Development of Whey Enriched Protein Rusk

Er. K. Murali Naik *, M. Penchala Raju*

* Teaching Associate
College of Food Science and Technology, Bapatla, ANGRAU

ABSTRACT

The present study was undertaken on whey protein enriched rusk and prepared by the use of ingredients like whey protein, skim milk powder, refined wheat flour, sugar, baker’s yeast, vanaspati, ammonium sulphate, salt, almonds and cardamom with different ratios of skim milk powder and whey protein powder i.e. 100:0, 75:25, 50:50, 25:75 and 0:100. The formulations were evaluated for nutritional aspects mainly protein and calcium content and sensory attributes like texture, taste etc through 9 point hedonicscale method. The product has been formulated with sole objective to increase dietary protein intake which is ultimately beneficial for muscle building. The formulation of 50:50 has the highest overall acceptability and best in texture and the protein content was highest in this sample was found to be 14.83 per cent.

Key words: Rusk, whey protein, baker’s yeast, protein content, sensory attributes.

1. INTRODUCTION: Rusk is a raised bread, cracker, or cake that has been dried to a crisp and browned either toasted in an oven or baked a second time after slicing. It can be plain or sweet. It is one of the snack food consumed by all age group people and sometimes also used as a baby teething food. Rusk is a hard, dry, double baked biscuit and its protein content can be increased by incorporating whey protein which also contributes to the economy of operation of dairy plants by reducing the cost of effluent treatment (Jaritha et al.,2010).

Whey is a by-product of cheese, paneer and casein manufacturing. Whey protein represents nearly 20% of the total bovine milk proteins and commercially it is available in three major forms as concentrate, isolate and hydrolysate. The major fractions of whey proteins are α-lactoglobulin, α-lactoalbumin, immunoglobulin and bovine serum albumin. Whey protein prepared by using ultra filtration and micro particulation process converts the protein molecules into spherical particles which allow smooth flowing layer in foods where fat is replaced. Not only the biological values of whey protein superior to most other proteins but also have a high content of sulfur containing amino acids, which support antioxidant function. Newer whey ingredients include hydrolysed whey protein that contain high levels of bioactive peptides (Foegedinget al.,2002, Ferreira et al.,2007). These hydrolysates can be added to special foods to increase protein value, as enzymatic hydrolysis can optimize their functional properties. Thus,
there is considerable commercial interest in the preparation of whey proteins for food, nutraceutical and therapeutic applications (Ferreira et al., 2007).

In the unorganized dairy industry, the whey is disposed as effluent and results in loss of valuable milk solids which can be better utilized as a source of nutrient (Jaritha and Kulkarni, 2009).

Whey proteins impart an important functionality in bread formulations that helps to enhance crust browning, crumb structure and flavor, improve toasting qualities and retard staling. The modified whey proteins have been found to have excellent water absorption properties and its ability to absorb and bind water is useful in connection with frozen dough for bread and rolls that are mixed, formed and then held in frozen storage for some length of time before being thawed, proofed and baked. It may confer a protective effect on the gluten network in the frozen dough system. The whey proteins also contribute to browning process in bakery items through Maillard’s reaction by reacting with lactose and other reducing sugars present in a formulation. It can also improve the flavor and texture of reduced fat, low fat and fat free baked goods (Jonathan et al., 2011).

Table 1: Nutritional Value for Whey Protein Powder

<table>
<thead>
<tr>
<th>Serving size</th>
<th>100 grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>81%</td>
</tr>
<tr>
<td>Total Carbohydrates</td>
<td>7.04%</td>
</tr>
<tr>
<td>Total Fat</td>
<td>7.04%</td>
</tr>
<tr>
<td>Energy</td>
<td>387 kcal</td>
</tr>
<tr>
<td>Calcium</td>
<td>0.4%</td>
</tr>
</tbody>
</table>

Source: USDA Nutrient Database

OBJECTIVES

Keeping in view of its high nutritional values and high protein content, whey protein enriched rusk was developed by incorporation of whey protein in a conventional rusk, which contain dietary protein beneficial for muscle building. Thus developed rusks were evaluated for their sensory attributes, microbial growth and nutritional aspects.

2. Materials and Methods

2.1. Materials Required
- Refined wheat flour
- Whey Protein
- Skim milk powder
- Baker’s Yeast
- Crystalline sugar
- Vanaspati
• Salt
• Cardamom
• Almonds
• Ammonium sulphate

2.2. Equipments used in product preparation and analysis

• Microwave oven
• Muffle furnace
• Hot air oven
• Digestion chamber
• Soxhlet Apparatus
• Distillation chamber
• Cooling centrifuge
• Colorimeter
• Weighing machine
• Baking trays

2.3. Procurement of raw materials

All the raw materials except Whey Protein were procured from local market of Bapatla. Whey Protein was procured from Chennai.

2.4. Preparation

The methodology of whey protein enriched rusk preparation is divided into various steps. These are described below:-

Ferment preparation
↓
Combining ingredients
↓
Dough preparation
↓
Moulding and Panning
↓
First proofing (6-8 hours)
↓
First baking (225°C/15-20 minutes)
↓
Final proofing (overnight)
↓
Slicing
↓
Final baking (150°C/15min)
↓
Brownish crisp rusk

Fig. 1 Process flow chart for whey protein enriched rusk

Table 2: Formulations used in whey protein (WP) enriched rusk

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Maida</th>
<th>Sugar</th>
<th>SMP</th>
<th>WP</th>
<th>Vanaspati</th>
<th>Badam</th>
<th>Yeast</th>
</tr>
</thead>
<tbody>
<tr>
<td>100:0</td>
<td>100g</td>
<td>30g</td>
<td>20g</td>
<td>-</td>
<td>10g</td>
<td>2g</td>
<td>1g</td>
</tr>
<tr>
<td>75:25</td>
<td>100g</td>
<td>30g</td>
<td>15g</td>
<td>5g</td>
<td>10g</td>
<td>2g</td>
<td>1g</td>
</tr>
<tr>
<td>50:50</td>
<td>100g</td>
<td>30g</td>
<td>10g</td>
<td>10g</td>
<td>10g</td>
<td>2g</td>
<td>1g</td>
</tr>
<tr>
<td>25:75</td>
<td>100g</td>
<td>30g</td>
<td>5g</td>
<td>15g</td>
<td>10g</td>
<td>2g</td>
<td>1g</td>
</tr>
<tr>
<td>0:100</td>
<td>100g</td>
<td>30g</td>
<td>-</td>
<td>20g</td>
<td>10g</td>
<td>2g</td>
<td>1g</td>
</tr>
</tbody>
</table>

Plate 1: Product after first baking
2.5. Experimental Details

2.5.1. Different proportions of whey protein incorporated

In the present study, we have blended different proportions of whey protein powder in rusk for the proper standardization of the product. Five different blends like 0%, 25%, 50%, 75% and 100% of whey protein incorporated into rusk with respect to the mix following the above mentioned procedure. The details of formulations are shown in table:

Table 3. Details of formulation

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Skim milk powder, %</th>
<th>Whey protein, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample A</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Sample B</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>Sample C</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Sample D</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>Sample E</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Evaluation of formulated product

Samples of different ratios were evaluated for following parameters:-

- Microbial Analysis (AOAC, 1990)
- Organoleptic evaluation(Peryac and Giradot 1952).
- Proximate analysis (AOAC, 1990)
- Physical analysis(AOAC, 1990)
3. RESULTS AND DISCUSSIONS

3.1. Microbial Analysis: The formulated product is evaluated for the presence of microbial count. Here, we analyzed two samples microbi ally i.e. sample A and sample E. The results obtained is given in table below which shows that the colony count for both bacterial and fungal is below the permissible count.

<table>
<thead>
<tr>
<th>GROUP</th>
<th>SAMPLE A</th>
<th>SAMPLE E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial count (CFU/g)</td>
<td>100</td>
<td>125</td>
</tr>
<tr>
<td>Fungal count (CFU/g)</td>
<td>150</td>
<td>185</td>
</tr>
</tbody>
</table>

Plate 3. Bacterial limit test of sample A and sample E

Plate 4. Fungal limit test of sample A and sample E
3.2. Organoleptic Evaluation

Sensory evaluation for the Whey Protein enriched Rusk was conducted using 5 test samples having different ratios of whey protein powder and skim milk powder. These samples were tested with the help of a 10 member panel.

Table 5. Sensory analysis data

<table>
<thead>
<tr>
<th>ATTRIBUTES</th>
<th>S-A</th>
<th>S-B</th>
<th>S-C</th>
<th>S-D</th>
<th>S-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>6.6</td>
<td>7.0</td>
<td>7.0</td>
<td>7.1</td>
<td>7.2</td>
</tr>
<tr>
<td>Texture</td>
<td>6.8</td>
<td>6.9</td>
<td>7.3</td>
<td>7.0</td>
<td>7.4</td>
</tr>
<tr>
<td>Crispiness</td>
<td>7.4</td>
<td>7.0</td>
<td>7.5</td>
<td>7.3</td>
<td>8.0</td>
</tr>
<tr>
<td>Taste</td>
<td>7.3</td>
<td>7.5</td>
<td>7.8</td>
<td>7.3</td>
<td>7.6</td>
</tr>
<tr>
<td>Overall Acceptability</td>
<td>7.0</td>
<td>7.4</td>
<td>7.5</td>
<td>7.2</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Fig 2. Organoleptic Evaluation

3.2.1. Evaluation:

From the sensory evaluation analysis, it is clearly seen that in terms of color, sample E is best, in terms of texture is sample C is best, in terms of crispiness sample C is best and in terms of taste sample C is best and finally in terms of overall acceptability sample C is best. Hence at the end of sensory evaluation it is concluded that sample C is having better edge over the other samples.

3.3. Proximate Analysis: Results obtained after proximate analysis of different samples of product are following:
3.3.1 Estimation of moisture content:

![Fig. 3 Analysis of moisture content](image)

3.3.2 Estimation of titratable acidity:

![Fig. 4 Analysis of Acidity](image)

3.3.3 Estimation of energy:

![Fig. 5 Analysis of Energy](image)
3.3.4 Estimation of carbohydrate:

Fig. 6 Analysis of Carbohydrate

3.3.5 Estimation of fat:

Fig. 7 Analysis of Fat

3.3.6 Estimation of protein:

Fig. 8 Analysis of Protein
3.3.7 Estimation of total ash:

![Total Ash (%)](image)

Fig. 9 Analysis of Ash

3.3.8 Estimation of calcium:

![Calcium (mg/100 gm)](image)

Fig. 10 Analysis of Calcium

3.3.9 Estimation of iron:

![Iron (mg/100 gm)](image)

Fig. 11 Analysis of Iron
3.4. PHYSICAL ANALYSIS:

3.4.1 Bulk density: The bulk density of different samples varied from 0.49gm/ml to 0.61gm/ml.

![Bar chart showing bulk density for samples A to E](Image)

Fig.12 Analysis of bulk density

4. Conclusions:

According to proximate analysis sample E contained good amount of protein as well as energy content also. Sample A gave high amount of calcium which is an essential mineral. From sensory evaluation results it is concluded that sample C has good acceptability to that of other samples in terms of flavor, taste, color and texture. The cost of production is not very expensive and is affordable for almost all class of people and is mainly used as snacks.

5. REFERENCES

Periyac DR, Giridot NF. *Advanced taste-test method*. *Food Eng* 1952;24:58-61
