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Abstract - The present paper aims at establishing 

elastic/plastic operating envelopes of drillpipes running 

through medium to high curvature wellbores.  The operating 

envelopes will serve as guidelines for drilling engineers by 

identifying the operating limits of various API drillpipes used 

in curved wells before undergoing any activities.  A two-

dimensional mathematical model, which incorporates various 

field parameters that affect the running operation in medium 

to high curvature boreholes, has been developed.  The 

developed model is capable of studying the effect of the 

vertical force at the kick off point (k.o.p), the back push 

(horizontal) force at the end of curve (e.o.c), radius of 

curvature, drillpipe bending stiffness, and formation 

roughness on the running operation.  Two boundary 

conditions (fixed-fixed and pinned-pinned) at both ends of the 

drillpipes (k.o.p and e.o.c) were treated.  The developed model 

estimates the required running force as well as the induced 

stresses of potential API drillpipes in curved well bores.  The 

stress state, in drillpipes running through curved sections, was 

used to develop operating envelopes for drillpipes running 

through typical well configurations.  The model also enables 

field engineers to select appropriate drillpipes according to 

operating field conditions in order to avoid any unexpected 

failure. 
 

INTRODUCTION 

Directional drilling is commonly used to reach lateral 

targets within oil and gas reservoirs.  Current directional 

drilling technology provides the capability to drill, navigate 

and control hole paths along a predetermined well path.  

Mechanical friction between drillpipes and wellbore 

presents a major concern in directional drilling because it i) 

increases the surface power required to rotate the drillpipe, 

ii) may cause drillpipes to get stuck to the formation 

making it difficult or impossible to pull out of the borehole; 

and iii) makes it difficult to establish and estimate a given 

weight on drillbits while drilling. 

 

In horizontal drilling, the build-up section represents the 

most critical part of the drilling operation. Available 

literature published in the past presented different models 

to predict the behavior of drillpipes running through curved 

holes [1 – 11].  Of particular importance to this subject is 

the work done by Seibi et al. [9 – 12] and Martinez et al. 

[13] who conducted experimental and numerical studies on 

pipes running through curved holes and concluded that the 

end forces are affected by the contact between the pipe and 

formation due to lateral pipe deformation.  These studies 

were further investigated experimentally by Kuru et al. [14] 

to study the effect of buckling on the axial force and 

concluded that i) the end support conditions of the tubular 

have a significant effect on tubular buckling, and ii) tubular 

buckling controls the contact force, and hence, the axial 

force.  Most of the existing models do not consider the 

effect of various parameters affecting the stress state in 

drillpipes while running through curved sections.  These 

parameters such as drag force, drillpipe weight, drillpipe 

bending stiffness, and borehole curvature may limit the 

extension of horizontal wells.  Prediction of drag forces as 

well as bending moments play a great role in moving from 

vertical to horizontal drilling because it assists drilling 

engineers in designing well paths with appropriate radii of 

curvatures and selecting appropriate weights on bits to 

avoid any unexpected failure.  Although extensive lab, 

field, and simulation work dealing with this problem has 

been performed, none has considered the operating limits 

of drillpipes running through curved sections.  Therefore, 

the present paper focuses on the development of a 

mathematical model capable of establishing elastic/plastic 

working envelopes through careful examination of the 

induced stress state in drillpipes running through deviated 

wells. 

 

MATHEMATICAL MODEL 

The problem of drillpipes running through curved sections 

was modeled as a multi-span simply supported beam where 

two cases of boundary conditions at both ends of the curved 

sections were treated.  Fixed-fixed and pinned-pinned 

boundary conditions at the k.o.p and e.o.c of the curved 

sections were considered.  Figure A.1 shows the free body 

diagram of an infinitesimal element of a running drillpipe 

through a curved section from which equilibrium equations 
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were obtained.  The governing equation of an infinitesimal 

element of a drillpipe running through curved boreholes is 

given by:   
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where M, V, P, and w denote respectively the bending 

moment, shear force, compressive normal force, and 

drillpipe radial deflection.  In this model, the normal force 

was assumed to be constant throughout each span.  Using 

the definition of the total curvature of the beam defined by 
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Solution of Equation (2) is given by: 
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Since the curved drillpipe was divided into many small 

elements, solution of Equation (2) was performed in multi-

steps using the transfer matrix method.  The constants of 

integration were obtained from the boundary conditions at 

the free ends (k.o.p and e.o.c) of the curved drillpipe.  

Using the assigned values of the drillpipe deflection and 

slope, Equation (3) and its derivative lead to the following 

general form (see Appendix): 
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Equations (4) and (5) represent respectively the bending 

moment and slope at the beginning (
 0 , k.o.p) and 

end of drillpipe (
 90 , e.o.c).   The developed 

mathematical model is capable of predicting the reaction 

force at the contact points, compressive forces at the k.o.p, 

and stress distribution in each drillpipe span.  The 

magnitude of compression in the top span (k.o.p) represents 

the force required to push the tubular through 90-deg 

curved borehole sections. 

 

SOLUTION METHOD 

The transfer matrix method was used to solve the problem 

of multi-span simply supported beams representing a 

typical drillpipe running through 90 degrees curved 

sections.  A computer program was developed to estimate 

the compressive force, radial displacement, shear force, and 

induced stresses along the multi-span curved drillpipe.  

Table 1 shows the main steps involved in solving this 

problem. It is worth noting that results of the preceding 

sections are used to solve for the adjacent sections.   

 

Table 1: Flowchart of the solution procedure 
Step Process 
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 Input desired load on the bit (P0), radius of curvature (R), size and modulus of elasticity of drillpipe, coefficient of Coulomb friction 
between drillpipe and borehole (µ). 

  

 Calculate body forces on each section. 

 

 Initiate an iterative loop to calculate the following parameters (Appendix): 

        i , i , i , i ,  
i

 ,  
i

 ,  ia ,  ib ,  1 , and 1   

         calculate   1i  and   1i   

 For a given end condition (fixed-fixed or simply supported boundary conditions at the k.o.p and e.o.c) use (4) to estimate bending moment 
and slope at first support of the first span. 

 Calculate all i  and iM . 

 Compute all constants iC , iD , iB , and iA  

 Calculate deflection, slope, moment, and shear force on any section.  

 Using known internal shear forces at the beginning and the end of each section, update normal reactions iQ  at each support. 

                  For i =1 

                         11 VQ   at first span               

                          Calculate 1P  using (A.39) for a given weight on bit 0P  

                  For i =2, 3, …, 1n  
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9 

 
10 

 

 

                         1 iii VVQ               

                         iV    : shear force at the beginning of the span 

                        1iV  : shear force at the end of the span 

 Calculate all new values of iP  using Eq. (A.39) 

 Compare new values of iP  obtained in step 9 with values of iP  estimated in steps 4 to 8 until convergence is achieved with  1 kN 

accuracy. 

 

RESULTS AND DISCUSSION: 

The effect of bending stiffness )(EI , formation roughness, 

radius of curvature, and required back push force caused by 

drag force in the horizontal section on the running forces, 

are studied. Different case studies were used to predict the 

running force and induced stresses of drillpipes running 

through medium to high curvature borehole sections (see 

Table 2).  The mechanical properties of selected API grade 

drillpipes are summarized in Table 3.  In the model, the 

drillpipe was divided into multi-sections (spans) of 5ο arc 

angle.  The number of sections depends on the radius of 

curvature of curved sections.  Two different boundary 

conditions at both ends of the drillpipe consisting of: 1) 

fixed-fixed drillpipe ends and 2) pinned-pinned drillpipe 

ends were considered.   

 
Table 2: Drillpipes dimensions used in this study 

Drill drillpipes 
size 

inches (mm) 

Drill drillpipes Weight 
lbf/ft (N/m) 

Grade Radius of curvature 
(m) 

Friction Coefficient 

  

2 3/8 (60.3 ) 4.85 (70.8) X 10, 25, 50, 75, 100, 200 0.1, 0.2, 0.3, 0.4 

3 ½ (88.9 ) 13.3 (194) E & X 10, 25, 50, 75, 100, 200 0.1, 0.2, 0.3, 0.4 

4 ½ (114.3 ) 16.6 (242) E & X 10, 25, 50, 75, 100, 200 0.1, 0.2, 0.3, 0.4 

5 (127.0 ) 19.5 (285) E 10, 25, 50, 75, 100, 200 0.1, 0.2, 0.3, 0.4 

 

Table 3: Mechanical properties of API grade drillpipes 

Grade Ultimate tensile strength 
(MPa) 

Yield strength 
(MPa) 

Modulus of elasticity 
(GPa) 

E-75 689 517  207 

X-95 724 655  207 

G-105 793 724  207 

S-135 1000 931  207 

 

 

The effect of formation roughness on the running force was 

studied for four different values of coefficient of friction, 

0.1, 0.2, 0.3, and 0.4, using a drillpipe (bending stiffness 

EI  of 3.87 x 105 Nm2 ) under fixed-fixed boundary 

condition.  A radius of curvature of 200 m and a load on bit 

of 20 kN are arbitrarily selected.  The relationship between 

the running force and the inclination angle for different 

coefficients of friction is shown in Figure 1.  It is obvious 

that as the coefficient of friction increases, the running 

force required to pushing the drillpipe increases.  Variation 

in magnitude of the running force increases as the 

inclination angle increases and exhibit a nonlinear 

behavior.  This means that the formation roughness or drag 

force is one of the key factors in affecting the running 

process and should be carefully considered in any drilling 

operation.  Figure 2 shows the effect of formation 

roughness on drillpipe bending stress.  It can be seen that 

the bending stress exhibits a reversed sign ranging from 

positive to negative peaks as the drillpipe moves forward.  

This stress variation is observed for all coefficients of 

friction.  It is worth mentioning that for low friction 

coefficient (µ < 0.3), the peak values of the bending stress 

is below the yield stress of the selected API drillpipes (see 

Table 2).  However, the stress value exceeds the yield stress 

of the drillpipes for higher coefficients friction (µ > 0.3) 

and becomes severe starting from an inclination angle of 65 

degrees.  This variation of stress and increase in its 

magnitude can be the result of a combination of factors 

related to the dogleg severity along the well path and 

tubular buckling in curved sections where the stress 

variation takes sinusoidal shapes due to high friction force 

as indicated by Wu and Wold [15].  Thereby, when the 

drillpipe buckles in a sinusoidal shape the bending stress 

becomes compressive and tensile along the curved section.  

This may lead to the possibility of drillpipes fatigue failure 

in all cases.  
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Fig. 1: Effect of formation roughness on running force 
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    Fig. 2: Effect of formation roughness on bending stress  

 

 

Another important parameter that has significant effects on 

the drillpipe stress state is the drillpipe weight/size 

(bending stiffness, EI).  Four different drillpipes specific 

weights of 70.8, 194, 242, and 285 N/m under fixed-fixed 

boundary conditions were considered.  These drillpipe sizes 

were arbitrarily chosen giving a range of drillpipes bending 

stiffnesses of 6.71 x 104, 3.87 x 105, 8.26 x 105, and 1.23 x 

106 Nm2.  A radius of curvature of 50 m and a friction 

coefficient of 0.2 which provides low stress level as 

compared to the yield stress of the drillpipes were selected 

to study the effect of drillpipe bending stiffness on running 

forces.  A load of 30 kN was applied at the bit.  Figure 3 

shows the variation of the running force as a function of the 

inclination angle.  It can be seen that the vertical (running) 

force increases as the weight of the drillpipe increases 

implying that the higher the drillpipe bending stiffness, the 

higher the running force.  The figure also shows that the 

running force is very low for all drillpipe sizes up to an 

inclination angle of 40 degrees beyond which the force 

starts to level off to much higher values.  This increase in 

the running force becomes more apparent as the drillpipe 

bending stiffness gets higher.  However, for low drillpipe 

bending stiffness, the running force is very low and does 

not exhibit any variation with respect to the inclination 

angle.  This behavior was observed by Seibi [11].  This 

suggests the use of the cable model for this particular case, 

which neglects the effect of drillpipe bending stiffness.  

Further advancement of drillpipes along the curved section 

results in excessive induced bending stresses.  Figure 4 

shows the variation of the bending stress versus the 

inclination angle for different drillpipe sizes.  It can be 

observed that drillpipes of high specific weights experience 

high alternating bending stresses, which exceed the yield 

stress of the drillpipes, for inclination angles higher than 30 

degrees.  This increase in stress level may be due to 

excessive compressive force at the end of curve which is 

much higher than the critical buckling force in curved [15] 

which may lead to sinusoidal or helical buckling modes; 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS030345
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 03, March-2017

469



thereby, leading to cyclic stress variation. This indicates 

that there is a very high chance for fatigue failure to take 

place; thereby, careful selection of drillpipes before 

undergoing any activity must be performed.  
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Fig. 3: Effect of bending stiffness on running force  
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Fig. 4: Effect of bending stiffness on bending stress   

 

The effect of the radius of curvature of curved hole sections 

on the running force is studied by considering three radii of 

curvatures i.e. 50, 100, and 200 m.  The developed model 

was used to calculate the running forces for a drillpipe 

running through the build-up section.  The drillpipes used 

in this case has respectively an outer and inner diameter of 

0.0603 and 0.0507 m and a specific weight of 70.8 N/m 

under fixed-fixed boundary conditions. The other field 

parameters such as friction coefficient, mud density, and 

load on bit were given constant values of 0.3, 198 Kg/m3, 

and 10 kN, respectively.  Figure 5 shows the instantaneous 

vertical (running) force required to push the drillpipes 

through high to medium curvature wellbores (50, 100, and 

200 m).  It can be observed that the running force at the 

k.o.p increases as the radius of curvature decreases.  A 

substantial increase in the vertical force is observed for a 

radius of curvature of 50 m as compared to the other two 

radii of curvatures.  The running force is almost the same 

for all radii of curvatures up to an inclination angle of 40 

degrees.  For instance, for the case of a radius of curvature 

of 50 m, the running force starts to increase gradually 

between 40 – 50 degrees and exhibits a sharp increase 

beyond the 50 degrees inclination angle.  This increase in 

magnitude is mainly related to the increase in drag forces at 
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contact points indicating that the total force required to 

push the drillpipe (OD = 0.0603 m) through curved wells is 

highest for holes with shorter radii of curvatures (R < 50 m) 

and lowest for higher radii of curvatures (R > 200 m).  This 

phenomenon is mainly attributed to wellbore curvature and 

drillpipe bending stiffness effects which become prominent 

for short curvature wellbores (severe doglegs).  However, 

the small increase in the running force for both radii of 

curvatures of 100 and 200 m within the first 60 degrees is 

mainly attributed to the drillpipe weight which is acting in 

the same direction as the running force.  Therefore, the 

weight in these two cases helps the drillpipe advance 

further downward along the curved hole.  However, for 

inclination angles exceeding 60 degrees, a slight increase in 

the running force is observed for both radii of curvatures as 

a result of further resistance caused by drag forces.  
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Fig. 5: Effect of radius of curvature on running forces 

 

The induced bending stress in the drillpipe running through 

the three radii of curvatures is shown in Figure 6.  The 

figure shows that the drillpipe experiences an alternating 

high bending stress as it advances through short radii of 

curvatures (R < 50 m).  This phenomenon is attributed to 

the high compressive force at the end of curve cuasing pipe 

buckling as well as pipe bending stiffness which requires a 

much high stress level to bend the drillpipe and follow the 

curved path.  This observation was made by Seibi [12] 

where pipe bending becomes more apparent for high 

curvature wellbores.  Similar observations can be made for 

the radius of curvature of 200 m but with less severity.  The 

high stress values may lead to unexpected drillpipe failure.  

It is worth mentioning that the compressive force in the 

drillpipe was observed to increase with respect to the 

inclination angle as it advances from the build up point to 

the end of curve.  This phenomenon was observed by 

Dareing [4] for a pullout operation where the pullout force 

increases with respect to the inclination angle. 
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Fig. 6: Effect of radius of curvature on bending stress 
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Working Envelope for Drillpipes under Running 

Operations 

This section aims at providing drilling engineers with 

proper guidelines that predetermine the possibility of 

running drillpipes through curved sections without 

undergoing any plastic deformation.  These guidelines are 

presented in the form of a working envelope that was 

developed based on the induced stress levels in drillpipes.  

In other words, the induced normal stress caused by 

drillpipes bending and axial loads was compared against 

the yield stress of various API drillpipes.  The criterion 

adopted in this study was based on stress values higher 

than the yield stress indicating that drillpipes undergo 

plastic deformation which may result in drillpipes buckling 

or sticking to the formation.  Based on this hypothesis, a 

working envelope was developed for various field cases to 

aid drilling engineers in i) selecting suitable drillpipes as 

per field operating conditions in order to avoid any 

unexpected failure and ii) making sound decisions while 

developing well paths before undergoing any drilling 

activities.   

 

The aforementioned results related to the effect of 

drillpipes bending stiffness, radius of curvature, wellbore 

curvature, coefficient of friction, and boundary conditions 

were used to develop the failure/operating envelop.  The 

parameters used in this study are summarized in Table 4. 

 

Table 4  Parametric matrix used in this study 
Wob 

kN 

Radius of curvature 

(m) 

Drillpipe weight 

(N/m) 

Friction coefficient 

 

10 10 78.8 0.1 

15 25 194 0.2 

20 50 242 0.3 

25 75 285 0.4 

30 100   

 200   

 

 

Table 5 shows the obtained results for various field 

scenarios where shaded areas indicate that drillpipes can 

safely run through the curved holes for particular field 

cases without undergoing any plastic deformation.  

Whereas, the unshaded areas indicate that drillpipe failure 

may take place since the induced stresses on the drillpipes 

exceed the yield stress.  For instance, a drillpipe with a 

specific weight of 70.8 N/m can be ran without any 

problem into a well having a radius of curvature of 100 m 

and a load on bit of 10 kN with a coefficient of friction of 

0.4; while a drillpipe with a specific gravity of 194 N/m 

cannot run safely.  The table also shows that drillpipes of 

242 N//m and 285 N/m cannot be safely run into curved 

wells at all selected field conditions when a 10 kN load on 

bit is applied.  Similar observations can be made in the case 

of pinned-pinned boundary conditions. 
 

CONCLUSIONS 

The major steps in developing a two-dimensional 

mathematical model based on Dareing and Ahlers model 

were described in details.  Various field parameters that 

affect the drillpipes in build-up sections, such as coefficient 

of friction, radius of curvature, and bending stiffness, were 

incorporated in the developed model.  Calculations show 

that the soft string model used to determine the running 

force is an approximation method provided that there are 

no severe local doglegs within the build-up section.  It was 

also found that the running force increases as the 

inclination angle, coefficient of friction, drillpipe bending 

stiffness, and radius of curvature increase along the build-

up section.  Moreover, a useful operating envelope for 

various drillpipe sizes and field conditions was developed. 

This envelope is a useful tool to field engineers during well 

planning phase. 
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APPENDIX 

Governing Equations of Drillpipes Running Through 

Curved Sections 

The governing equations are derived by considering the 

equilibrium of an infinitesimal element of a drilldrillpipes 

running through curved boreholes.  Figure A.1 shows a free 

body diagram of a differential element under compression.  

The drilldrillpipes was modeled as a multi-span simply 

supported beam with multiple supports representing contact 

between the drilldrillpipes and borehole walls starting from 

the kick-off point till the end of curve.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. A.1: Free body diagram of differential element under compression in 

terms of polar coordinates 

 

 

Using the equilibrium equation in the normal direction and neglecting higher order terms leads to the following first order of 

differential equation: 

             









R

P
q

ds

dV
                                        (A.1) 

where, q is a distributed force per unit length. 

Using the equilibrium equation of the moment about point a and neglecting the higher order terms, a first order differential 

equation is given by:  

           0
ds

dw
PV

ds

dM
                                   (A.2) 

Differentiating equation (A.2) with respect to s leads to the following equation: 

0
d

2

2

2

2


ds

wd
P

ds

dV

ds

M
                               (A.3) 

Note that the dependent variable, w , is the radial displacement of the beam where positive displacement is taken in the inward 

direction.  Considering the total curvature of the beam in terms of polar coordinates defined by 
2

2

2

11

ds

wd

R

w

R



 and 

assuming Euler Bending, the bending moment takes the form: 











2

2

2

1

ds

wd

R

w

R
EIM                           (A.4) 

Differentiating Equation (A.4) with respect to s twice becomes, 

R 

 

d 

a 

w 
 w + dw 

 P + dP 

       P 

 V + dV 

 V  

 M  

 M + dM 
  qds 

      t  
     n  

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS030345
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 03, March-2017

473













4

4

2

2

22

2 1

ds

wd

ds

wd

R
EI

ds

Md
             (A.5) 

Combining of Equations (A.1), (A.3), and (A.5) results in a fourth order differential equation in terms of radial displacement 

given by: 

 
2

2
2

4

4

ds

wd

ds

wd
       (A.6) 

 where, 











2

2 1
 

REI

P
         and      

REI

PRq

R

P
q

EI













1
              

The compressive force is assumed to be constant over a given section.  

 

Solution Method 

Solution to Equation (A.6) gives the deviation of the radial displacement of a drillpipes from the centerline of the target well 

path of a typical borehole and takes the following form: 

  )sin()cos(
2

1 2 sDsCBsAssw iiiiiii                              (A.7) 

where, 

R

EI
RP

PRq




   

Using the boundary conditions at the beginning of the ith  section (where ith  support is located, 0s and iww )0( ) in 

(A.7) gives: 

 

                iii wCBw )0(                           (A.8) 

Similarly, at the other end of the ith  section (where the ( 1i )th support is located), ils  , and 1)(  ii wlw . Substituting 

these values in equation (A.7) gives: 

1
2

)sin()cos(
2

1
)(  iiiiiiiiiiiii wlDlCBlAllw                (A.9) 

Substituting Bi from (A.8) into (A.9) and solving for iA  yields: 

i

ii
i

i

ii
iiiii

l

l
D

l

l
ClA

)sin()1)(cos(
)

2

1
(


 


              (A.10) 

where, i  is defined as  

i

ii

l

ww 
 1

i                                                  

The rate of change of w  with respect to ' s ' is given by: 

)cos()sin( sDsCAs
ds

dw
iiiiiiii                         (A.11) 

Using equation (A.11), the slope at the beginning of ith  section (at 0s ) can be calculated as: 

iiii DA                       (A.12) 

The bending moment at the beginning of the ith  section is given by: 











2

2

2

1

ds

wd

R

w

R
EIM ii

i                   (A.13) 

Differentiating Equation (A.7) twice with respect to ' s ' and substituting s  = 0 for ith  point gives: 

2

2

2

iii
i C

ds

wd
                      (A.14) 

Substituting Equation (A.8) and Equation (A.14) into Equation (A.13) results in: 
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R
EIM                (A.15) 

Substituting iA  and iB  into (A.12) and (A.15), respectively, results in a simplified form for the slope and bending moment at 

the beginning of  ith  section: 
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Solving equations (A.16) and (A.17) for the constants iC  and iD  gives: 
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Similarly, at the end of the ith  section when ils  , the slope at the ( 1i )th support is: 

)cos()sin(1 iiiiiiiiiiii lDlCAl                                  (A.21) 

Substituting constant iA  into (A.21) and simplifying, Equation (A.21) becomes:  
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                       (A.22) 

Equation (A.22) represents the slope at the end of ith  section. Similarly, the bending moment at the end of ith  section, 

when ils   (at ( 1i )th support) can be expressed as: 

)sin()cos(1        M
221
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i lEIDlEICR
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Expressing equations (A.22) and (A.23) in a matrix form leads to:  
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where, 
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Substituting constants 
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C
 from Equation (A.18) into Equation (A.24) gives: 
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As can be seen from equation (A.27) , the slope and bending moment at the end of a span ( 1i ) can be expressed in terms of 

the slope and bending moment at the beginning of the span. 

The generalized form of equation (A.27) can be written as: 
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where, 
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and where i  and i  are the matrices and vectors of constants of order 2x2 and 1x2, respectively, which are updated during 

each load increment where the initial values are given by     
1  0

0  1

1 
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 . Rewriting Equation (A.28) as: 
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where, 
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and 
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If the multi-span is composed of n  sections, the number of supports along the multi-span is 1n . Hence equation (A.29) will 

extend from 1 to 1n  and Equation (A.30) becomes: 
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                          (A.33) 

Equation (A.33) relates the slope and bending moment at the two ends of the multi-span.     and  11 nIf  are given as end 

constraints, the bending moments at the two ends of the multi span can be obtained using following equations:  

   
 

112

11111111
1


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

n

nnnM



                                                                          (A.34) 

     
121112211211  

nnnn MM                                                                     (A.35) 

Equation (A.34) represents the bending moment at the beginning of the tubular (
 0 ) and Equation (A.35) represents the 

bending moment at the end of the tubular (
 90 ) and vice versa. 11  and  nMMIf are given as end constraints, the slopes 

at the two ends of the tubular are given by: 
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111111211111  

nnnn M                                                            (A.37) 

Equations (A.36) and (A.37) represent the slope at the beginning of tubular (
 0 ) and at the end of tubular (

 90 ), 

respectively. 

 

Compression over a given span 

The assumption of a constant compressive force throughout a given section simplifies the undertaken problem while obtaining 

realistic engineering results.  Figure A.2 shows the forces on a given span.  The reaction force, iQ , and the compressive 

force, iP , at the ith  support were determined from the equilibrium conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. A.2: Force diagram of a given span 

 

Summation of forces in the normal direction gives the reaction and compressive forces, respectively: 
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
                           (A.38) 

Summation forces in the tangential direction gives: 

     iiiiiiiiii lBFWQQPP    sinsincos)( 1                       (A.39) 

where, 0P  is the load applied at the bit.  The body force is estimated by the following expression: 
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R 

µ 

10 25 50 75 100 200 

0.1       

0.2       

0.3       

0.4       
 

R 

µ 

10 25 50 75 100 200 

0.1       

0.2       

0.3       

0.4       
 

 
 

 

30000 

R 

µ 

10 25 50 75 100 200 

0.1       

0.2       

0.3       

0.4       
 

 R 

µ 

10 25 50 75 100 200 

0.1       

0.2       

0.3       

0.4       
 

R 

µ 

10 25 50 75 100 200 

0.1       

0.2       

0.3       

0.4       
 

R 

µ 

10 25 50 75 100 200 

0.1       

0.2       

0.3       

0.4       
 

Table 5 Parameters for safe running operation for drillpipes with different specific weights and at various field conditions
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