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Abstract—Preconditioned Conjugate Gradient Lanczos 

algorithm method is a powerful iterative method used to solve 

eigen-value problem of symmetric matrices encountered in 

Finite element method. A preconditioned iterative method for 

computing a few eigen pairs of large sparse symmetric matrices 

is presented in the present thesis. The proposed method of 

Preconditioned Conjugate Gradient Lanczos algorithm is 

suitable for determination of extreme eigenvalues. The 

convergence of the conjugate gradient method can be further 

improved by suitable preconditioning. The thesis presents 

solution of an actual problem by implementing the algorithm 

into the FEAST-SMT code. The results are verified with the 

existent Lanczos solver. It is noted that the implementation of 

this solver in FEAST drastically reduces the solution time 

compared to the existing solvers in FEAST-SMT. PCG Lanczos 

method is considered because of its improved efficiency in terms 

of time and accuracy compared to other methods. 

 

I. INTRODUCTION 

 

 The computational demand in aerospace industry is 

very high, due to the requirement of accurate prediction of the 

results on account of the less margin of safety available for 

the design of aircraft, spacecraft, launch vehicle space shuttle 

etc. Aerospace vehicles are very huge and complex in nature 

which requires a large number of degrees of freedom to 

model the structure, hence the time required to solve such 

model is also very high. The computational core that 

consumes more Central Processing Unit (CPU) time on 

almost all the numerical simulation packages in engineering 

is the linear solver. For this reason, the linear solver 

implementation demands efficient algorithms. A solver is a 

generic term indicating a piece of mathematical software, 

possibly in the form of a stand-alone computer program that 

’solves’ a mathematical problem. They are mainly, the direct 

solver and the iterative solver. Depending on the problems on 

hand, the latter of the two solvers can drastically reduce the 

solution (or elapsed) time and the computing resource (CPU 

time and disk space) requirements by orders of magnitude. 

Reduction in solution phase for General purpose Finite 

Element software will help analysts and design engineers to 

improve their productivity and product quality by arriving at 

better solutions faster. Typically, this solver is based on a 

classical solution method that could be a direct or iterative 

method. Besides, the matrix associated with the linear system 

of equations is often large and sparse. Iterative methods have 

the disadvantage that they are not general and require 

additional user settings; moreover they also need 

preconditioners to accelerate their convergence. However, 

these methods are popular because their main operation is the 

matrix - vector product, and this operation is highly 

parallelizable. Direct methods such as Cholesky, LDLT or LU 

are perfect black boxes as they require only the matrix (A) 

and the right hand side vector (b) of the linear system Ax= b 

as inputs. Eigen solver determines natural frequencies and 

mode shapes of structures, typically some of the most 

computationally demanding tasks in structural analysis. Eigen 

solver combines the speed and memory savings of PCG 

iterative solver with the robustness of the Lanczos algorithm. 

This powerful combination allows users to solve for the 

natural frequencies and mode shapes of their model using 

fewer computational resources, often in shorter total elapsed 

times than other available Eigen solvers. This project aims to 

develop an Eigen value solver utilizing PCG Lanczos 

algorithm. As problem size increased the PCG Lanczos Eigen 

solver was found to be faster than the Block Lanczoseigen 

solver for a higher number of requested modes. Like all 

iterative solvers, the PCG Lanczos Eigen solver is most 

efficient when the solution converges quickly. If a model 

does not converge quickly in a static analysis, the PCG 

Lanczoseigen solver would not be expected to converge 

quickly either and would therefore be less efficient. Other 

factors such as the size of the problem and the hardware being 

used can affect the decision on which Eigen solver to use. For 

example, on machines with slow I/O performance or limited 

hard drive space, the PCG Lanczos Eigen solver may be the 

better choice. 

 

II. DYNAMIC ANALYSIS 

 

Civil engineering structures are always designed to 

carry their own dead weight, superimposed loads and 

environmental loads such as wind or waves. These loads are 

usually treated as maximum loads not varying with time and 

hence as static loads. In some cases, the applied load involves 

not only static components but also contains a component 

varying with time which is a dynamic load. In the past, the 

effects of dynamic loading have often been evaluated by use 

of an equivalent static load, or by an impact factor, or by a 

modification of the factor of safety. Many developments have 

been carried out in order to try to quantify the effects 

produced by dynamic loading. Examples of structures where 

it is particularly important to consider dynamic loading 

effects are the construction of tall buildings, long bridges 

under wind-loading conditions and buildings in earthquake 

zones, etc. 

A. Vibration 

Vibrations are time dependent displacements of a 

particle or a system of particles with respect to an equilibrium 
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position. If these displacements are repetitive and their 

repetitions are executed at equal interval of time with respect 

to an equilibrium position, the resulting motion is said to be 

periodic. One of the most important parameters associated 

with engineering vibration is the natural frequency. Each 

structure has its own natural frequency for a series of 

different modes which control its dynamic behaviour 

 

III. FINITE ELEMENT METHOD 

 

Finite Element Method (FEM) is a versatile and popular 

numerical method due to its general procedure followed in 

assembly and solution techniques. This method differs only in 

the development of element matrices which needs the field 

expertise to obtain such matrices. This method is independent 

of boundary conditions and loading, because loads and 

boundary conditions can be applied anywhere on the 

structure. This method can be easily extended to non-linear 

and multi-physics field. 

A. Advantages of Finite Element Method 

 

1) Can readily handle very complex geometry. 

2) Can handle a wide variety of engineering problems 

like solid mechanics, dynamics, heat transfer 

problems, fluids, electrostatic problems etc. 

3) Can accommodate complex restraints 

(Indeterminate structures can be solved). 

4) Can handle complex loadings like nodal load (point 

loads), element load (pressure, thermal, inertial 

forces), time or frequency dependent loading, etc. 

 

IV.EIGEN VALUES AND EIGEN      VECTORS 

 

Aircrafts, Launch vehicles, Space-crafts, Space-stations, 

Space-shuttles, Re-usable Launch vehicles etc. are inevitably 

subjected to dynamic loadings during its service life. Analysis 

of such structures using finite element method requires large 

number of elements and nodes for accurate prediction of the 

analysis parameters such as mode shapes, frequencies etc. 

The requirement of large number of finite elements and nodes 

in the analysis will exceed the memory (RAM) of the 

computer. In-order to solve such huge structures, effective 

solvers was introduced in software. The solver which 

introduced in this thesis work is eigen solver, it is an iterative 

solver based on PCG Lanczos method. Eigen solvers 

determine natural frequencies and mode shapes of structures, 

typically some of the most computationally demanding tasks 

in structural analysis. 

The Eigen value problem is a problem of considerable 

theoretical interest and wide-ranging application. For 

example, this problem is crucial in solving systems of 

differential equations, analyzing population growth models, 

and calculating powers of matrices (in order to define the 

exponential matrix). Other areas such as physics, sociology, 

biology, economics and statistics have focused considerable 

attention on “Eigen values” and “Eigen vectors”-their 

applications and their computations 

 

 

A. Properties of Eigen values and Eigen vectors 

 

1) The absolute value of a determinant (|detA|) is the 

product of the absolute values of the Eigen values of 

matrix A 

2) c = 0 is an Eigen value of A if A is a singular 

(non invertible) matrix 

3) If A is an nxn triangular matrix (upper triangular, 

lower triangular) or diagonal matrix, the Eigen 

values of A are the diagonal entries of A. 

4) A and its transpose matrix have same Eigen values. 

5) Eigen values of a symmetric matrix are all 

real. 

6) Eigen vectors of a symmetric matrix are orthogonal, 

but only for distinct Eigen values. 

7) The dominant or principal Eigen vector of a matrix 

is an Eigen vector corresponding to the Eigen value 

of largest magnitude (for real numbers, largest 

absolute value) of that matrix. 

8) For a transition matrix, the dominant Eigen value is 

always 1. 

9) The smallest Eigen value of matrix A is the same as 

the inverse (reciprocal) of the largest Eigen value of 

A−1; i.e. of the inverse of A. 

 

V. LANCZOS AND PCG LANCZOS METHOD 

        

  The Lanczos process is an effective method for computing a 

few Eigen values and corresponding Eigen vectors of a large 

sparse symmetric matrix. Krylov subspace methods are 

popular for both Eigen value problems and linear equations 

problems. Krylov subspaces are used by the Lanczos 

algorithm for Eigen values and by the conjugate gradient 

method for linear equations. Modern iterative methods for 

finding one (or a few) Eigen values of large sparse matrices 

or solving large systems of linear equations avoid matrix-

matrix operations, but rather multiply vectors by the matrix 

and work with the resulting vectors. Starting with a vector, b, 

one computes , and then one multiplies that vector by A to 

find and so on. All algorithms that work this way are referred 

to as Krylov subspace methods; they are among the most 

successful methods currently available in numerical linear 

algebra. The best known Krylov subspace methods are the 

Arnoldi, Lanczos, Conjugate gradient, GMRES (generalized 

minimum residual), BiCGSTAB (biconjugate gradient 

stabilized), QMR (quasi minimal residual), TFQMR 

(transpose-free QMR), and MINRES (minimal residual) 

methods. 

The Iterative Solver is a PCG (Preconditioned Conjugate 

Gradient) solver. The PCG solver pre-conditions the global 

matrix instead of decomposing the global matrix, and then 

iterates the solution based on the pre-conditioned global 

matrix until the solution converges to certain accuracy. The 

preconditioning process takes very little time compared to the 

PCG iteration process and is based on the underlying physics 

of the discretization of a continuous problem, geometry of the 

elements, and characteristics of the different types of 

elements. 

Direct solvers decompose the global matrix and goes 

through forward and backward substitution to obtain a 
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solution. Once the global matrix is decomposed, multiple 

solutions can be obtained very fast from forward and 

backward substitution. Compared to the basic frontal solver, 

the sparse matrix solver stores the global matrix in a very 

compact form, and the operations are performed only on 

nonzero values. Therefore, the sparse matrix solver requires 

far less disk space and solution time than the basic frontal 

solver, especially for largesize problems. 

The Lanczos algorithm is an iterative algorithm invented 

by Cornelius Lanczos that is an adaptation of power methods 

to find Eigen values and Eigen vectors of a square matrix or 

the singular value decomposition of a rectangular matrix. It is 

particularly useful for finding decompositions of very large 

sparse matrices. The power method for finding the largest 

Eigen value of a matrix A can be summarized by noting that 

if x0 is a random vector and xn+1 = Axn, then in the largest n 

limit,  approaches the normed Eigen vector corresponding 

to the largest Eigen value. 

 

VI. CHOLESKY DECOMPOSITION 

    

  Cholesky method is a direct method for solving a linear 

system that makes use of the fact that any square matrix [A] 

can be expressed as the product of an upper and a lower 

triangular matrix. This method can express any square matrix 

as a product of two triangular matrixes. The subsequent 

solution procedure is: 

 [A]x = b  

The matrix [A] can be written as [A] = [aij] = [L][U] Where; 

[L] = [lij] is a lower triangular matrix and [U] = [uij] is a unit 

upper triangular matrix. 

For example 

 
So we have, 

 
 

Cholesky Factorisation Algorithm 

for k = 1 to n  

akk = √ akk  

for i = k + 1 to n  

aik = aik /akk 

 end  

for j = k + 1 to n 

 for i = j to n 

 aij = aij − aikajk  

end  

end 

end 

 

 VII. SPARSE MATRIX 

  In the subfield of numerical analysis, a sparse matrix is a 

matrix populated primarily with zero. The term itself was 

coined by Harry M. Markowitz. Conceptually, sparsity 

corresponds to systems which are loosely coupled. Operations 

using standard dense matrix structures and algorithms are 

slow and consume large amounts of memory when applied to 

large sparse matrices. Sparse data is by nature easily 

compressed, and this compression almost always results in 

significantly less computer data storage usage. Indeed, some 

very large sparse matrices are infeasible to manipulate with 

the standard dense algorithms. 

There are many methods for storing the data. They are 

compressed row and column storage, block compressed row 

storage, diagonal storage, jagged diagonal storage, and 

skyline storage. 

 

A. Compressed row storage 

The compressed row and column storage formats are the 

most general: they make absolutely no assumptions about the 

sparsity structure of the matrix, and they don’t store any 

unnecessary elements. On the other hand, they are not very 

efficient, needing an indirect addressing step for every single 

scalar operation in a matrix-vector product or preconditioner 

solve. The compressed row storage (CRS) format puts the 

subsequent non zero of the matrix rows in contiguous 

memory locations. 

 

 
Fig. 1. Compressed Row Storage 

 

VIII. PCG LANCZOS ALGORITHM  USING   

LANCZOS ALGORITHM 

   Eigen solvers determine natural frequencies and mode 

shapes of structures, typically some of the most 

computationally demanding tasks in structural analysis. In 

this thesis an algorithm is developed for preconditioned 

conjugate gradient method with the robustness of Lanczos 

algorithm. By using this algorithm an Eigen value solver is 

developed. The algorithms are shown below 

 

IX.           INTRODUCTION OF THE PCG    

LANCZOS ALGORITHM TO THE SOFTWARE 

PREWIN 9.0. 

 

     FEAST (Finite Element Analysis of Structures) is a finite 

element software which consists of a pre-processor (PreWin) 

and a post-processor (SMT Solver) both developed by VSSC. 

 

 
 

Fig. 2. General Representation of the software 
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Fig. 3. PreWin 9.0 Workbench 

 

SMT (Substructured and Multithreaded) software is 

developed as part of FEAST family of structural analysis 

programs, with a modified architecture using object-oriented 

programming concepts. SMT uses sub structuring techniques 

for its analysis capabilities. Sub-structuring is a well-

established method in finite element technology. In this 

method the complete structure is subdivided into number of 

substructures called super elements. For each substructure the 

nodes are distinguished as internal or external nodes 

according to the position of the node in the substructure. 

After assembling the stiffness matrices for all the 

substructures the internal degrees of freedom are condensed 

out and the stiffness matrix corresponding to the external 

degree of freedom are assembled and solved for external 

displacements. The external displacements are used to 

calculate the internal displacements of each substructure. 

Most of the computations associated with the substructure, 

like, node renumbering, assembly, internal variable 

evaluation etc. can be performed independent of other 

substructures (Fig.7.3). The sub-structuring approach is 

advantageous due to the following reasons: 

1) It splits the work involved in the calculation process 

into several independent and discrete packages 

enabling parallel processing 

2) Much of the work carried out for any given 

substructure can be used again in later calculations. 

3) It reduces the amount of memory required to solve 

the model. 

The parent software FEAST (Finite Element Analysis of 

Structures) consists of several hundred lines of procedural 

code written in FORTRAN77. Data such as nodal coordinates 

and element connectivity are stored in multi-dimensional 

arrays, which are accessed throughout the program. The 

global access decreases the flexibility of the system. It is 

difficult to modify the existing codes and to extend the codes 

to adapt them for new uses, models and solution procedures. 

The inflexibility is experienced in several ways (1) a high 

degree of knowledge of the entire program is required to 

work in even a minor portion of the code, (2) reuse of code is 

difficult, (3) a small change in the data structures can have a 

ripple effect throughout the system, (4) the numerous 

interdependencies between the components of the design are 

difficult to determine and (5) the integrity of the data 

structures is not assured. 

A redesign of the software is needed to remove this 

inflexibility. The application of object-oriented design has 

proven to be very beneficial to the development of flexible 

programs. The basis of object-oriented design is abstraction. 

The object-oriented philosophy abstracts out the essential 

immutable qualities of the components of the finite element 

method into classes of objects. Objects store both their data, 

and the operators on the data that may be used by other 

objects. Thus the software is redesigned to C++. 

 

X. NUMERICAL STUDY 

   

 Civil engineering structures are always designed to carry 

their own dead weight, superimposed loads and 

environmental loads such as wind or waves. These loads are 

usually treated as maximum loads not varying with time and 

hence as static loads. In some cases, the applied load involves 

not only static components but also contains a component 

varying with time which is a dynamic load. In the past, the 

effects of dynamic loading have often been evaluated by use 

of an equivalent static load, or by an impact factor, or by a 

modification of the factor of safety. Many developments have 

been carried out in order to try to quantify the effects 

produced by dynamic loading. Examples of structures where 

it is particularly important to consider dynamic loading 

effects are the construction of tall buildings, long bridges 

under wind-loading conditions and buildings in earthquake 

zones, etc. Typical situations where it is necessary to consider 

more precisely the response produced by dynamic loading are 

vibrations due to equipment or machinery, impact load 

produced by traffic, snatch loading of cranes, impulsive load 

produced by blasts, earthquakes or explosions. So it is very 

important to study the dynamic nature of structures. 

Vibrations: Vibration are time dependent displacements of 

a particle or a system of particles with respect to an 

equilibrium position. If these displacements are repetitive and 

their repetitions are executed at equal interval of time with 

respect to equilibrium position the resulting motion is said to 

be periodic. One of the most important parameters associated 

with engineering vibration is the natural frequency. Each 

structure has its own natural frequency for a series of 

different modes which control its dynamic behavior. 

Whenever the natural frequency of a mode of vibration of a 

structure coincides with the frequency of the external 

dynamic loading, this leads to excessive deflections and 

potential catastrophic failures. This is the phenomenon of 

resonance. An example of a structural failure under dynamic 

loading was the well known Tacoma Narrows Bridge during 

wind induced vibration. In practical application the vibration 

analysis assumes great importance. For example, vehicle-

induced vibration of bridges and other structures that can be 

simulated as beams and the effect of various parameters, such 

as suspension design, vehicle weight and velocity, damping, 

matching between bridge and vehicle natural frequencies, 

deck roughness etc., on the dynamic behavior of such 

structures have been extensively investigated by a great 

number of researchers. Every structure which is having some 

mass and elasticity is said to vibrate. When the amplitude of 

these vibrations exceeds the permissible limit, failure of the 

structure occurs. To avoid such a condition one must be 
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aware of the operating frequencies of the materials under 

various conditions like simply supported, fixed or when in 

cantilever conditions. 

 

A. Application of Finite Element Software Feast 

FEAST is a Finite element analysis software package 

developed in VSSC, Thiruvananthapuram, useful for 

structural and thermal analysis of structures. Initiated in 1977, 

the development and augmentation of the package has been 

continuing and over the years FEAST has evolved into a 

family of software modules, each module catering to a 

specific set of capabilities. The FEAST family has modules 

designated as FEAST-B, FEAST-C4.2, FEAST-HT 3.0, 

FEAST-NL 4.0, FEAST-R 2.0, PREWIN 9.0 and SMT 2.0, 

the subscript indicating the type of analyses that the module 

can cater to. This thesis develops a code for Eigen solver 

combined with Preconditioned Conjugate Gradient method 

with the robustness of Lanczos algorithm in FEAST-SMT. To 

validate the performance of the developed code in FEAST-

SMT certain test problems are carried out and the results are 

compared with other general purpose software. 

 
TABLE 1.MATERIAL PROPERTIES OF THE   CYLINDER 

 

Material properties Values 

Modulus of elasticity 
2.05e+11 

N/m2 

Poissons ratio 0.3 

Mass density 7800 kg/m3 

Boundary conditions Ux, Uy, Uz , Rx , 

Ry , Rz 
0,0,0,0,0,0 

Analysis type 
Free 

Vibration 

Number of Eigen values 6 

 

 

TABLE 2. COMPARISON OF FREQUENCIES AND TIME DURATION 
USING PCG LANCZOS SOLVER, LANCZOS SOLVER AND ANSYS 

 

Sl 
no 

PCG Lanczos 
solver 

Lanczos 
solver 

 Time taken Time taken 

 ( 2.215sec) (3.089 sec) 

 Frequencies Frequencies 

 (Hz) (Hz) 

1 653.904 653.904 

2 653.904 653.904 

 

B. Dynamic Analysis Clamped Free Cylinder Using FEAST 

1) Cylinder 32 × 16 Fixed at the Bottom: The model of 

a clamped-free cylinder in PreWin 9.0 (FEAST). The 

cylinder is made up of steel. 4 noded shell elements is used 

for modelling. The geometric details are shown in figure 4 

and material properties are shown in table I. 

2)  

 
Fig. 4. Model of 32×16 Meshed Cylinder 

 

Cylinder 32 × 16 is modeled and analyzed using FEAST 

and ANSYS. The same model is analyzed under free 

vibration; frequencies and time taken are then compared. The 

results obtained were tabulated. It shows that the frequencies 

are almost matched. But in case of time taken the result 

obtained from FEAST shows slight variation from those 

obtained using ANSYS. When compared with ANSYS, PCG 

Lanczos solver shows better performance than Lanczos 

solver. 

3) Sounding Rocket Model: A typical sounding rocket 

model discretized with four noded quadrilateral plate/shell 

elements is shown in Fig.5 .The rocket model is subjected to 

free vibration with no boundary condition (free-free 

condition). The comparison of frequency and time of the 

model with 

NASTRAN results is shown in Fig. 6 and 7. The table III 

 

 
Fig. 5. Typical Sounding Rocket Model 

 

TABLE 3. COMPARISON OF FREQUENCIES  USING PCG 

LANCZOS SOLVER, LANCZOS SOLVER AND NASTRAN 
 

Sl no PCG Lanczos solver Lanczos solver NASTRAN 

 Frequencies Frequencies Frequencies 

 (Hz) (Hz (Hz) 

7 53.0393 53.0393 59.601 
8 61.4299 61.4299 61.429 
9 61.6813 61.6813 61.681 

10 63.0348 63.0348 63.034 
11 64.8052 64.8052 64.805 
12 65.5802 65.5802 65.580 

 

Table 3 shows the comparison of bending frequencies using 

PCG Lanczos solver, Lanczos solver and NASTRAN. 

  

 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRACE-2015 Conference Proceedings

Volume 3, Issue 29

Special Issue - 2015

5



TABLE 4.COMPARISON OF TIME TAKEN BY SMT SOLVER 

 

 
Fig. 6. Seventh mode shape from PreWin 

 

XI. CONCLUSION 

   An eigen solver is developed using PCG Lanczos 

algorithm and it is implemented in FEAST-SMT. The code 

was tested using some numerical problems and results are 

compared with other solvers in FEAST-SMT. From tables 5.1 

and 5.2 it is seen that the natural frequencies are almost 

matched and the time taken by each solver are varying. But 

the variation in time is found to be least in PCG Lanczos 

solver when compared to other solvers. The ultimate aim of 

the project is the same. The code developed for eigen solver 

using C++ programming language has been implemented in 

FEAST software. The 

 

 
Fig. 7. Seventh mode shape from Nastran 

 

developed code is validated using numerical examples which 

include cylinder and an actual launch vehicle model. 

Cylinder and an actual launch vehicle with different end 

conditions subjected to free vibration analysis are adopted as 

test cases to validate whether the developed code works well 

for any element. The results obtained from FEAST software 

are compared with the values obtained from other general 

purpose software. The comparison shows that the FEAST 

results are in good agreement with other software results. 

In order to validate whether the developed code is capable 

of carrying out the free vibration analysis of not only in case 

of simple element like cylinder, a typical sounding rocket 

model is tested. Results obtained from FEAST software are 

compared with NASTRAN, finite element software 

frequently being used in Vikram Sarabhai Space Centre for 

dynamic analysis of launch vehicles. Comparison shows a 

good match between both the results. Hence it is concluded 

that the code developed for eigen solver extraction works well 

both in simple as well as complex domains. 
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