

Detection of Spam through E-mail Abstraction Scheme

 K.V.Srinivasa Rao1 S.Srinivasulu2 A.Amrutavalli3
 Associate Professor, Dept. of CSE, HOD.Dept.of CSE Dept. of CSE,
 Prakasam Engg. College, Prakasam Engg. College, Prakasam Engg. College,

 Kandukur-5233105, Kandukur-5233105 Kandukur-5233105,
 AP., India AP., India AP., India

Abstract

In this paper we present a procedure to generate the

email abstraction using HTML content in email and

this newly devised abstraction can more effectively

capture the near duplicate phenomenon of spams. The

prior works mainly represent each email by a succinct

abstraction derived from email content text. However

these abstractions of emails cannot fully catch the

evolving nature of spam’s and are thus not effective

enough in near duplicate detection. Moreover we

represent each email using HTML tag sequence rather

than content text. We design a complete Spam

Detection System, which possesses an efficient near-

duplicate matching and a progressive update scheme.

This paper mainly focused on efficient similarity

matching and reducing storage utilization.

1. Introduction

Nowadays the email spam problem becomes more

and more serious issue. Spam not only causes the

misuse of time and computational resources, thus

leading to financial losses, but it is also often used to

advertise illegal goods and services or to promote

online frauds. The most popular way of anti-spam

detection is Spam filtering. A Spam filter is a program

that is used to detect unsolicited and unwanted email

and prevent those messages from getting to user’s

inbox. The primary challenge of spam detection lies in

the fact that spammers will always find new ways to

attack spam filters owing to the economic benefits of

sending spam’s. Spammers have no choice to but to

send out large quantities of identical or similar spam’s

simultaneously to make profits. This specific feature of

spam’s can be designated as near-duplicate

phenomenon, which is a significant key in the spam

detection. Definition 1 (Near-Duplicate). “Two e-mails are

viewed as near-duplicate if their HTML tag sequences are

exactly identical to each other.”

. The primary idea of the near-duplicate matching

for spam detection is to block subsequent spams with

similar content. The previous researchers have

developed various methods on near-duplicate spam

detection [5],[6],[9],[12],[15], these works are still

subject to some drawbacks. Because these works

mainly represent each e-mail by a succinct abstraction

derived from e-mail content text. Moreover, hash based

text representation is applied extensively. One major

problem of these abstractions is that they may be too

brief and thus may not be robust enough to withstand

intentional attacks. The hash based text representation

also suffers from the problem of not being suitable for

all languages.

 In this paper we explore to device a more

sophisticated e-mail abstraction by using HTML

content, which can more effectively capture the near

duplicate phenomenon of spams. In this paper we

propose the specific procedure Abstraction Generation

to generate the e-mail abstraction using HTML content

in e-mail, and this newly devised abstraction can more

effectively capture the near-duplicate phenomenon of

spam’s. We devise an innovative tree structure,

SpTrees, to store large amounts of the e-mail

abstractions of reported spams. SpTrees contribute to

the accomplishment of the efficient near-duplicate

matching with a more sophisticated e-mail abstraction

and we design complete spam detection system.
Overall, there are three key points of this type of spam

detection approach we have to be concerned about. First,

an effective representation of e-mail (i.e., e-mail

abstraction) is essential. Since a large set of reported

spams has to be stored in the known spam database, the

storage size of e-mail abstraction should be small.

Moreover, the email mail abstraction should capture the

near-duplicate phe- nomenon of spams, and should avoid

accidental deletion of nonspam e-mails (also known as

hams). Second, every incoming e-mail has to be matched

with the large database, meaning that the near-duplicate

matching process should be substantially efficient. Finally,

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

1www.ijert.org

the latest spams have to be included instantly and

successively into the database so as to effectively block

subsequent near-duplicate spams.

2. Abstraction Generation

We propose the specific procedure AG to generate the

e-mail abstraction using HTML content in e-mail. The

algorithmic form of Abstraction Generation is outlined

in Fig. 1. Procedure AG is composed of three major

phases, Tag Extraction Phase, Tag Reordering Phase,

and <anchor> Appending Phase.

Procedure Abstraction Generation
I/P: E-Mail with html/text content-type

 The tag length threshold value of short email (Lth_short)

O/P: Email Abstraction (EA)

1. Tag Extraction Phase
2. Translate each tag into <tag.name>;

3. Translate text into <mytext/>;

4. Add all anchor tags to AnchorSet;

5. EA=the concatenation of <tag.name>;

6. Preprocess the tag sequence of EA;

7. Tag Reordering Phase
8. For (each tag of EA) //pn: position number

9. Tag.new_pn=ASSIGN_PN(EA.tag_length,tag.pn);

10. Put the tag to the position tag.new_pn;

11. EA=the concatenation of <tag.name> with new_pn;

12. Appending Phase
13. If(EA.tag_length<Lth_short);

14. Append AnchorSet in front of EA;

15. Return EA;

End.

Fig. 1. Algorithm for Abstraction Generation

Tag Extraction Phase

In Tag Extraction Phase, the name of each HTML tag is

extracted, and tag attributes and attribute values are

eliminated. In addition, each paragraph of text without

any tag embedded is transformed to <mytext/>.

<anchor> tags are then inserted into AnchorSet, and

the first 1,023 valid tags are concatenated to form the

tentative e-mail abstraction. Note that we retain only

the first 1,023 tags as the tag sequence. The main

reason is that the rear part of long e-mails can be

ignored without affecting the effectiveness of near-

duplicate matching. Subsequently, in line 6 of Fig. 1,

we preprocess the tag sequence of the tentative e-mail

abstraction. One objective of this preprocessing step is

to remove tags that are common but not discriminative

between e-mails. The following sequence of operations

is performed in the preprocessing step.

1. Front and rear tags are excluded.

2. Nonempty tags that have no corresponding

start tags or end tags are deleted. Besides,

mismatched nonempty tags are also deleted.

3. All empty tags are regarded as the same and

are replaced by the newly created <empty/>
tag. Moreover, successive <empty/> tags are

pruned and only one <empty/> tag is retained.

4. The pairs of nonempty tags enclosing nothing

are removed.

Tag Reordering Phase

On purpose of accelerating the near-duplicate

matching process, we reorder the tag sequence of an e-

mail abstraction in Tag Reordering Phase. Note that

since the arrangement of HTML tags is regular and in

pairs, various sequential patterns of tags are contained

in e-mails. In the worst case, if we consider two e-mail

abstractions which have the same tag length and differ

only in their last tags, the difference cannot be detected

until the last tags are compared. To handle this

problem, we destroy the regularity by rearranging the

order of tag sequence to lower the number of tag

comparisons. Note that this process ensures that the

newly assigned position numbers of e-mail abstractions

with the same number of tags are completely identical.

As such, the matching process can be accelerated

without violating the definition of near-duplicate in this

paper. In lines 8-11 of Fig. 1, each tag is assigned a

new position number by function ASSIGN_PN (PN
denotes for Position Number) with following

expressions,

 b=ceil (sqrt (L));

 r= (PNorig-1) %b,

 q=floor ((PNorig-1)/b) +1;

 PNnew= (b*r) + (b-q+1);

 The final e-mail abstraction is the concatenation

of all tags with new position numbers.

Tag Appending Phase

In this phase the tags in AnchorSet will be append in

front of Email Abstraction whenever the tag length of

an e-mail abstraction is smaller than a predefined tag

length threshold of the short e-mail. The main

objective of appending <anchor> tags is to reduce the

probability that a ham is successfully matched with

reported spams when the tag length of an e-mail

abstraction is short.

3. Similarity Matching Process

 In this paper we used SpTable and SpTrees for

efficient matching process. SpTable and SpTrees (sp
stands for spam) are proposed to store large amounts of

the e-mail abstractions of reported spams. As shown in

Fig. 2, several SpTrees are the kernel of the database,

and the e-mail abstractions of collected spams are

maintained in the corresponding SpTrees. According to

Definition 1, two e-mail abstractions are possible to be

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

2www.ijert.org

Fig.2. SpTable and SpTrees

near-duplicate only when the numbers of their tags are

identical. Thus, if we distribute e-mail abstractions with

different tag lengths into diverse SpTrees, the quantity

of spams required to be matched will decrease.

However, if each SpTree is only mapped to one single

tag length, it is too much of a burden for a server to

maintain such thousands of SpTrees. In view of this

concern, each SpTree is designed to take charge of e-

mail abstractions within a range of tag lengths. As can

be seen in Fig. 2, SpTable is created to record overall

information of SpTrees. The ith column of SpTable

links to the root of SpTree_i by a pointer, and e-mail

abstractions with tag lengths ranging from 2
i

to 2
i+1

-1

belong to SpTree_i. An e-mail abstraction is segmented

into several subsequences, and these subsequences are

consecutively put into the corresponding nodes from

low levels to high levels. As such, an e-mail abstraction

is stored in one path from the root node to a leaf node

of SpTree, and hence the matching between a testing e-

mail and known spams is processed from root to leaf

node. The primary goal of applying the tree data

structure for storage is to reduce the number of tags

required to be matched when processing from root to

leaf. Since only subsequences along the matching path

from root to leaf should be compared, the matching

efficiency is substantially increased. To achieve

efficient matching with balanced tree structure, SpTrees

are designed to be binary trees. The branch direction of

each SpTree is determined by a binary hash function.

The hash function is defined as follows:

hash(seq)=f(seq[0])*2m-1+f(seq[1])*2m-2+...+f(seq[m-1])*20

where m is the number of tags in this subsequence and

seq[n] denotes the tag type of the nth tag. The function

f converts each type of tag to a unique integer.

Moreover, for the subsequence which contains more

than eight tags, we just use the first eight tags to

generate the hash value (i.e., m ≤8). With the hash

function, most subsequence matching is transformed

the integer matching, and hence the complexity of

matching process can be substantially reduced.

Moreover, with the hash function, the matching

efficiency is substantially increased.

4. Spam Detection System model

The complete Spam Detection System is introduced

here. Three major modules, Abstraction Generation

Module, Database Maintenance Module, and Spam

Detection Module are included in our system. In

Abstraction Generation Module, each e-mail is

converted to an e-mail abstraction by Structure

Abstraction Generator with Abstraction Generation

Fig.3. Spam Detection System Model

procedure. Three types of action handlers, Deletion

Handler, Insertion Handler, and Error Report Handler,

are involved in Database Maintenance Module. Note

that although the term “database” is used, the collection

of reported spam’s can be essentially stored in main

memory to facilitate the process of matching. In

addition, Matching Handler in Spam Detection Module

takes charge of determining results. There are three

types of e-mails, reported spam, testing e-mail, and

misclassified ham, required to be dealt with by Spam

Detection System. The algorithmic form is outlined in

Fig.4. Initially, three parameters, Tm (the maximum

time span for reported spams being retained in the

system), Td (the time span for triggering Deletion

Handler), and Sth (the score threshold for determining

spams) should be given for the system.

Abstraction

Generation

Module

Testing email

Reported

spam

Misclassified

ham

Abstraction

Generator

For every Trigger Td

Deletion Handler

Spam Detection

Module

Matching Handler

Database Maintenance

Module

Insertion Handler

 Error Report Handler

Deletion Handler

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

3www.ijert.org

Algorithm for Spam Detection System:

Input: Tm: The maximum time span

 Td: The time span for Deletion Handler

 Sth: The score threshold for determining spams

1. Begin switch(c) //circumstance(c)

2. case 1: when receiving reported spam

3. if(EA.reporter.Sr>Sinitial)

4. Insertion Handler(EA);

5. Sr = Sr +1;

6. End if;

7. break;

8. case 2: when receiving a testing e-mail

9. Matching Handler(EA,Sth);

10. if(testing email= = spam mail)

11. Matching Handler(EA);

12. End if;

13. break;

14. case 3: when receiving a misclassified ham

15. Error Report Handler(EA);

16. break;

17. case 4: for every Td

18. Deletion Handler(Tm);

19. break;

20. End switch;

End;
Fig: 4. Algorithmic form of system model

Whenever our system receiving a reported spam,

Insertion Handler adds the e-mail abstraction of this

spam into the database. The algorithmic form of

insertion handler is as follows.

 Algorithm for Insertion Handler:

 Procedure of Insertion Handler

 I/P: EA: Email Abstraction

1. Find the SpTree from SpTable according to

EA.tag_length;

2. Assign newnode to SpTree root node

3. For (i=0 to SpTree.height)

4. If(newnode is not a leaf node)

5. add the subsequences with 2
i
 tags;

6. //Compute the hash value of this subsequence;

7. hash_Value()

8. {

9. hash= hash + (seq* Math.pow(2, ind - 1));

10. hash_List.add(hash);

11. }

12. newnode=the corresponding childnode;

13. End if;

14. Else

15. Insert the subsequence with remaining tags;

16. Compute hash_Value() of this subsequence;

End

 Fig.5. Algorithmic form of Insertion Handler

In fig.5, initially, the corresponding SpTree is found in

SpTable according to the tag length of the inserted

spam, and newNode is assigned as the root of this

SpTree. In lines 3-11, we iteratively insert the

subsequences of the e-mail abstraction along the path

from root to leaf. If newNode is an internal node, the

subsequence with 2
i

tags is inserted into level i.

Meanwhile, the hash value of this subsequence is com-

puted. Then, newNode is assigned as the corresponding

child node based on the type of the next tag. If the next

tag is a start (end) tag, newNode is assigned as the left

(right) child node. Finally, when newNode is processed

to a leaf node, the subsequence with remaining tags is

stored.

Whenever a new testing e-mail arrives, Matching

Handler performs the near-duplicate detection with

collected spams to do the judgment. Meanwhile, if a

testing e-mail is classified as a spam, this e-mail will be

viewed as a reported spam and be added into the

database. Matching Handler (as shown in Fig. 6) is the

most significant procedure in our system to achieve

efficient matching between every testing e-mail and the

known spam database. There are two major phases in

the matching process: Approximate Matching Phase

and Exact Matching Phase. As mentioned in Section 3

the tag lengths of e-mail abstractions in an SpTree may

not be identical. However, two e-mail abstractions are

possible to be near-duplicate only when the numbers of

their tags are identical. For this reason, in Approximate

Matching Phase, we traverse directly to the targeted

leaf node based on the types of tags at positions 2
i

without doing tag comparisons. It is certain that a

testing e-mail may merely be near-duplicate with spams

which have the same tag length and are in the same

path. Therefore, we tentatively record the information

of spams, which appear in the targeted leaf node and

have the same tag length, into a candidate set candSet.

The main objectives of the approximate matching are:

1) to reduce unnecessary tag comparisons of e-mails

with different tag lengths, and 2) to exclude e-mails

which can be determined without the exact tag

matching. Subsequently, the process starts Exact

Matching Phase from the root of the SpTree. For each

level, in lines 11-17, the hash values of subsequences

are matched first. Then, we do the exact matching of

subsequences only if their hash values are matched.

The unmatched information of spams will be deleted

from candSet.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

4www.ijert.org

Algorithm for Matching Handler:

Procedure of Matching Handler

I/P: EA: the email abstraction of a testing email

 Sth: the score threshold for determining spams

O/P: the detection result

1. var final;//the final level which exact matching

is processed

2. var candSet;//the set for tentative info of

candidate spams

3. //Approximate Matching Phase

4. Find the corresponding SpTree in SpTable

with EA.tag_length;

5. Traverse directly to the targeted leaf node;

6. for(each subsequence in the leaf node)

7. If(EA.tag_length==subsequence.tag_length)

8. candSet.insert(subsequence.info);

9. End loop;

10. //Exact Matching Phase

11. Insert the newNode as SpTree.root;

12. for(i=0 to final)

13. for(each subseq in candSet)

14. If(subseq.hashvalue==EA.current_subseq.has

hvalue)

15. If (subseq!=EA.current_subseq.hash_value)

16. candSet.delete(subseq.info);

17. else candSet.insert(subseq.info);

18. new node =the corresponding child node ;

19. sum=the sum of Sr of all candidate spams in

candSet;

20. if (sum>Sth) return spam;

21. else return ham;

 End

Fig. 6. Algorithmic form of Matching Handler

Moreover, we design that the exact tag matching is only

processed to level final, only the first 2
f _level+1

-1 tags are

exactly matched. It means that the looser matching

criterion is applied when the length of an e-mail

abstraction is longer than 2
f _level+1

. This looser criterion

substantially promotes the efficiency of matching but does

not influence detection results owing to the effects of the

preceding approximate matching and the tag reordering

process of procedure SAG. Finally, if the sum of SR of all

candidate spams in candSet exceeds Sth, the testing e-

mail will be classified as a spam.

.Algorithm for Error Report Handler:

Procedure of Error Report Handler

I/P: The EA of misclassified ham

1. Find the corresponding SpTree in SpTable

with EA.tag_length;

2. Perform Matching Handler();

3. Reset Sr of the matched spams as 0;

4. Update Sr of related reporters in RepTable;

 End

Fig.7. Algorithmic form of Error Report Handler

When receiving a misclassified ham, Error Report

Handler (shown in Fig. 7) first finds the corresponding

SpTree and does the matching process as the same in

Matching Handler. For the spams matched with the

reported misclassified ham, we reset SR of these spams

as 0 to avoid subsequent misclassification incurred by

the identical group of spams. In addition, the reputation

scores of reporters who cause the false positive error

are halved to prevent continuous attacks by specific

users.

Algorithm for Deletion Handler:

Procedure of Deletion Handler

I/P: Tm: the maximum time span for reported spams..

1. Var cTime,Ts;//ts:timespan,cTime:currentt

(i=0 to SpTree)

2. for(each node in the SpTree in inorder)

3. for(each subseq in the node)

4. if (cTime-suseq.Ts>Tm)

5. delete the subsequence;

6. End if;

7. End loop;

End.

Fig.8. Algorithmic form of Deletion Handler

Moreover, to delete obsolete spams, for every Td,

Deletion Handler (as shown in Fig. 8) traverses each

SpTree in inorder (traverses the left subtree, visit the

root, and then traverses the right subtree) to visit all

nodes in SpTrees. For each subsequence, if the existing

time exceeds Tm, it will be viewed as outdated and be

deleted from this node. As such, all obsolete spams are

removed from the known spam database after Deletion

Handler is processed.

4.1. Reputation Mechanism

The principal concept of spam detection is to collect

human judgment to block subsequent near-duplicate

spams. To ensure the truthfulness of spam reports and

to prevent malicious attacks, we propose the reputation

mechanism to evaluate the credit of each reporter. The

fundamental idea of the reputation mechanism is to

utilize a reputation table to maintain a reputation score

SR of each reporter according to the previous reliability

record. Each inserted spam is given a suspicion score

equal to SR of the reporter. In such a context, when

doing near-duplicate detection, if the sum of suspicion

scores of matched spams exceeds a predefined

threshold, the testing e-mail will be classified as a

spam. The reputation mechanism is described in detail

as follows:

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

5www.ijert.org

1. Each reporter is assigned an initial score Sinitial

when he submits a reported spam at the first

time.

2. If a reporter submits any feedback spam once

more, the reputation score will be incremented

by a smaller incremental score Sincre . The value

of Sincre is set as Sintial/10 in the experiments.

3. If a reporter is charged that his previous

feedback spam is mistaken, the reputation score

will be halved.
To prevent malicious error reports and to attain a

near-zero false positive rate, we cautiously increase

the reputation score but drop it drastically while a

false positive error is issued. On the other hand,

when SR of a reporter is smaller than Sinitial, his

subsequent feedback spams will not be added into

the database until SR is equal to or larger than Sinitial.

Regarding the parameter Sth, we simply use a fixed

small value (set as three in the experiments) instead

of determining the threshold according to the ratio

of total users. The reason is that as long as there are

certain trusty users reporting the e-mails with the

same e-mail abstraction as spams, it is sufficiently

reliable to classify the subsequent near-duplicate e-

mails as spams.

5. Experimental results
We conduct the efficiency investigation of Spam

Detection System on inserting e-mail abstractions into

the database and deleting outdated spams from the

database. we only study the performance of Insertion

Handler and Deletion Handler in our system. Fig. 9a

shows the execution time of Insertion Handler of our

system with the number of e-mails varied. The

execution time grows linearly and costs merely 3.5

seconds for inserting 100,000 spams into the database.

On the other hand, the performance of Deletion

Handler is shown in Fig. 9b.

Fig.9. Performance of Insertion Handler and Deletion

Handler in spam detection system.(a) Excution time of

insertion mails. (b)Excution time of Deletion mails.

We evaluate the execution time of deleting spams in

one day while the number of e-mails in the database

varied. The main purpose of this experiment is to

examine whether the efficiency of deletion will be

influenced by the amount of e-mails stored in SpTrees.

It is shown that the deletion process costs only 2 to 3

seconds in each situation, and the execution time

slightly increases with the amount of e-mails.

Therefore, we can observe that both the processes of

insertion and deletion in our system are efficient.

6. Conclusion

In this paper, we explore a more sophisticated and

robust e-mail abstraction scheme, which considers e-

mail layout structure to represent e-mails. The specific

procedure for Abstraction Generation is proposed to

generate the e-mail abstraction using HTML content in

e-mail, and this newly-devised abstraction can more

effectively capture the near-duplicate phenomenon of

spams. In this paper we used SpTable and SpTrees for

efficient matching process. Moreover, a complete spam

detection system been designed to efficiently process

the near-duplicate matching and to progressively

update the known spam database.

References

[1] E. Blanzieri and A. Bryl, “Evaluation of the Highest

Probability SVM Nearest Neighbor Classifier with Variable

Relative Error Cost,” Proc. Fourth Conf. Email and Anti-

Spam (CEAS), 2007.

[2] M.-T. Chang, W.-T. Yih, and C. Meek, “Partitioned

Logistic Regression for Spam Filtering,” Proc. 14th ACM

SIGKDD Int’l Conf. Knowledge Discovery and Data mining

(KDD), pp. 97-105, 2008.

[3] S. Chhabra, W.S. Yerazunis, and C. Siefkes, “Spam

Filtering Using a Markov Random Field Model with Variable

Weighting Schemas,” Proc. Fourth IEEE Int’l Conf. Data

Mining (ICDM), pp. 347-350, 2004.

[4] A.C. Cosoi, “A False Positive Safe Neural Network; The

Followers of the Anatrim Waves,” Proc. MIT Spam Conf.,

2008.

[5] E. Damiani, S.D.C. di Vimercati, S. Paraboschi, and P.

Samarati, “An Open Digest-Based Technique for Spam

Detection,” Proc. Int’l Workshop Security in Parallel and

Distributed Systems, pp. 559-564, 2004.

[6] E. Damiani, S.D.C. di Vimercati, S. Paraboschi, and P.

Samarati, “P2P-Based Collaborative Spam Detection and

Filtering,” Proc. Fourth IEEE Int’l Conf. Peer-to-Peer

Computing, pp. 176-183, 2004

[7] A. Gray and M. Haahr, “Personalised, Collaborative Spam

Filtering,” Proc. First Conf. Email and Anti-Spam (CEAS),

2004.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

6www.ijert.org

[8] A. Kolcz, A. Chowdhury, and J. Alspector, “The Impact

of Feature Selection on Signature-Driven Spam Detection,”

Proc. First Conf. Email and Anti-Spam (CEAS), 2004.

[9] J.S. Kong,P.O.Boykin, B.A. Rezaei, N.Sarshar, and V.P.

Roychowdhury, “Scalable and Reliable Collaborative Spam

Filters: Harnessing the Global Social Email Networks,” Proc.

Second Conf. Email and Anti-Spam (CEAS), 2005.

[10] T.R. Lynam and G.V. Cormack, “On-Line Spam Filter

Fusion,” Proc. 29th Ann. Int’l ACM SIGIR Conf. Research

and Development in Information Retrieval (SIGIR), pp. 123-

130, 2006.

[11] I. Rigoutsos and T. Huynh, “Chung-Kwei: A Pattern-

Discovery-Based System for the Automatic Identification of

Unsolicited E-Mail Messages (SPAM),” Proc. First Conf.

Email and Anti-Spam (CEAS), 2004.

[12] S. Sarafijanovic and J.-Y.L. Boudec, “Artificial Immune

System for Collaborative Spam Filtering,” Proc. Second

Workshop Nature Inspired Cooperative Strategies for

Optimization (NICSO), 2007.

[13] S. Sarafijanovic, S. Perez, and J.-Y.L. Boudec,

“Improving Digest-Based Collaborative Spam Detection,”

Proc. MIT Spam Conf., 2008.

[14] S. Sarafijanovic, S. Perez, and J.-Y.L. Boudec,

“Resolving FP-TP Conflict in Digest-Based Collaborative

Spam Detection by Use of Negative Selection Algorithm,”

Proc. Fifth Conf. Email and Anti-Spam (CEAS), 2008.

[15] K. Yoshida, F. Adachi, T. Washio, H. Motoda, T.

Homma, A. Nakashima, H. Fujikawa, and K. Yamazaki,

“Density-Based Spam Detector,” Proc. 10th ACM SIGKDD

Int’l Conf. Knowledge Discovery and Data Mining (KDD),

pp. 486-493, 2004.

[16] F. Zhou, L. Zhuang, B.Y. Zhao, L. Huang, A.D. Joseph,

and J.D. Kubiatowicz, “Approximate Object Location and

Spam Filtering on Peer-to-Peer Systems,” Proc.

ACM/IFIP/USENIX Int’l Middle-ware Conf., pp. 1-20, 2003.

[17] K.M. Schneider, “Brightmail URL Filtering,” Proc. MIT

Spam Conf., 2004.

[18] D. Sculley and G.M. Wachman, “Relaxed Online SVMs

for Spam Filtering,” Proc. 30th Ann. Int’l ACM SIGIR Conf.

Research and Development in Information Retrieval (SIGIR),

pp. 415-422, 2007.

[19] C.-Y. Tseng, J.-W. Huang, and M.-S. Chen, “Promail:

Using Progressive Email Social Network for Spam

Detection,” Proc. 10th Pacific-Asia Conf. Knowledge

Discovery and Data Mining (PAKDD), pp. 833-840, 2007.

[20] Z. Wang, W. Josephson, Q. Lv, and K.L.M. Charikar,

“Filtering Image Spam with Near-Duplicate Detection,” Proc.

Fourth Conf. Email and Anti-Spam (CEAS), 2007.

Authors Profile

1.K.V.Srinivasa Rao currently working as an

Associate professor in the department of Computer

Science and Engineering, at Prakasam Engineering

College, Kandukur, A.P. India. He is having 3 years of

research and 16 years of teaching experience. He is a

research scholar in the department of CSE at Acharya

Nagarjuna University, India.

E-mail: srinivasa_rao_kalva@yahoo.co.in

2. S. Srinivasulu currently working as a head of the

Computer Science department at Prakasam Engineering

College, Kandukur, A.P. India. He is having 4 years of

research and 16 years of teaching experience. He has

published several research papers in various peer

reviewed International Journals. He is a research

scholar in the department of CSE at JNTUH

University, India.

E-mail:sreenivasulusadineni@gmail.com

3. Kum.A.Amrutavalli M.Tech (CSE) from Prakasam

Engineering College, Kandukur, Prakasam (Dt.),

Affiliated by JNTUK, Kakinada, A.P., India.

E-mail:amrutavallia@gmail.com

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

7www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

8www.ijert.org

