems while

neglecting UNIX based systems e.g. Linux. As a

result the current driver support for certain

hardware devices in Linux is poor. Instead of

rewriting the drivers for UNIX based systems, this

project will aim to create a 'device wrapper' so that

these Windows based drivers can be used on UNIX

based systems.

This project is the ideal Linux solution to

support devices for which no adequate native open-

source drivers are available. It also allows vendors

to drastically reduce time to market or eliminate the

need to support multiple drivers for Windows and

Linux. By using the same driver on both platforms,

significant resources can be saved.

Thus it shall work as an emulation layer of the

Windows based specification on a Linux based

system, enabling Windows based drivers to work

seamlessly in a Linux environment.

The Architecture of our system is shown in

fig.1. In this paper, we will focus on the instance

of wrapper for video devices supported by the

AVStream specification in Windows. While the

extension to other device architectures is left for

further extension of the wrapper.

This paper is organized as follows. Section 2

overviews the wrapper architecture, and this

section introduces the idea of wrapper and the

structure of the system with wrapper introduced for

Linux through the Video for Linux (V4L2)

specification. In section 3, basic data structures and

behaviour of each module are described. Related

works are presented in section 4.

Fig.1.System architecture diagram

2. Literature Survey

A number of similarities exist between the

Windows and Linux operating systems. On both

systems, drivers are modular components that

extend the functionality of the kernel.

Communication between driver layers in Windows

is through the use of I/O Request Packets (IRPs)

supplied as arguments to standard system and

driver defined functions, whereas in Linux function

calls with parameters customized to a particular

driver are used. Windows has separate kernel

components that manage PnP, I/O and Power.

These components send messages to drivers using

IRPs at appropriate times.

In Linux, there is no clear distinction between

layered modules, i.e. modules are not categorized

as bus, functional or filter drivers. There is no

clearly defined PnP or Power manager in the kernel

that sends standardized messages to modules at

appropriate times. The kernel may have modules

loaded that implement Power Management or PnP

1814

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60707

functionality, but the interface of these modules to

drivers is not clearly specified.

Once data is passed to a driver that is part of a

stack of modules by the kernel, the data may be

shared with other drivers in the stack through an

interface specific to that set of drivers. In both

environments, hardware access through a HAL

interface is implemented for the specific platform

the kernel is compiled for, i.e. x86, SPARC etc. A

common feature of both architectures is that drivers

are modules that can be loaded into a kernel at

runtime. Each module contains an entry point that

the kernel knows to start code execution from. A

module will also contain routines that the kernel

knows to call when an I/O operation is requested to

a device managed by that module. This enables the

kernel to provide a device independent interface to

the application layer. We exploit such interfaces to

implement the Device Driver Wrapper.

3. Overview of Wrapper

Architecture

4.
The various blocks of the architecture

represented in fig.2 and the description of each is:

1) The wrapper initializer will initialize the

wrapper with the linux kernel.

2) The loader loads the driver in the linux

environment.

3) Linker module links the driver in the

Portable Execuatble format in the Linux

environment.

4) Interaction handler accepts the IOCTL

commands from V4L, and is responsible

to return the output to the given layer.

5) Windows kernel level simulator adjusts

the generic Linux Windows compatibility

such as register stack handling,shadow

space adjustment.Also it provides 64-bit

compatibility and 32-bit & 64-bit inter-

arithmetic.

6) Emulations functions will emulate the

AVStream calls taken as V4L calls from

the I/O handler and provide them to

miniport driver handler.

7) The miniport handler driver interacts with

the miniport driver through packets.It also

interacts with the HAL if required.

Fig.2. Wrapper Architecture diagram

1815

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60707

Fig. 3 Data Flow Diagram

5. The Data Flow

As shown in figure 3, the data flow diagram

can be interpreted as follows:

1) The application provides data to the

VideoDev module in V4L to send the

requests specific to the device.

2) The VideoDev module then sends various

IOCTL commands to the device wrapper.

3) The device wrapper creates a device

object for the device and transforms these

calls to Windows specific device object

calls.

4) These Windows specific calls are accepted

by the miniport driver to perform the

requested operation. The miniport driver

gives these corresponding calls to the

hardware device through the HAL.

5) The output is provided from the HAL to

the VideoDev module through the device

wrapper and finally returned to the

application.

1816

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60707

6. Conclusion and Future Work

In this paper, we present the architecture of

wrapper. The purpose of this was to build an

application that would enable Linux users to use

the hardware with Windows based drivers

seamlessly. In addition, factors like generic

Windows kernel simulation, 64 bit compatibility

were key points to be taken into account. Studies

have shown us that the wrapper can help save a lot

of time and effort required in reverse engineering

with the quality features provided by the specific

vendors can be used to the fullest. Each video

device having a windows based driver can be used

with Linux thus enhancing the streaming media

devices support in Linux.

The AVStream wrapper can be extended for

other streaming media devices with certain

extensions. Extending the support to other

architectures and its feasibility study can be carried

out. Future work can include the analysis and

resolution of these problems.

7. Acknowledgement

I would like to express my immeasurable

thanks to my internal project guide Prof. Mr.

Praveen Chouksey for his guidance and excellent

suggestions in the course of the development of my

project. I would also like to thank my external

guides Mr. Jitendra Asrani and Mr. Someshwar

Jaju for providing me with the opportunity to work

on this project and for their guidance. I am also

very thankful to Prof. Mr. Tarun Dhar Diwan,

Coordinator of the M.Tech (S.E.), for providing all

the necessary facilities, conducting reviews and

giving invaluable feedback on the project. Finally, I

would like to thank my staff members, friends and

all other people who have directly or indirectly

helped me in the design, implementation and

deployment of the project.

8. References

[1] Linux Device Drivers, 3rd Edition By

Jonathan Courbet, Greg Kroah-Hartman,

Alessandro Rubini

[2] Developing Drivers with the Microsoft

Windows Driver Foundation by Penny

Orwick and Guy Smith Microsoft Press

2007

[3] The Linux® Kernel Primer: A Top-Down

Approach for x86 and PowerPC

Architectures By

Claudia Salzberg Rodriguez,

Gordon Fischer, Steven Smolski

[4] Essential Linux Device Drivers by

Sreekrishnan Venketeshwaran

[5] http:\\www.ndis.sourceforge.net

[6] A comparison of windows and Linux

Device driver Architectures by Melekam

Tsegaye and Richard Foss

[7] The Webcam HOW TO by Howard Shan

1817

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60707

