
Development of Communication Manager

Module for Automotive Platform Software based

on AUTOSAR 4.0

Neethu Mary Judy

M. Tech(Embedded Systems)
Sree Buddha College of Engineering

Pattoor, Kerala

India

Jayaraj V. S
Department of ECE

Sree Buddha College of Engineering

Pattoor, Kerala

India

Kuruvilla Jose

Specialist

Automotive Electronics

Tata Elxsi

Trivandrum, Kerala

India

Abstract—Automotive industry is growing rapidly. This

rapid growth has increased the challenges in different forms

including complexity. AUTomotive Open System Architecture

(AUTOSAR) provides a standardized automotive software

platform. Communication Manager (ComM) module in BSW

(Basic Software) layer is responsible for the control of

communication services. This paper is about the development of

ComM module in AUTOSAR 4.0. The functionality of ComM

module is obtained by realizing specific Application

Programming Interfaces (APIs).

Keywords—AUTOSAR, ComM, API, ECU

I. INTRODUCTION

Development in technology and increase in demands led to
tremendous growth in automotive industries. The ECUs in
vehicles serve different functionality. Since ECUs are
delivered by different vendors, the automobile manufacturers
experienced difficulties in terms of complexity, diagnostics,
inter ECU communication etc. So there arose a need for
standard software in ECUs. AUTOSAR is standardized and an
open automobile platform software. The goal of AUTOSAR is
to have a transition from customer specific software to
functional specific software. It is hardware independent.

II. AUTOSAR SOFTWARE ARCHITECTURE

 A basic design concept of the AUTOSAR software stack
is the separation between application and infrastructure.
AUTOSAR standard follows a layered architecture, which
provides modularity concept. The software architecture
contains three basic layers: Application layer, RTE (Run Time
Environment) layer and Basic Software (BSW) layer. Fig. 1
shows the software layers in AUTOSAR architecture.

Fig.1. Software layers of AUTOSAR

 RTE allow the AUTOSAR software components to be
independent from the mapping to the specific ECUs. BSW is
further divided into Services, ECU Abstraction, Micro
controller Abstraction and complex drivers. Being the lowest
software layer, Micro controller Abstraction layer has direct
access to the micro controller and internal peripherals. ECU
Abstraction layer interfaces the drivers of Micro controller
Abstraction layer. The highest layer in Basic Software layer is
the System Service layer which serves a number of services.
These services include vehicle communication management,
ECU state management, diagnostics services, memory
management etc. The task of complex drivers is to provide the
possibility to integrate special purpose functionality.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080104

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

44

III. COMMUNICATION MANAGER MODULE

Communication Manager (ComM) module acts as a
resource manager. It is responsible for managing the
underlying communication services. Functions of ComM
include allocation of necessary resources for the requested
communication mode, switches to a communication mode as
requested by the user, implement channel state machine for
every channel to control more than one communication
channel of an ECU etc.

A. Communication Modes

The ComM module provides three different
communication modes.

1. COMM_NO_COMMUNICATION

2. COMM_FULL_COMMUNICATION

3. COMM_SILENT_COMMUNICATION

The COMM_FULL_COMMUNICATION state has the
following sub states:

 COMM_FULL_COM_NETWORK_REQUESTED

 COMM_FULL_COM_READY_SLEEP

 The COMM_NO_COMMUNICATION state has the

following sub states:

 COMM_NO_COM_REQUEST_PENDING

 COMM_NO_COM_NO_PENDING_REQUEST

 A user cannot request for

COMM_SILENT_COMMUNICATION. The default state of

a communication channel is

COMM_NO_COMMUNICATION with sub state

COMM_NO_COM_NO_PENDING_REQUEST. ComM

channel will allow communication only if

CommunicationAllowed flag is TRUE in

COMM_NO_COM_REQUEST_PENDING.

IV. DESIGN

ComM module is developed by coding all the APIs
realized by it for satisfying its functional specification.
Communication (Com) module can transmit and receive
messages only if ComM module makes the channel in
COMM_FULL_COMMUNICATION state.
COMM_NO_COMMUNICATION mode does not support
transmission and reception of messages. For the design of
ComM module, High Level Design (HLD) and Low Level
Design (LLD) were carried out. HLD includes the
identification of the APIs needed for the implementation of
the ComM module and LLD gives a detailed idea and design
of each APIs identified in HLD. Both HLD and LLD are done
using the tool Enterprise Architect Version 9.3.

A. High Level design of ComM

 Fig. 2 specifies the dependency diagram in which
dependencies to other modules is shown. The Communication
Manager Module requests the communication capabilities,
requested from the users, from the Bus State Manager
Modules.

Fig. 2. High level design of ComM

ComM module is initialized by EcuM-Fixed. All
validation of wake up events is done by both EcuM (Fixed and
Flex) and indicated to ComM module. If
COMM_FULL_COMMUNICATION mode is requested by
DCM, then only Diagnostics shall be performed. A
communication mode is requested from the CAN state
manager by ComM and the bus state is mapped to this mode
by the CAN state manager.

B. Low Level design of ComM

 The Low Level Design involves the activity diagram of

each of the APIs to realize the module. Some of the LLD of

APIs is shown below.

Fig. 3. Flow chart of ComM_Mainfuncton()

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080104

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

45

Fig. 4. Flow chart of ComM_DeInit()

V. IMPLEMENTATION AND TESTING

 Coding for the development of ComM module is done

using ‘C’ language. The file structure contains header files

and source files. The header files include ComM.h,

ComM_Nm.h, ComM_EcuMBswM.h, ComM_Dcm.h,

ComM_BusSm.h and ComM_Cfg.h. These header files are in

AUTOSAR standard.

ComM.h contains the declarations of the ComM APIs and
type definitions of data types. ComM_Nm.h,
ComM_EcuMBswM.h, ComM_Dcm.h, ComM_BusSm.h
include the ComM callback declarations. The ComM_Cfg.h
and ComM.c are the configuration and source file spectively.
The later defines all the APIs realized by ComM module.

Coding is performed in Visual C++ 2010 express edition.
It is successfully compiled and built without any errors. Snap
shot of the code successfully built in Visual C++ 2010 express
edition is shown in Fig. 5.

Fig. 5. Snap shot of code build in VC++ 2010 express edition

 Testing of ComM module is done in two phases:

 Unit testing

 Integrated testing

 In unit testing the functionality of all APIs are checked

individually. Testing is done in Visual C++ in which test

application was written for each API and functionality

verified. Unit testing helps in easy debugging. Integrated

testing deals validation of overall functionality of the

application specified. Different BSW modules were

integrated and validation was performed on MPC 5668G

Evaluation board.

VI. RESULTS

In unit testing all APIs are functionally verified. The
integration testing validated functional performance and
reliability requirements placed on major design items. It
involves the verification of basic functionality of application
and BSW modules after integration. Fig.6 shows the
evaluation board used for integrated testing. Fig .7 shows the
integrated test set up

Fig. 6. MPC5668G evaluation board

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080104

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

46

Fig. 7. Integration Test Setup

ACKNOWLEDGMENT

This research was supported by ECE Dept. of Sree Buddha
College of Engineering, Pattoor, kerala. The authors would
also like to thank Tata Elxsi, Trivandrum for providing insight
and expertise that greatly assisted the research.

REFERENCES

[1] AUTOSAR, Specification of Communication Manager V4.0.0
R4.0

Rev 3.

[Online].Available.http://www.autosar.org/

[2] AUTOSAR, Specification of Communication Manager V2.1.0
R3.0 Rev 7.

[Online]. Available.http://www.autosar.org/

[3] SAE, International Society of Automotive Engineers.

 [Online]. Available.http://automobile. sae.org/

[4] S. Furst, “AUTOSAR for Safety-related Systems: Objectives, Approach
and Status”, in Second IEEE Conference on Automotive Electronics,
London, United Kingdom, March 2006.

[5] G. Leen and D.Heffernan. “Expanding Automotive Electronic
Systems”, IEEE Computer, 35(1), January 2002, pp. 88–93.

[6] MPC5668x Microcontroller Reference Manual, Document Number:
MPC5668XRM Rev.4 01/2011

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080104

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

47

