

Development of Domestic Purpose Hydraulic Press Oil Expeller

A Ravindra Reddy¹,Jaya Kumar²,Yuvaraj J M³,Vincent Joseph P V⁴, Shekar K⁵

¹²³⁴Student ,Department of Mechanical Engineering ,BITM Ballari

⁵Asst Professor ,Department of Mechanical Engineering ,BITM Ballari

Abstract:- Considering the increasing levels of booming technology in use of hydraulic and pneumatic power in transmission of force. And considering the increase in adulteration of edible oil in this modern scenario of the world. In addition to the references of various oil Extraction methods. This fabricated model named as domestic purpose hydraulic press oil expeller consists of manually operated 5-ton bottle necked jack used to press and extract the oil from the seeds thereby to increase the mechanical advantage of extracting pure oil in home itself.

Key words:- 5ton bottle necked jack

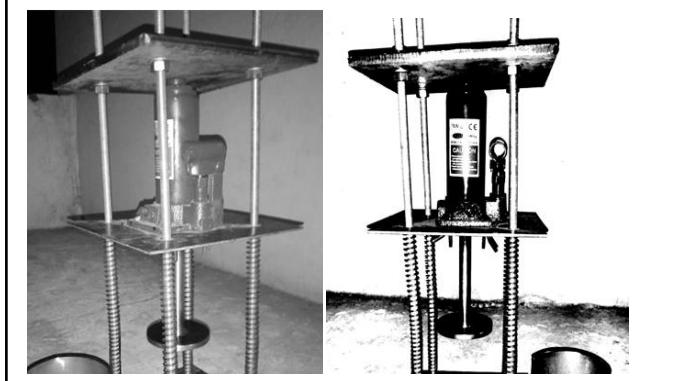
1. INTRODUCTION

Edible oils are used as cooking or frying medium, salad oil or in food products formulation. They are important from nutritional point of view but ensuring their purity is a concern since old times. Because of their greater demand in national and international market adulteration in high price oil with low price oil is a major issue. It can affect the health of consumers adversely. Some of the harmful effects of adulterated oil are Mineral oil and argemone oil in edible oil cause heart disorders, liver problems and cause carcinogenic effects. By investigating all such types of harmful effects of consumption of adulterated oil and taking it into account as one of the major problems in order to reduce it to an extent we have developed a 5-ton hydraulic bottle jack powered hydraulic press in order to extract fresh and pure oil from seeds in home itself.

Oil expeller:- Expeller presses (also called oil pressing) are a mechanical method for extracting oil from raw materials. The raw materials are squeezed under high pressure in a single step. When used for the extraction of food oils, typical raw materials are nuts, seeds and algae, which are supplied to the press in a continuous feed. As the raw material is pressed, friction causes it to heat up; in the case of harder nuts (which require higher pressures) the material can exceed temperatures of 120 °F (49 °C).

Oil extraction methods: -

1. Chemical method: - solvent, enzymes.
2. High pressure CO₂.
3. Distillation.
4. Mechanical extraction: -Hydraulic press, screw press.


Hydraulic press: - A hydraulic press is a machine press using a hydraulic cylinder to generate a compressive force. This fabricated model is very simple and easy in construction it consists of a 5-ton powered hydraulic bottle

jack and a cylinder as their main components. The major advantage of this model is the parts of it are not permanently fixed they can be assembled and dis-mantled whenever necessary. It contains a cylinder in which seeds are filled through which oil is to be extracted as it is powered by a hydraulic jack as soon as the ramming begins the pressing plate comes down step by step exerting pressure on the seeds on continuing the process the seeds get compressed into cake and oil is expelled out through the passage provided.

2. METHODOLOGY

In achieving the aim of the work literature survey of various papers have been done in order to obtain an idea of effective method of expelling oil from the seeds both in the terms of cost and strength. After literature survey we came to a conclusion that hydraulic press is more effective and the product has been designed based on the formulas and the detailed drawing of the developed product has been done using the software catia v5.

3. EXPERIMENTAL PROCEDURE AND TESTS

The above present two figures represents the experimental setup of the oil extractor.

The design parameters of the model are as follows.

1.Stud:-

d=12mm.

L=625mm.

Threading =1mm.

Material= Galvonised Iron.

Stress = 200N/mm².

2.Spring:-

No of coils i=43.

Overall length of spring =300mm.

No of springs =4.

Dia of coil =2mm.
 Internal dia of the spring =16mm.
 Thickness of coil =1mm.
 Outer dia of the spring =18mm.
 Material =Mild steel.
 Allowable stress =56Mpa.

3. Plates:-

Material =Mild steel
 Top plate Thickness=10mm
 Area =250x250mm and hole dia=12mm
 Middle and lower plate thickness =4mm
 Area =250x250mm

Middle plate hole diameter =14mm
 Lower plate hole diameter =12mm

4. Pressing plate:-

Diameter =96mm
 Length =150mm
 Material =mild steel
 $\sigma_t = 56 \text{mpa}$

5. Cylinder:-
 Outer dia =100mm
 Inner dia=98mm
 Thickness =1mm
 Length =150mm
 Material =Stainless steel

Design Calculations

1. Design of piston:-

$$F = \frac{\pi}{4} \times D_p^2 \times P$$

$$D_p = 25 \text{mm}$$

$$P = 1.725 \text{Mpa}$$

$$F = \frac{\pi}{4} \times 25^2 \times 1.725$$

$$F = 846.75 \text{N}$$

2. Design of cylinder:-

$$t = \frac{D_i}{2} \left[\left(\frac{\sigma_t + P_i}{\sigma_t - P_i} \right)^{\frac{1}{2}} - 1 \right]$$

W.K.T thickness =1mm

σ_t ultimate = 220mpa
 FOS =4

σ_t allowable = 55mpa
 $P_i = 1.125 \text{ mpa}$

On substituting all the above values in the above equation we get

$D_i = 96.76 \cong 98 \text{mm}$
 $D_o = D_i + 2t$

$D_o = 100 \text{mm}$

3. Load on each stud:-

$$F = \frac{\pi}{4} \times D_p^2 \times \sigma_t$$

$$\sigma_t$$
 ultimate = 200mpa
 FOS=3

$$\sigma_t$$
 allowable = $\frac{200}{3} = 66.67 \text{mpa.}$

$$F = \frac{\pi}{4} \times 25^2 \times 66.67$$

$$F = 32726.55 \text{N}$$

4. Design of spring:-

$$\text{Solid Length } L_s = n' \times d$$

$$L_s = 86 \text{mm.}$$

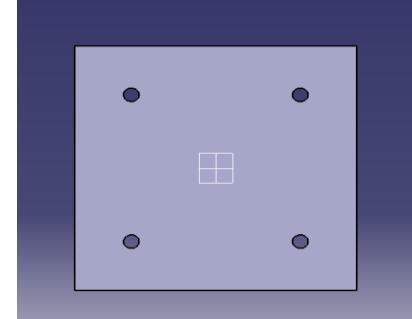
$$\text{Spring Index } c = \frac{D}{d} = \frac{16}{2}$$

$$C=8$$

$$\text{Stiffness } K = \frac{\frac{4c-1}{4c-4}}{\frac{0.615}{c}} = \frac{4 \times 8 - 1}{4 \times 8 - 4} + \frac{0.615}{8}$$

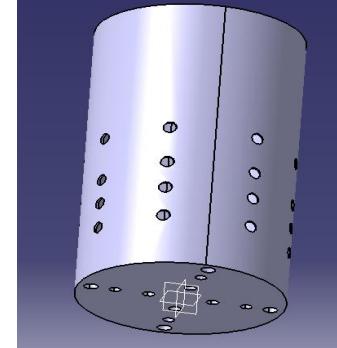
$$K=1.1840$$

$$\text{Pitch} = \frac{l_o - 2d}{i} = \frac{300 - 2 \times 2}{43}$$

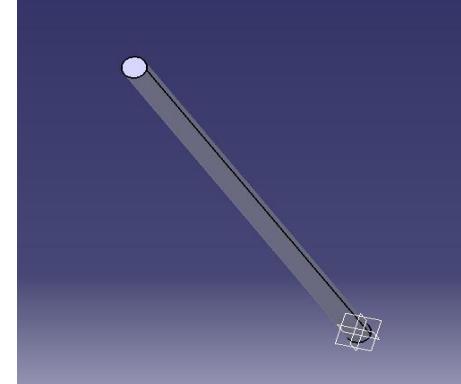

$$\text{Pitch} = 6.88 \text{mm} \cong 7 \text{mm}$$

$$\text{Free length } l_f = (i_p + 2d) = (43 \times 7 + 2 \times 2)$$

$$l_f = 305 \text{m}$$


Assembly sequence

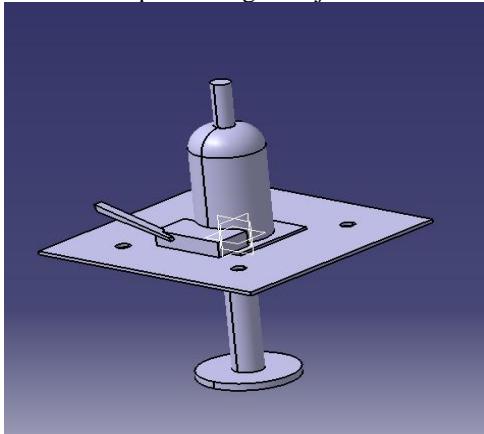
1. Down plate


Material =Mild steel Dimensions =250x250x4mm

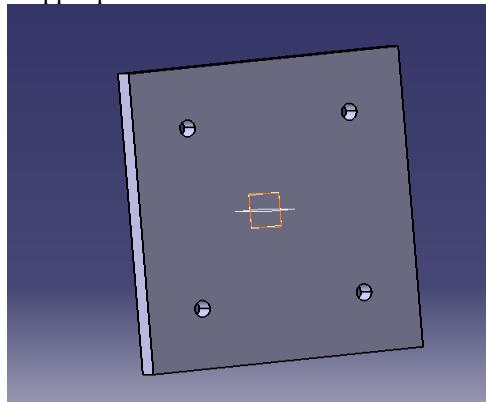
2.Cylinder

Outer dia =100mm Inner dia=98mm Thickness =1mm
 Length =150mm Material =Stainless steel

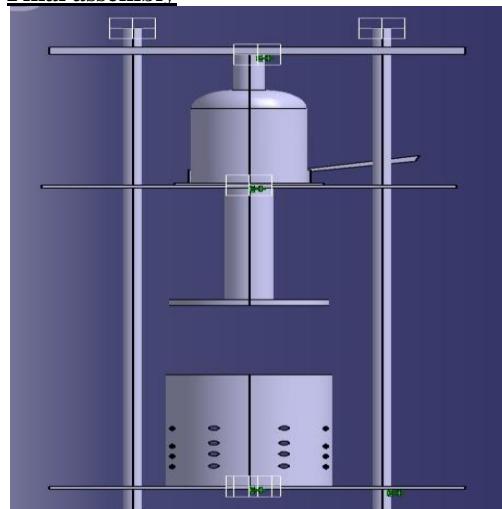
3.Stud


Material = GI Dimensions =650x12mm

4.Spring


Overall length of spring =300mm.
Internal dia of the spring =16mm.
Outer dia of the spring =18mm. Material =Mild steel.

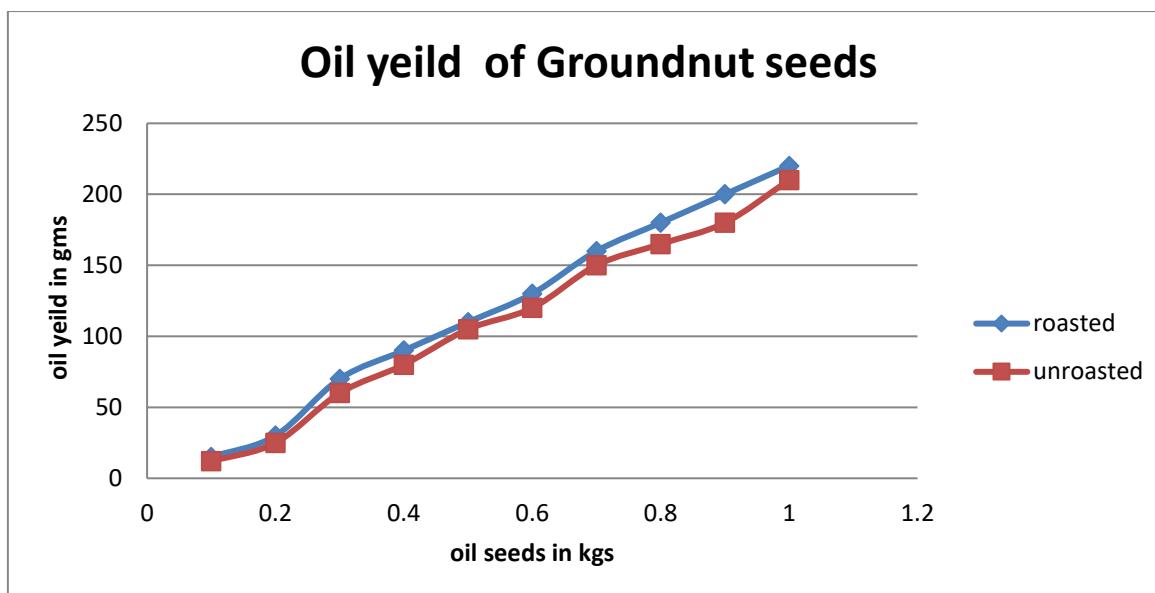
5.Middle plate along with jack and ram



Middle plate hole diameter =14mm. Thickness =4mm.
Jack capacity =5tons. Pressure exerted by jack=1.725mpa.
Pressing plate:-Diameter =96mm Length =150m Material
=mild steel

6.Upper plate

Material =Mild steel Dimensions =250x250x10mm
Final assembly



Procedure:-The procedure of the expulsion of oil from the seeds takes place as follows.

- The assembly of the equipment should be made as shown in the design part as final assembly image.
- The cylinder should be cleaned thoroughly and should be wiped cleanly with a dry cloth
- The quantity of seeds should be weighed and should be wrapped in a thin layered cloth and should be placed in the cylinder.
- The cylinder should be placed in between the middle and the lower plate along with the collecting bowl under it.
- The jack should be pumped which starts to lift the jack piston towards top pushing the pressing ram downwards.
- The pressing ram crushes the seeds and expels oil from it.
- When the release nut of the jack is activated the compression springs pushes the ram to its original position and the fresh oil expelled is collected from the collecting bowl.

4. RESULTS AND DISCUSSIONS

The tests have been performed on the two forms of Groundnut seeds that is of roasted and unroasted .And the oil yield % obtained was of 60% the graph has been plotted of “oil yield in gms Vs oil seeds in kgs”.

5. CONCLUSION

A domestic purpose Hydraulic press Oilexsteller has been developed. The machine is capable of pressing various kinds of seeds in their different forms i.e. roasted and unroasted seeds in home itself. All the machine parts worked effectively without any damage. The overall costing of the machine has been managed to be very low that is of around INR 6000/-.

The future developments that can be made in this equipment is the up gradation of jack to 10ton or 20ton which helps in pressing the seeds more effectively with less amount of operating pressure even the equipment can be electrified by replacing hydraulic jack with motorized screw jack.

REFERENCES

[1] F.A. Oluwole, M.K. Adam and M.B. OUMAROU, "Performance Test of a Hydraulic Press for Oil Extraction" University of Maiduguri, Nigeria, June 2016, volume XXVI.

[2] A. O. Arisanu, "MECHANICAL CONTINUOUS OIL EXPRESSION FROM OILSEEDS: OIL YIELD AND PRESS CAPACITY" Transylvania University of Brasov, Brasov, ROMANIA, 5th international conference "computational mechanics and virtual engineering". Comec 2013 October 2013.

[3] IlonkaSaykova, Bartosz Tylkowski, Cristina Popovici, Georgi Peev, "EXTRACTION OF PHENOLIC AND FLAVONOID COMPOUNDS FROM SOLID WASTES OF GRAPE SEED OIL PRODUCTION BY COLD PRESSING". Journal of chemical technology and metallurgy 20th December 2017.

[4] P.A. Azodo, M.Eng. A.B. Hassan, Ph.D. Ezenwa, B.Eng and P.U. Ogban, B.Eng. "Design and Fabrication of Motorized Hydraulically Operated Palm Oil Press." Federal University of Agriculture, PMB 2240, Abeokuta, Nigeria.

[5] AJIT SURESH PAWAR, LAXMAN PATIL, ABHIJEET SHIVAJI PHADATARE, GANESH SIDHESHWAR SHINDE, PROF. GHODAKE RAVINDRA, Novateur Publications "INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJERT] REVIEW PAPER ON DESIGN AND FABRICATION OF HYDRAULIC GROUNDNUIT OIL EXPELLE" volume 4, issue 4, April 2017.

[6] A.E. KATEA, U.C. LOHANIB, J.P. PANDEY, N.C. SHAHID, A. SARKAR, "Traditional and mechanical method of the oil extraction from wild apricot kernel: a comparative study". research journal of chemical and environmental sciences volume 2, April 2014.

[7] International Journal of Environment, Agriculture and Biotechnology (IJEAB) Vol-1, Issue-2, July-Aug-2016] ISSN: 2456-1878 www.ijeb.com Page | 106 "Technologies for Oil Extraction: A Review" Siraj Mohamad Ali Sheikhl, Zakiuddin Syed Kazi 1Department of Mechanical Engineering, 1G.H.Raisoni Academy of Engineering & Technology, Nagpur, India 2Department of Mechanical Engineering, Priyadarshini College of Engineering, Nagpur, India

[8] "Optimization of mechanical oil extraction from Jatropha curcasL kernel using response surface method" Erna Subrotoa, Robert Manurungb, Hero Jan Heeresa, Antonius AugustinusBroekhuisa,*aDepartment of Chemical Engineering, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, The NetherlandsbSchool of Life Sciences and Technology, InstitutTeknologi Bandung, Jl. Ganesh 10, Bandung, Indonesiaa Proceedings of the World Congress on Engineering and Computer Science 2016 Vol II WCECS 2016, October 19-21, 2016, San Francisco, USA "Development of an Improved Motorized NmanuAkuoyibo (Coconut Oil) Extracting Machine" for Employment Generation in Nigeria Gbasouzor Austin Ikechukwu, Member IAENG, Nwanekzie Martin Nduka

[9] Proceedings of Second International Interdisciplinary Conference On Global Initiatives for Integrated Development (IICGID 2015 Chukwuemeka Odumegwu University, Igbariam Campus Nigeria) Sept. 2 – 5, 2015 "An Overview of Groundnut Oil Extraction Technologies" Lawan I. Agricultural Engineering Department, Bayero University Kano. Ali M. A. Agricultural Engineering Department, Bayero University Kano. Abubakar M. S. Agricultural Engineering Department, Bayero University Kano. Muhammad A.I. Agricultural Engineering Department, Bayero University Kano.