

 Detection and Behavior Identification of Higher-Level Clones in Software

Swarupa S. Bongale, Prof. K. B. Manwade

D. Y. Patil College of Engg. & Tech., Shivaji University Kolhapur, India

Ashokrao Mane Group of Institutions, Vathar tarf Vadgaon, Shivaji University, Kolhapur, India

Abstract

A clone is called similar code patterns or similar code

fragments occur in software systems. Software product

consists through software life cycle process. Code

cloning creates problem during the maintenance phase

of software development process. It effects on software

code size, cost and implementation time. Propose a

technique that includes: 1) Detecting higher-level

similarities code patterns. 2) Identifying the clone

behaviour. 3) Generate clone report. 4) Performing

analytical study to measure the precision and recall of

the technique.

1. Introduction
 Software life cycle consist of different phases,

maintenance phase play an important role because

software maintenance cost contributes total

development cost. The working efficiency of the

software reflects its quality and strength, but the actual

skelton of software is its written code. This research

basically focuses over the clone components of

software. Similar program structures are called code

clones, commonly found in software systems. Software

clones may increase or decrease the cost, size and

complexity of software maintenance. Cloning is active

area of research, with multiple clone detection

techniques has been proposed in the literature [3], [4],

[1], [6]. Duplication may complicate the changes in

software. Any missing can leads to update. Existing

researches suggest that the code clone or duplicated

code is one of the main factors that degrades the design

and the structure of software and lowers the software

quality such as readability, changeability and

maintainability. Recent research has provided evidence

that it may not always be practical, feasible, or cost-

effective to eliminate certain clone groups. Copying

and pasting source code is common practice, also

known as software reuse. When programmers copy,

paste, and then modify source code, the once-identical

code fragments (code clones) can become

indistinguishable as the software evolves over time. It

is believed that identical or similar code fragments in

source code, also known as code clones, have an impact

on software maintenance. The limitation of considering

only simple clones is known in the field [7]. Some

clone detection tools are reported to simple clone in a

huge number of ways. Another way is to detect clones

of larger granularity than simple clones [1], [7].

 Clone behavior, is the behavior of found clone

instances. Detecting clones and identifying clones

behavior helps in reducing the source code as well as to

remove the unnecessary clones.

2. Detection and Behavior Identification

 Process of Clones
A data mining technique, pattern mining algorithm

used to detect code clone. As an input give a single

source file in .txt format or give a folder that contains

multiple source files in .txt formats. We can give input

file in c, cpp or java language.

Following, figure1 shows clone detection and

behavior identification process.

Input Source
File(s)

Read Input Source File(s)

Code Preprocessing

Token String With
Clones

Pattern Mining
Algorithm

Clone Instances

Knowledge Base

Identify Code
Clone Behavior

Alert Code
Behaviour

Pattern Matching

Figure1: clone detection and behavior identification

 process.

For whole processing, as an input here given, a single

Student Report System Project source file. Following is

the procedure to find clones and their behaviors:

344

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10233

Step 1: Perform the Code Pre-processing.

Step 2: Find out Token String with Clones.

Step 3: Apply Pattern Mining algorithm to find out

 repeated code patterns.

Step 4: Identify clone instance behavior.

1) Code Preprocessing:

 As an input given a single source file or folder is

read. Apply a simple tokenization scheme, reference

[9], a single large token string is generated from the

input source file(s). Here, propose a customizable

tokenization strategy. In this scheme, a separate integer

ID is assigned to each token found in the source code.

Figure2 shows code preprocessing.

 Figure2: Code Preprocessing

2) Token String with clones:

 After the code preprocessing, identical segments of

these id’s are reported as clones. The classification of

tokens is totally customizable. For example, if the user

does not want to differentiate between the types {int,

short, long, float, double}, we can have the different ID

to represent every member of the above set of types. In

this way, all those code fragments that differ only in the

type of certain variables become exact replicas of each

other in the token string. Figure3 shows repeated token

ids.

Figure3: Token String with clones

3) Pattern Mining:

 Pattern mining is a naive approach is to discover

repetitive patterns in the input. However, there can be

many repetitive patterns discovered and a pattern can

be embedded in another pattern. We detect every

consecutive repetitive pattern and merge them (by

deleting all occurrences except for the first one) from

small length to large length. It shows, repeating line

numbers and their related pattern only once. Also

shown count of which pattern is how many times

repeated.

Pattern mining algorithm: Given: Input source file(s).

Step1: Computes possible pattern length and return

maximum pattern length for all patterns in the list.

Step2: Starting from smallest pattern length that looks

for first pattern in the list.

Step3: Starting pattern compare with next occurrence

of pattern, if match founds returns true.

Step4: The algorithm continues to find more matches

of patterns until the end of the list has encountered.

Step5: If a pattern is detected, the algorithm modifies

the list by deleting all occurrences of the pattern except

for the first one.

Step6: Finally, recomputed the possible pattern length

for each pattern in the modified list, reinitializes the

variables to be ready for a new repetitive pattern and

continues the comparisons for any repetitive patterns in

the given list of patterns.

Figure4: Pattern Mining Process

Figure5: Repeated Line Count

345

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10233

4) Clone Instance:

 A clone relation holds between two code portions if

they are the same sequences. For a given clone relation,

a pair of code portions is called clone pair if the clone

relation holds between the portions. An equivalence

class of clone relation is called clone class. That is, a

clone class is a maximal set of code portions in which a

clone relation holds between any pair of code portions.

 The found clone instances from input source file(s)

are highlighted in different color. Figure6 shows

highlighted clone instances in different color.

Figure6: Higher-Level Similarity Clones

5) Clone Behavior:
 Once found the similar code patterns identify

behavior of it. Behavior identification is useful to

understand what types of patterns are repeated in given

input file. So it makes easy to reduce the code size.

 There are different programming structures in

programming language like classes, functions,

structures, control statements, file operations, input

output statements and so on. Here, match the patterns

of these programming structures to identify the code

clone instance behavior. For example if patterns

contains cout or cin , printf or scanf statements then

show the behavior as input output statements.

 We are matching the following patterns shows

code clone behavior in the software:

• Class

• Function

• Structure

• Opening and Closing Brackets

• Header Files

• Variable Declaration

• Contains if or else statements

• Input output statements

• Looping Statements

• File Operations

• Access Specifiers

• Graphics Functions

• Clear screen

• Arithmetic operations

• Try and catch block

• Go to X and Y

• Case break in switch

• Ending of program

Clones Behaviors for Student Report System project file

are shown as bellows:

346

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10233

347

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10233

It shows that, Student Report System project contains 14

behaviors of different types. For example, block3

contains arithmetic operator (=), showing behavior:

Arithmetic Operations, block2 contains #include

statements, showing behavior: Header Files, block4

contains variables, showing behavior: Variable

Declaration, block12 contains functions, showing

behavior: Function, block8 contains if statement,

showing behavior: Contains if or else statement.

3. Clone Report
 It generates a clone report which shows highlighted

color clone instances available in a project and saves a

project file in a different file format like MS-Word, pdf,

rtf etc. When a user wants to reopen this saved file,

he/she easily found that similar code fragments in a

given input project file. So, no need to run the project

every time to find similar code patterns. Following

figure shows clone report of example, Student Report

System project.

4. Experimental Results
The experiments are done on different input files.

Precision and recall are the two basic measures used to

calculate the result accuracy of the system. Precision

denotes the probability that a randomly chosen

candidate clone group is relevant. Recall denotes the

probability that a relevant clone group, chosen from the

hypothetical set of all relevant clone groups, is

contained in a detection result. We calculate the

precision and recall in terms of single input file and

multiple input files.

Clone Detection Result: Our System founds all

higher-level similarity clones. So, precision is 1 and

recall is 1, in case of clone detection.

Clone Behavior Result: Here found the system

generated total number of clone behaviours and out of

them correct number of clone behaviours. From that

calculate the precision and recall.

Table1: Clone behavior results of single input file.

Sr

No

Input File

Name

Lang

uage

Number

of

Tokens

 Preci

sion

 Recall

 1 Student

Record

System

C 2655 1 0.94

2 Snake

Game

C 1474 1 1

3 Telephone

Billing

System

Cpp 3460 1 0.90

4 Supermarket Cpp 2244 1 1

5 Address

Book

Java 4905 1 0.88

Figure7 shows behavior graph for single input file.

 Figure7: Single file behaviors graph

348

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10233

Table2: Clone behavior results of multiple input files.

Sr

No

Input

Folder

Name

Lang

uage

Number

of files

included

Number

of

Tokens

Preci

sion

Rec

all

 1 Library

Manage

ment

C 6 12265 1 0.90

2 Depart

ment

Store

C 4 5129 1 0.85

3 Video

Store

System

Cpp 4 6584 1 0.85

4 Student

Report

System

Cpp 5 4482 1 1

 5 Rapid

Roll

Game

Java 7 5750 1 0.95

Figure8 shows behavior graph for multiple input files.

 Figure8: Multiple files behaviors graph

5. Conclusion
Cloning is active area of research in software

development process. A software development process

is a creativity of software through different phases. In

software development process, maintenance phase play

an important role because maintenance cost contributes

total development cost. Software reuse reduces

software development and maintenance costs in the

process of creating software systems. Reusable

modules reduce the implementation time. The use of

existing components is done basically with the activity

of copy and paste. Cloning is the unnecessary

duplication of data whether it is at design level or at

coding level. Software clones may increase or decrease

the cost, size and complexity of software maintenance.

Clone detection and their behavior identification are

useful to reduce total software development cost and

software implementation time. In future, try to reduce

the code size by removing unnecessary clones. Clone

detection and clone behavior identification is useful in

code optimization.

6. References
[1] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder:

Multi-Linguistic Token-Based Code Clone Detection

System for Large Scale Source Code”, IEEE Trans.

Software Eng.,vol. 28,no. 7,pp. 654-670, July 2002.

[2] Cory J. Kapser and Michael W. Godfrey, “Cloning

Considered Harmful” Considered Harmful: Patterns of

Cloning in Software”, Software Architecture Group

(SWAG) avid R. Cheriton School of Computer

Science, University of Waterloo.

[3] B.S. Baker, “On Finding Duplication and Near-

Duplication in Large Software Systems,” Proc. Second

Working Conf. Reverse Eng.,pp. 86-95, 1995.

[4] I.D. Baxter, A. Yahin, L. Moura, M.S. Anna, and L.

Bier, “Clone Detection Using Abstract Syntax Trees,”

Proc. IEEE Int’l Conf. Software Maintenance, pp. 368-

377, 1998.

[5] R. Koschke, R. Falke, and P. Frenzel, “Clone

Detection Using Abstract Syntax Suffix Trees,” Proc.

13th Working Conf. Reverse Eng., pp. 253-262, 2006.

[6] A. Walenstein, A. Lakhotia, and R. Koschke, “The

Second International Workshop Detection of Software

Clones: Workshop Report,” SIGSOFT Software Eng.

Notes, vol. 29, no. 2, pp. 1-5, Mar.2004.

[7] A. De Lucia, G. Scanniello, and G. Tortora,

“Identifying Clones in Dynamic Web Sites Using

Similarity Thresholds,” Proc. Int’l Conf. Enterprise

Information Systems, pp. 391-396, 2004.

[8] G. Grahne and J. Zhu, “Efficiently Using Prefix-

Trees in Mining Frequent Itemsets,” Proc. First IEEE

ICDM Workshop Frequent Itemset Mining

Implementations, Nov. 2003.

[9] Swarupa S. Bongale, Prof. K.B.Manwade, Prof.

G.A.Patil, “An Efficient Data Mining Approach for

Complex Clone Detection in Software”, International

Journal of Advanced Research in Computer Science

and Software Engineering, volume 3 issue 5, ISSN:

2277 128X May 2013.

349

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10233

