Design & Performance Evaluation of 3- Blade Propeller for Multi-Rotor UAV

Arun V

Department of Mechanical Engineering K.S School of Engineering & Management Bangalore-India

Rallapalli Chanukya R
Department of Mechanical Engineering
K.S School of Engineering & Management
Bangalore-India

Abstract— This work emphasis on research, designing and development of an 3-blade efficient propeller for an existing UAV to produce maximum thrust in an operating range of 2000 rpm to 3000 rpm. And CFD analysis will be performed to determine the performance characteristics of the propeller.

Keywords—UAV, Quadcopter, Propellers, Multirotors, VTOL

I. INTRODUCTION

A propeller is a device that converts mechanical energy into a force, which we call thrust, and is used to propel the vehicle to which it is attached. The propeller features one or more lifting surfaces called propeller blades1 that are rotated rapidly using an engine. The thrust is the aerodynamic lift force produced by the blades and is identical to the force produced by a wing. Propellers are, by far, the most common means of generating thrust for any general Aviation aircrafts or modern UAVs.

II. 3-BLADE PROPELLER GEOMETRY

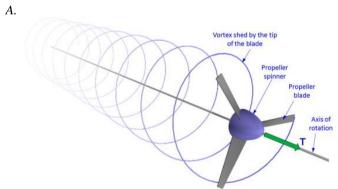


Figure 1 – Propeller Helix

A three-bladed propeller is shown in Figure 1, rotating about an axis. The spinner is an aerodynamically shaped cover, whose purpose is to reduce the drag of the hub of the propeller and to protect it from the elements. The propeller blades are what generate the thrust of the device, denoted by T. The pressure differential between the front and aft face of the propeller blade results in a vortex that is shed from the tip of the blade and is carried back by the airflow going through

Yashwanth B S
Department of Mechanical Engineering
K.S School of Engineering & Management
Bangalore-India

Prof. Dr. Balaji B HOD, Department of Mechanical Engineering K.S School of Engineering & Management Bangalore - India

the propeller. This forms the typical helical shape shown in the figure-1. A frontal projection of the three-bladed propeller is shown below.

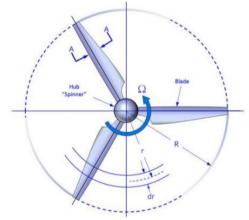


Figure-2 Frontal projection of the 3-blade propeller

Where R is the blade radius, r is the radius to an arbitrary blade station, and U is the rotation rate, typically in radians per second or minutes. The blade of a propeller is really a cantilevered wing that moves in a circular path rather than along a straight one. Just like an airplane's wing, the plan form of the propeller blade has a profound impact on the magnitude of the thrust force created, as well as at what "cost." What constitutes "cost" is the amount of power required to rotate it, as well as side effects such as noise.

III. GEOMETRIC PROPELLER PITCH

Consider the propeller in **Figure - 3**, whose diameter is D and radius is R. As the propeller rotates through a full circle, its tip rotates through an arc length (circumference) of $C = 3.14 \mathrm{xD} = 2 \mathrm{x} 3.14 \mathrm{xR}$. As the propeller rotates it "screws" itself forward a certain distance P for each full rotation. The distance it would cover in one full revolution is called the geometric pitch or pitch distance, PD, of the propeller. It is commonly specified in terms of inches of pitch. Thus a propeller designated as a 42-inch pitch prop would move 42 inches forward in one revolution (using the metal screw through wood analogy). The angle the helix makes to the

rotation plane is called the geometric pitch angle and is denoted by $\boldsymbol{\beta}.$

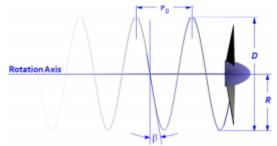
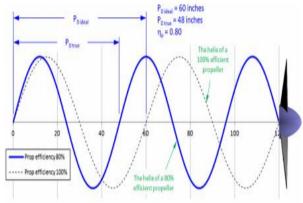



Figure-3 schematic showing propeller properties

Pitch distance in inches

Figure-4 the propeller will advance a shorter distance (pitch distance) in a low-viscosity fluid than the geometric pitch indicates

IV. FUNDAMENTAL FORMULATION

Considering the geometry shown in figure-3 we can now define the following characteristics of the propeller:

$$tan\beta = \frac{P_D}{2\pi r_{ref}}$$
 (Eq. 1)

Where:

 r_{ref} = reference radius, usually 75% of the propeller radius R PD = Pitch distance of the propeller

Generally, the value of PD ranges from 60% to 85% of the diameter of the propeller. The pitch-to-diameter ratio is also used to identify propellers

Pitch-to-diameter ratio

$$\frac{P_D}{D}$$
 (Eq. 2)

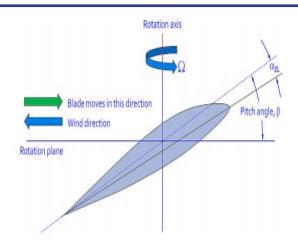
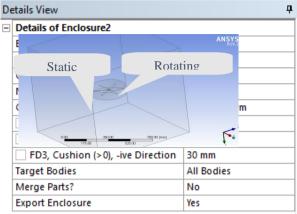


Figure-5 Definition of propeller pitch angle

A propeller moving through a low-viscosity fluid like air will cover less distance per revolution than the geometric pitch would indicate. Therefore, the angle formed between the rotation plane and a tangent to the blade tip helix at each blade station is less than the geometric pitch angle. This angle is called the helix angle and is denoted by ϕ . It can be estimated if the forward speed of the propeller is known using the following expression:


Helix angle:

$$tan\phi = \frac{2\pi rn}{v_o}$$
 (Eq. 3)

V. DESIGN STATEMENT

Propellers for UAVs operate under various operating conditions, ranging from the sea level to stratosphere altitudes. Apparently, it is appropriate to adopt a variable pitch system to provide the optimal propulsive efficiency under the aforementioned conditions. However, its adoption imposes additional weight and complexity due to the addition of actuators and pitch links. Additionally, these pitch links and actuators will practically be exposed to external flows at low temperatures from -70 to -80° C at stratospheric altitudes. The extreme environment and mechanical complexity may lead to an increased possibility of malfunctions and uncertainty. Consequently, the demand for reliability and being ultra-lightweight, which are top-level constraints of UAVs, makes it difficult to adopt the variable pitch system. Therefore, fixed-pitch propellers are generally used. When the fixed-pitch propellers are optimized for aerodynamic performance at high-altitude operation, the required torque, approximately at sea level, becomes considerably large and exceeds the specification for electric motors. This can lead to low climbing performances or, sometimes, the inability to climb. On the other hand, as altitude increases, the rotational speed of the propeller gradually increments, which consequently results in an increase of the required power. Thus, the maximum required power occurs under high-altitude climbing conditions. In this respect, the design of UAV propellers must not only take into account the two conflicting constraints but also simultaneously maximize efficiency under the desired operating condition.

VI. DESIGN REQUIREMENTS

The ultralight weight aircraft, has a total length, total width and design total weight of approximately 1.2 m, .5 m, and 2.5 kg, respectively. It uses 4-propellers mounted on each arm. The maximum available torque should correspond to the climb condition at sea level, requiring the highest thrust. The maximum power condition should correspond to the climb operation where the highest rotational speed is required. Considering the motor diameter, the design propeller diameter was fixed at 0.25 m. as a geometry constraint. In conformance with the mission profile, which is mainly aimed at climbing to high altitudes, the climb condition of 4 km was set as the propeller design point.

VII. AIRFOIL SELECTION & POSITIONING[1]

Airfoil	r/R	Chord length in inches C	R	Chord length in mm C	Pitch in inches	Pitch in mm	Alpha
NACA 4515	0.3	1.5915	38.1	40.4241	0.7968	20.23872	4.8
NACA 5513	0.4	1.875	50.8	47.625	1.1512	29.24048	5.199
NACA 5513	0.5	2.109	63.5	53.5686	1.5485	39.3319	5.59
NACA 4512	0.6	2.285	76.2	58.039	1.9557	49.67478	5.92
NACA 4510	0.7	2.393	88.9	60.7822	2.3338	59.27852	6.05
NACA 4410	0.8	2.351	101.6	59.7154	2.6948	68.44792	6.11
NACA 4309	0.9	2.0985	114.3	53.3019	3.00465	76.31811	6.05
NACA 4309	1	1.2565	127	31.9151	3.203	81.3562	5.82

VIII. CAD MODEL PREPARATION



Figure-7 10 inch Propeller cad model

IX. CFD ANALYSIS PREPARATION

Considerations

Speed -3000 rpm

Inlet Velocity – 15m/s

Angle of attack = 10°

Propeller Dia = 250 mm

Number of Blades = 3

Propeller Material = Carbon fiber

Step-1

Creating Enclosures – Cylindrical Enclosures

Step – 2 Creating Enclosures – Box Enclosure

Details of Enclosure3				
Enclosure	Enclosure3			
Shape	Box			
Number of Planes	0			
Cushion	Non-Uniform			
FD1, Cushion +X value (>0)	300 mm			
FD2, Cushion +Y value (>0)	400 mm			
FD3, Cushion +Z value (>0)	300 mm			
FD4, Cushion -X value (>0)	300 mm			
FD5, Cushion -Y value (>0)	400 mm			
FD6, Cushion -Z value (>0)	300 mm			
Target Bodies	All Bodies			
Merge Parts?	No			
Export Enclosure	Yes			

Step -3

Creating Boolean-1

Tool Body: Propeller

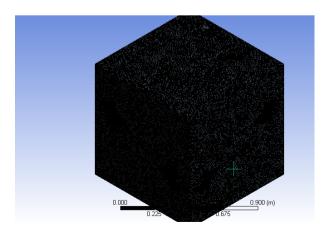
Target Body: Cylindrical Enclosure Now we have only 2 Bodies i.e.

- 1. Rotating Domain
- 2. Static Domain

Creating Boolean-2

Tool Body: Rotating Domain Target Body: Static Domain

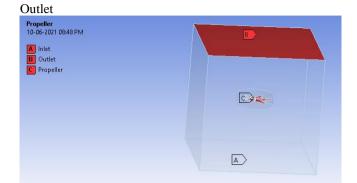
Step-4


A. Meshing

1. Inserted Mesh sizing for rotating domain Max- Element size – 8 mm

De	etails of "Face Sizing	y" - Sizing #				
Ξ	Scope					
	Scoping Method	Geometry Selection				
	Geometry	74 Faces				
-	Definition					
	Suppressed	No				
	Туре	Element Size				
	Element Size	10.0 mm				
Ξ	Advanced					
	Defeature Size	Default (4.e-002 mm)				
	Behavior	Soft				
	Growth Rate	Default (1.2)				
	Capture Curvature	No				
	Capture Proximity	No				

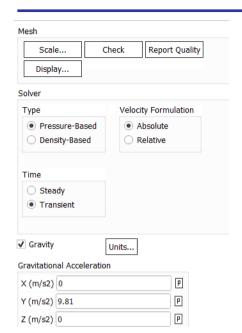
2. Mesh Settings – Static Domain Max- Element Size – 15 mm


	Physics Preference	CFD				
	Solver Preference	Fluent				
	Element Order	Linear				
	Element Size	15.0 mm				
	Export Format	Standard No				
	Export Preview Surface Mesh					
-	Sizing					
	Use Adaptive Sizing	No				
	Growth Rate	Default (1.2)				
	Max Size	15.0 mm				
	Mesh Defeaturing	Yes				
	Defeature Size	Default (7.5e-002 mm) Yes				
	Capture Curvature					
	Curvature Min Size	Default (0.15 mm)				
	Curvature Normal Angle	Default (18.0°)				
	Capture Proximity	No				
	Bounding Box Diagonal	1553.5 mm				
	Average Surface Area	66279 mm²				
	Minimum Edge Length	0.16208 mm				
-	Quality					
	Check Mesh Quality	Yes, Errors				
	☐ Target Skewness	Default (0.900000)				
	Smoothing	Medium				
	Mesh Metric	None				
3	Inflation					
3	Assembly Meshing					

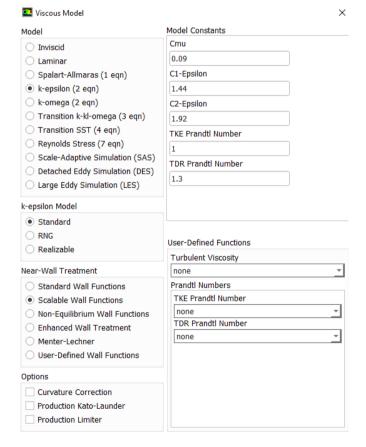
Step-5

Creating named Selections

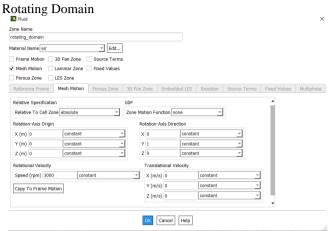
Propeller Inlet


Step-6 Updating the Mesh

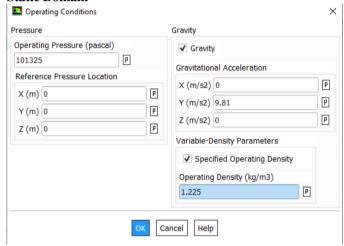
Step-8


Setup

Selecting Transient and Gravity

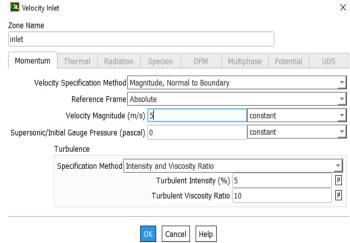

Step-9

Model - Viscous Laminar



Step-10

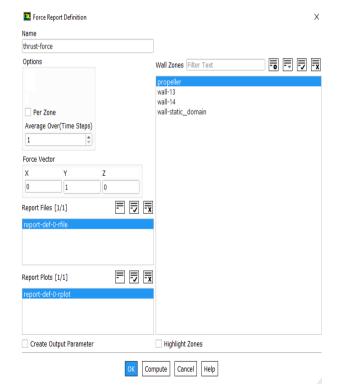
Cell Zone Conditions


Static Domain

Step-11

Boundary Conditions

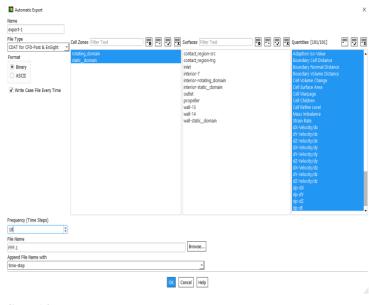
Inlet velocity magnitude = 5 m/s



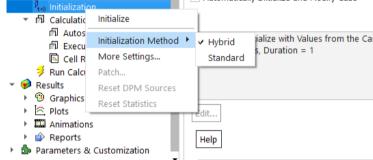
Reference Values Compute from Reference Values Area (m2) 1 Density (kg/m3) 1.225 Enthalpy (j/kg) 0 Length (m) 1 Pressure (pascal) 0 Temperature (k) 288.16 Velocity (m/s) 1 Viscosity (kg/m-s) 1.7894e-05 Ratio of Specific Heats 1.4 Reference Zone

Step-12

Report Definitions


Create new force report- Thrust Force

B. Step-13


C. Calculation Activities

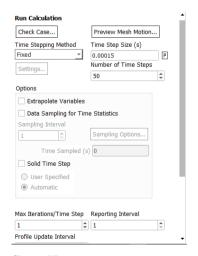
Create- Solution Data Export

Step-14

 $\underline{ \ \, Initialization - Initialization \ method-Hybrid}$

Step-15

Initialize

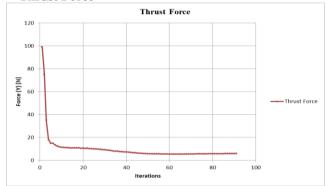

Step-16

Run Calculation

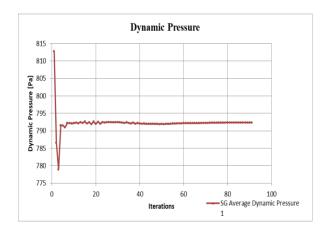
Time Steps -0.00015

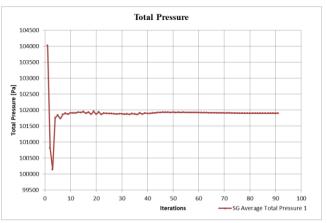
Number of Steps – 10

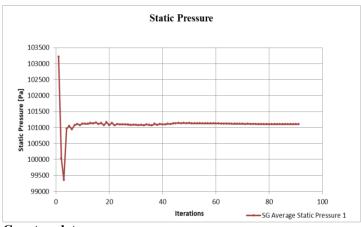
Max. Iterations / step - 1 (selected for less computing time)

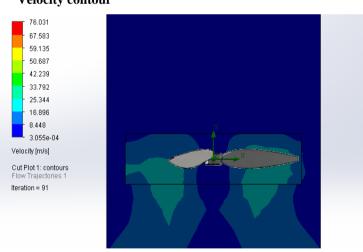


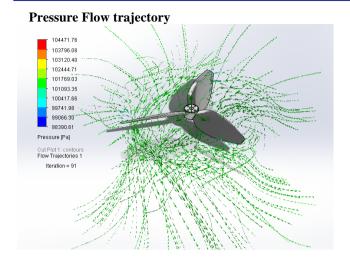
Step- 17 Run Calculation


X. RESULTS


Thrust Force


Dynamic Pressure


Total pressure



Static Pressure

Counter plots Velocity contour

XI. CONCLUSION

A 3 blade propeller of diameter 254mm and a 3D CAD model is prepared with the combination of airfoils and radial distribution of NACA 4309, NACA 4410, NACA 4510, NACA 4511, NACA 5513 & NACA 5521 is prepared. The model is been analyzed through Ansys CFD following the steps as discussed above. It's been found that the developed propeller with carbon fiber material is capable of producing 5.7 N of thrust force at 3000 rpm. Hence we can use the developed propeller in any mini UAVs with the 1200 KV motor with an 11.1 v Lipo battery.

XII. REFERENCES

- [1] Design and Performance Evaluation of Propeller for Solar-Powered High-Altitude Long-Endurance Unmanned Aerial Vehicle. International Journal of Aerospace Engineering, Volume 2018, https://doi.org/10.1155/2018/5782017
- [2] Glassock, R.R. Design, Modelling and Measurement of Hybrid Powerplant for Unmanned Aerial Vehicles (UAVs), Master's Thesis, 2012, Queensland University of Technology.
- $[3] \quad Ansys-18 \ Fluent \ Tutorial \ Guide$