International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181

Vol. 4 Issue 08, August-2015

Development of Communication Manager
Module for Automotive Platform Software based
on AUTOSAR 4.0

Neethu Mary Judy
M. Tech(Embedded Systems)
Sree Buddha College of Engineering
Pattoor, Kerala
India

Jayaraj V. S
Department of ECE
Sree Buddha College of Engineering
Pattoor, Kerala
India

Kuruvilla Jose
Specialist
Automotive Electronics
Tata EIxsi
Trivandrum, Kerala
India

Abstract—Automotive industry is growing rapidly. This
rapid growth has increased the challenges in different forms
including complexity. AUTomotive Open System Architecture
(AUTOSAR) provides a standardized automotive software
platform. Communication Manager (ComM) module in BSW
(Basic Software) layer is responsible for the control of
communication services. This paper is about the development of
ComM module in AUTOSAR 4.0. The functionality of ComM
module is obtained by realizing specific Application
Programming Interfaces (APIs).

Keywords—AUTOSAR, ComM, API, ECU

. INTRODUCTION

Development in technology and increase in demands led to
tremendous growth in automotive industries. The ECUs in
vehicles serve different functionality. Since ECUs are
delivered by different vendors, the automobile manufacturers
experienced difficulties in terms of complexity, diagnostics,
inter ECU communication etc. So there arose a need for
standard software in ECUs. AUTOSAR is standardized and an
open automobile platform software. The goal of AUTOSAR is
to have a transition from customer specific software to
functional specific software. It is hardware independent.

Il. AUTOSAR SOFTWARE ARCHITECTURE

A Dbasic design concept of the AUTOSAR software stack
is the separation between application and infrastructure.
AUTOSAR standard follows a layered architecture, which
provides modularity concept. The software architecture
contains three basic layers: Application layer, RTE (Run Time
Environment) layer and Basic Software (BSW) layer. Fig. 1
shows the software layers in AUTOSAR architecture.

|JERTV 415080104

Application Layer

Runtime Environment
Nemory Servicas Communication Services

System Servicas

Microcontroller Drivers Memory Drivers Communication Drivers

Fig.1. Software layers of AUTOSAR

RTE allow the AUTOSAR software components to be
independent from the mapping to the specific ECUs. BSW is
further divided into Services, ECU Abstraction, Micro
controller Abstraction and complex drivers. Being the lowest
software layer, Micro controller Abstraction layer has direct
access to the micro controller and internal peripherals. ECU
Abstraction layer interfaces the drivers of Micro controller
Abstraction layer. The highest layer in Basic Software layer is
the System Service layer which serves a number of services.
These services include vehicle communication management,
ECU state management, diagnostics services, memory
management etc. The task of complex drivers is to provide the
possibility to integrate special purpose functionality.

M\crccomroller

www.ijert.org 44

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

I11. COMMUNICATION MANAGER MODULE

Communication Manager (ComM) module acts as a
resource manager. It is responsible for managing the
underlying communication services. Functions of ComM
include allocation of necessary resources for the requested
communication mode, switches to a communication mode as
requested by the user, implement channel state machine for
every channel to control more than one communication
channel of an ECU etc.

A. Communication Modes

The ComM module
communication modes.

1. COMM_NO_COMMUNICATION
2. COMM_FULL_COMMUNICATION
3. COMM_SILENT_COMMUNICATION

The COMM_FULL_COMMUNICATION state has the
following sub states:

e COMM_FULL_COM_NETWORK_REQUESTED
e COMM_FULL_COM_READY_SLEEP

The COMM_NO_COMMUNICATION state has the
following sub states:

e COMM_NO_COM_REQUEST PENDING
e COMM_NO_COM_NO_PENDING_REQUEST

A user cannot request for
COMM_SILENT_COMMUNICATION. The default state of
a communication channel is
COMM_NO_COMMUNICATION with sub state
COMM_NO_COM_NO_PENDING_REQUEST. ComM
channel will allow communication only if
CommunicationAllowed flag is TRUE in
COMM_NO_COM_REQUEST_PENDING.

provides three different

IV. DESIGN

ComM module is developed by coding all the APIs
realized by it for satisfying its functional specification.
Communication (Com) module can transmit and receive
messages only if ComM module makes the channel in
COMM_FULL_COMMUNICATION state.
COMM_NO_COMMUNICATION mode does not support
transmission and reception of messages. For the design of
ComM module, High Level Design (HLD) and Low Level
Design (LLD) were carried out. HLD includes the
identification of the APIs needed for the implementation of
the ComM module and LLD gives a detailed idea and design
of each APIs identified in HLD. Both HLD and LLD are done
using the tool Enterprise Architect Version 9.3.

A. High Level design of ComM

Fig. 2 specifies the dependency diagram in which
dependencies to other modules is shown. The Communication
Manager Module requests the communication capabilities,
requested from the users, from the Bus State Manager
Modules.

|JERTV 415080104

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181

Vol. 4 Issue 08, August-2015

orip Companents /
wmodules amodules amodules «modulen amoduley
schh:SchM Rie:Rte Det: et Dom:Dem MmNkt
T ‘ T
| - ’ |
| aealizen —— »
| ! aealizen | wtealizey SedlIZED
i " aealizes
| ,
|
|
| |
| ! I | I }
|- | | I\ NVM_ReadBlok
> | | Comh_Dem | | }
. | I
Comh:: He Det RepotEor | | NVM_WiteBlod
Resource Dem_comM | us‘e
i ausen
pae O & |
1 | | |
wtealizen : } aealizes } . }
| | i | ! U e mandatoys g
S:I__OG """ amodulen
Com T Ecubl:Ecubt
Comh_Ecu
|
asey
A |
se wtealizen emodule
. — 3 Bswh
| } I | ‘ ! Bl _Requesode] BN

st ; ceonfiguiables
I

wusen !

sty I nfinuables

|
| F"'"j\'"'f:::i: i
} | | | |
P! | | [
} | | [tm
! | |/ComM_BusSm !
s | VI ! I
| ausen |
i §
EthSm_CamM} | amandatorys
]

‘ | FiSm }
| ! |
|

|
|
|
|

Comh_Nm |
|
|
CanSm_Comh }
|
|

|
|
wusen |
Is¢
|

| ComM_COMC <>

user
wealizen | &

wtealizen

I
wtealizen «mandatorys

|

atealizen

|
|
|
mandatoy |
|
|
aealizen |
|
Il

.
g g g g g g
«modules «modules amoduley amodules «modules «modules

EthSm: Frém:; CanSm:; Lingm: Nen::Nm Com:Com
BhSm FrSm CanSi

LinSm

Fig. 2. High level design of ComM

ComM module is initialized by EcuM-Fixed. All
validation of wake up events is done by both EcuM (Fixed and
Flex) and indicated to ComM module. If
COMM_FULL_COMMUNICATION mode is requested by
DCM, then only Diagnostics shall be performed. A
communication mode is requested from the CAN state
manager by ComM and the bus state is mapped to this mode
by the CAN state manager.

B. Low Level design of ComM

The Low Level Design involves the activity diagram of
each of the APIs to realize the module. Some of the LLD of
APIs is shown below.

void ComM_MainFunction(NetwokHandleType Channel)

Activitylnitial

Check if DET is enabled

[no) V4 Tyes]
Chedk if Channel Communicat) Chedk if ComM has not
ate function pointer is not a been initialized
L pointer
{no]
} Euneauunanna is invalid
o]
n.

parameter
lyes] COMM_E_WRONG_PAR
AMETERS.

Call Det_ReportError(J.

'

ActivityFinal

Fig. 3. Flow chart of ComM_Mainfuncton()

www.ijert.org 45

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

void ComM_Delnit{ void)
Activitylnitial

Check if channel count is less than number of Cami
channels and all channelsin "No Communication" mode
indication and
"COMM_NO_COM_NO_PENDING_REQUEST" i not
FALSE.

yes Checkif channel mode is not

E!E "No Co mmunication"

jpdate all channels in "No
Communication" mode

indication as FALSE.

no

Cheeklfall channelsln "No
omr tion" mode indicati
is TRUE.

or e the value of parameter
"ComMNoWakeup"

Store the value of parameter
\'ComMEcuGroup Classifi cation')

Store the inhibition status
"ComM_Inhibition StatusType",

ore the inhibit courter value
"ComM_ReadInhibitCounter"

Update ComM Initialization
status as COMM_UNINIT. ie,
Deinitialize ComM.

ActivityFinal

Fig. 4. Flow chart of ComM_Delnit()

V. IMPLEMENTATION AND TESTING

Coding for the development of ComM module is done
using ‘C’ language. The file structure contains header files
and source files. The header files include ComM.h,
ComM_Nm.h, ComM_EcuMBswM.h, = ComM_Dcm.h,
ComM_BusSm.h and ComM_Cfg.h. These header files are in
AUTOSAR standard.

ComM.h contains the declarations of the ComM APIs and
type definitions of data types. ComM_Nm.h,
ComM_EcuMBswM.h, ComM_Dcm.h, ComM_BusSm.h
include the ComM callback declarations. The ComM_Cfg.h
and ComM.c are the configuration and source file spectively.
The later defines all the APIs realized by ComM module.

Coding is performed in Visual C++ 2010 express edition.
It is successfully compiled and built without any errors. Snap
shot of the code successfully built in Visual C++ 2010 express
edition is shown in Fig. 5.

|JERTV 415080104

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 4 Issue 08, August-2015

sl
Fie Edt Vew Propc Debug Tods Window Hep
ij';JJJ 43290 b obg - w2 -1 |enered R F B

= N ;";:

fon: Debug Min32 ------

sual Studio 2010\Proj ¥29_fullcometreq\Debug\¥ay29_CC

€ 0ok con-resthura. || Moy29_Compistate .
Fig. 5. Snap shot of code build in VC++ 2010 express edition

[« o8 am

Testing of ComM module is done in two phases:
e Unit testing
o Integrated testing

In unit testing the functionality of all APIs are checked
individually. Testing is done in Visual C++ in which test
application was written for each APl and functionality
verified. Unit testing helps in easy debugging. Integrated
testing deals validation of overall functionality of the
application specified. Different BSW modules were
integrated and validation was performed on MPC 5668G
Evaluation board.

VI. RESULTS

In unit testing all APIs are functionally verified. The
integration testing validated functional performance and
reliability requirements placed on major design items. It
involves the verification of basic functionality of application
and BSW modules after integration. Fig.6 shows the
evaluation board used for integrated testing. Fig .7 shows the
integrated test set up

SCI

A 4

FlexRay

/\%\

Ethernet

/ swa

swa

JTAG

Nexus

sw2

swi

B

MPC5668G/E CLK 1 CLK 2

Potentiometer

Fig. 6. MPC5668G evaluation board

www.ijert.org 46

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

PC with CANoe and
Trace32
cable

o

CAN case XL,
USB

L,

;-

Lauterbach
Debugger

Fig. 7. Integration Test Setup

|JERTV 415080104

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 4 Issue 08, August-2015

ACKNOWLEDGMENT

This research was supported by ECE Dept. of Sree Buddha
College of Engineering, Pattoor, kerala. The authors would
also like to thank Tata Elxsi, Trivandrum for providing insight
and expertise that greatly assisted the research.

REFERENCES
[1] AUTOSAR, Specification of Communication Manager V4.0.0
R4.0
Rev 3.
[Online].Available.http://www.autosar.org/

[21 AUTOSAR, Specification of Communication Manager V2.1.0
R3.0 Rev 7.

[Online]. Available.http://www.autosar.org/
[3] SAE, International Society of Automotive Engineers.
[Online]. Available.http://automobile. sae.org/

[4] S. Furst, “AUTOSAR for Safety-related Systems: Objectives, Approach
and Status”, in Second |IEEE Conference on Automotive Electronics,
London, United Kingdom, March 2006.

[5] G. Leen and D.Heffernan. “Expanding Automotive Electronic
Systems”, IEEE Computer, 35(1), January 2002, pp. 88-93.

[6] MPC5668x Microcontroller Reference Manual, Document Number:
MPC5668XRM Rev.4 01/2011

www.ijert.org 47

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

