
Designing a Router for Software Defined Network

(SDN)

Alpana Ghosh

BE Computer Engineering

MMCOE Pune

Pune-

52, India

Komal Tilekar

BE Computer Engineering

MMCOE Pune

Pune-

52, India

Ankita Singh

BE Computer Engineering

MMCOE Pune

Pune-

52, India

Abstract— Networks today are driven by a number of hardware

devices, thus they are called as Hardware Defined Network. On

the other hand are Software Defined Network or SDN, these

networks unlike its counterpart are programmable, flexible, easy

to maintain and cost effective. This paper proposes an algorithm

for routing packets in a Software Defined Network (SDN). The

algorithm is adapted to make the most of SDN technology and at

the same time addresses the dynamic needs of today’s networks.

The proposed algorithm has its roots from multiple concepts such

as principle of optimality, multistage graph and Link State

Routing algorithm.

Keywords— Software Defined Network (SDN), OpenFlow

Protocol, router.

I. INTRODUCTION

Modern computer networks perform a bewildering array of

tasks, from routing and traffic monitoring, to access control

and server load balancing. However, managing these networks

is unnecessarily complicated and error-prone, due to a

heterogeneous mix of devices (e.g., routers, switches, firewalls,

and middle boxes) with closed and proprietary configuration

interfaces.

Software defined networks are poised to change this by

offering a clean and open interface between networking

devices and the software that controls them.

In software-defined networks (SDNs), a logically

centralized controller manages the packet processing

functionality of a distributed collection of switches. SDNs

make it possible for programmers to control the behaviour of

the network directly, by configuring the packet forwarding

rules installed on each switch. SDNs can both simplify existing

applications and also serve as a platform for developing new

ones.

OpenFlow is an SDN technology proposed to standardize

the way that a controller communicates with network devices

in SDN architecture. OpenFlow provides a specification to

migrate the control logic from a switch into the controller. It

also defines a protocol for the communication between the

controller and the switches.

This paper proposes an algorithm for the implementation of

router functionality at the controller of the SDN architecture.

The controller runs the algorithm and takes routing decisions

which are then communicated to the forwarding device using

the OpenFlow protocol.

II. PROBLEM STATEMENT

The explosion of mobile devices, server virtualization and

the advent of cloud services are among the trends driving the

networking industry to re-examine the traditional network

architecture. Some of the key computing trends driving the

need for a new network paradigm include:

A. Changing Traffic Pattern

B. The “Consumerization of IT”

C. Rise of Cloud Services

D. Big Data means More Bandwidth

Software Defined Network (SDN) is dynamic and capable

of protecting existing investments while supporting

possibilities of future work. With SDN today’s static network

can evolve into an extensible service delivery platform capable

of responding rapidly to changing business, end-user, and

market needs. Understanding the importance of this technology

we have come forward to work on designing a router for SDN

enabled network which we feel is our future.

1440

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041535

International Journal of Engineering Research & Technology (IJERT)

III. SYSTEM ARCHITECTURE

Fig. 1 System Architecture of the implemented project

Steps in Fig. 1 is explained below

1) Step 1 – Sender wishes to communicate with the

receiver, thus it sends a packet.

2) Step 2 – The multiport device checks for a flow rule

for this packet in the Flow Table. If a matching entry

is found, the instructions associated with the specific

flow entry are executed and goto to step 5.

3) Step 3 – If no match is found in the Flow Table, only

the packet header is forwarded to the controller via the

ports.

4) Step 4 - The controller executes the routing algorithm,

and adds a new forwarding entry to the Flow Table in

the switch and to each of the relevant switches along

the flow path.

5) Step 5 – The switch then forwards the packet to the

appropriate port to send the packet to the receiver.

IV. PREREQUISITES FOR THE ALGORITHM

The proposed algorithm uses the following concepts

A. Optimality Principle

It states that “If router J is on the optimal path from router

I to router K, then the optimal path from J to K also falls along

the same route.” Whenever the algorithm calculates a path

from source to destination it updates the flow table of all the

routers falling in this path. Thus for a single flow the path is

calculated only once.

1441

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041535

International Journal of Engineering Research & Technology (IJERT)

B. Multistage Graph

A multistage graph is a graph G = (V, E)

1) with V partitioned into K >= 2 disjoint subsets such

that if (a,b) is in E, then a is in Vi , and b is in Vi+1 for

some subsets in the partition

2) and | V1 | = | VK | = 1.

In order to obtain the shortest path from source to

destination there are 2 approaches

1) Forward Approach: In this approach we start from

the destination and expand through the shortest link

between two stages up to the source.

2) Backward Approach: Similar to forward approach

except this time we start from the source and expand

the path up to the destination.

The proposed algorithm uses the forward approach. The

advantage to doing so it that once we freeze our destination

multiple nodes wanting to communicate with the same

destination and among those nodes the ones that fall in the

shortest path calculated previously need not recalculate their

shortest path. If we were to use the backward approach for each

source we would have to calculate the path thereby reducing

the speed of the processor.

C. Link State Routing

In this routing approach each node monitors

neighbours/local links and advertises them to the network.

Along with that each node maintains the full graph by

collecting the updates from all other nodes.

In the SDN architecture the presence of a central controller

eliminates the requirement for each node to maintain the

topology of the network. This job is now handed over to the

controller.

V. PROPOSED ALGORITHM

1) Controller creates a HELLO packet for each connected

router and directs the router to send the same to its

immediate neighbours.

2) Depending on all the HELLO packets received at a router

the controller creates a unique LINK STATE table for

each router.

TABLE I

LINK STATE TABLE OF A ROUTER

Neighbour’s IP

address

Neighbour’s

MAC address

Weight

…..

……

………

3) The flow tables of each router are initially empty. The

flow table advices a router to forward an incoming packet

to a respective output port in order to reach its destination.

TABLE II

FLOW TABLE OF A ROUTER

Destination router’s

IP/MAC address

Next Router’s IP

address

Output Port

Number

…..

…….

……….

4) The header of a packet received at a router is sent to the

controller. The controller extracts the destination IP

address. Set “len” to infinity & path length (PL) = 0.

5) The destination router’s LINK STATE table is referred to

create a number of potential optimal paths (POP). To

avoid looping don’t use routers already present in the POP.

Also record the PL of these POP. (expand from destination

to source)

For (LINK STATE tables of destination router) do

{

 if (neighbor router absent in POP)

 {

 create duplicate POP;

 annotate neighbor router to duplicate POP;

 PL = PL + link cost of annotated router.

 }

}

Delete the original POP & retain the duplicate POP as

original

1442

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041535

International Journal of Engineering Research & Technology (IJERT)

6) If the source is reached update len = PL. Keep this POP

aside Delete all the POP with PL >= len. Also delete all

the POP that cannot be expanded further due to the

constraint of looping.

7) If there is only one POP left & it contains the source router

then terminate the algorithm. Jump to step 9.

8) Assume the destination to be the most recently added entry

in the POP and jump to step 5.

9) Update the flow tables of all the routers present in the

optimal path.

VI. ADVANTAGES AND DISADVANTAGES

A. Advantages

1) This technology has the potential to make significant

improvements to service request response times, security,

and reliability.

2) It could also reduce costs by automating many processes

that are currently done manually and by allowing IT

departments to replace (at least in some cases) high-

margin devices with commodity hardware.

3) It centralizes and simplifies control of the network by

making networks programmable and more agile.

4) Its architectural configuration of splitting the data plane

from the control plane gives it the ability to incorporate

faster, more powerful hardware.

B. Disadvantages

1) Many organizations simply do not have the time,

expertise, or capital to invest in a completely new

networking architecture, particularly smaller

organizations with limited IT staff and budgets.

2) The networking device present in the software defined

network must be SDN enabled. They should understand

the OpenFlow protocol.

3) Since the control of the entire network is at a single point

(controller), failure of the controller will result in huge

time lost to recover the system.

VII.

FUTURE SCOPE

 1)

The proposed algorithm could be used in all household

networks

rather than larger organizations.

 2)

Since the control of the entire network resides in a

software we can program it to run as any of the multiple

network devices available in today’s market.

This means

we can have one hardware capable of running as multiple

network devices all at the same time.

VIII.

CONCLUSION

 This paper thus proposes an algorithm for routing packets in

a SDN network. The algorithm provides separation of the

control plane from the data plane making it less complex. The

centralized controller provides a

view of the network and

bestows programmability of the network by external

applications.

 It is difficult for the world to shift from the current network

configuration to a Software Defined Network but never the less

this algorithm will find its usage in most of the cloud services,

private networks as well as network virtualized environment.

ACKNOWLEDGMENT

 We wish to acknowledge our external

project guide in

Company, Mr. Ashok Raut, the project guide in college, Prof.

Geetha S. B. for their valuable suggestions and expertise.

REFERENCES

 [1]

http://networkstatic.net/tutorial-to-build-a-floodlight-sdn-openflow-

controller-module/

[2]

Software Defined Networking, Jennifer Rexford, COS 461:
Computer Networks Lectures: MW 10-10:50am in Architecture

N101

[3]

OpenFlow tutorial, Theophilus Benson

[4]

http://archive.openflow.org/wp/documents

[5]

http://www.openflow.org/wk/index.php/OpenFlow_Tutorial

[6]

http://www.openflow.org/videos/

[7]

www.csd.uoc.gr/~hy490-31/links.html

[8]

CS 490.31: Software Defined Networks, Xenofontas Dimitropoulos

ETH Zurich

1443

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041535

International Journal of Engineering Research & Technology (IJERT)

