International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 4 Issue 11, November-2015

Design Pattern Detection and Visualization using
Reverse Engineering

Jerin Thankappan
M.E. Student
Computer Department,
St. Francis Institute of Technology
Mumbai, India.

Abstract—Design Patterns are the most valuable and
approachable solution for any software design issues. Pattern
identification delivers important information to the designers.
The proposed work here gives a detailed analysis of this solution
and also helps in fulfilling the detection of design patterns in
java. Since design is not tangible, it is hard to detect. The
proposed application is functioned for all kinds of java based
software where any person interested in understanding the code
can use. The focus here is to detect the java design patterns and
display them with the help of a proper GUI for easier
understanding. Functionally, this tool gives an overall idea of the
design pattern and its detection.

Keywords—Reverse Engineering, Web design patterns, java
based tool, detection, tree structure, class diagram.

l. INTRODUCTION

The secondary developers, when they try to reinvent the
wheel for any software face problems related to the design of
the product. These problems are related to the design patterns
used in the software. The major task in software
comprehension is to understand the design and architecture
[3]. For a program comprehension it is important to discover
the uncovered design patterns from source code. The intended
design is totally different from what you expect, so there is a
need to understand these differences and provide a solution to
the concept being used here. Dirk Heuzroth et.al have
provided with static and dynamic information in their tool.
Static information includes the structural connections among
classes via call, delegation or inheritance relations. Dynamic
relations are the ones where the specific sequences of actions
and interactions of the objects of these classes are shown. The
lack of a common structure of the architecture causes
problems in understanding the code [4]. These patterns are
usually in the textual format, which is semi-formal way to be
precise. Since graphical images win over text, the need to
produce it graphically was embarked. The usability and
quality of the interface should be evaluated for its conformity.
The web design patterns deal with interaction problems of
web application users. The focus of this paper is to provide
with an optimal solution to detect web design patterns in java
source code in a graphical method much efficient and clear to
understand. Hence the need to give a good graphical
presentation for the detected patterns was discovered. This
paper uses similarity scoring for graphs to compare and detect
the pattern. We use reverse engineering process to detect these
design patterns. It is important to document the code for

IJERTV 415110491

Vandana Patil
Assistant Professor
Information Technology Department,
St. Francis Institute of Technology
Mumbai, India.

many purposes such as for analyzing the product, for provides
any updates or correction, for commercial or military
espionage, for academic purposes, for gaining technical
intelligence or for the curiosity of the learner.

Il. LITERATURE REVIEW

Design patters which are the elements of reusable object
oriented software was originally written by the Gang of four
(GoF) viz Erich Gamma et.al. They have categorized the
design patterns into 3 viz. Creational, Structural and
Behavioral. Creational addresses problems of creating an
object in a flexible way, structural addresses problems of
using object oriented constructs like inheritance to organize
classes and objects and behavioral address problems of
assigning responsibilities to classes, they suggest both static
relationships and patterns of communications. The diagram
shown below clearly shows those patterns.

Design Patterns

Structural Behavioral

® Adapter Design

e Bridge Design

® Composite Design
© Decorator Design
® Facade Design

o Flyweight Design
® Proxy Design

Creational

@ Abstract Factory Design
@ Builder Design

@ Factory Method Design
@ Singleton Design

® Chain of Responsibility
¢ Command Design

o Interpreter Method

o [terator Design

® Mediator Design

® Memento Design

® Observer Design

® State Design

® Template Method

Figure 1. Classification of Design Patterns (GoF) f[2]

In [3] Dirk Heuzroth et al., propose to analyse the system
and also consider the structure the behaviour of the given
system. In this paper they take an example of the Observer
Pattern and say that it is possible to distinguish an object
instance from a design instance, if the latter contains class
program elements. Example of Observer pattern is used to
distinguish the object instance from its design instance. They
distinguish the static and dynamic restrictions or rules. The
below figure shows the approach

www.ijert.org 539

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Program Start Program End

S \ /Statlc E [static Patt Bynaml:: Possibl

ource [\ atic Pattern (\ ossible

Code ‘—N‘Analysis/‘ | Candidates ;\Analysis; > Patterns
N /

\. PP

Figure 2. Static and Dynamic Analysis of Patterns [2]

Dirk Heuzroth et al., [3] also mentions about other tools which
are available that describe a static analysis to discover design
patterns (Bridge, Factory Method and Template Method) from
C++ systems. The Pat system mentioned in the paper detects
structural design patterns by extracting design information
from C++ header files and they store them as Prolog facts.
Here the Prolog queries are used to search and the patterns are
expressed as patterns. In a paper Brown K. et al. uses dynamic
information to analyse the flow of messages. This approach is
restricted to detecting design patterns in Smalltalk. Carriere et
al. also works on code instrumentation to extract dynamic
information to examine and transform architectures. The
approach presented by Dirk H. only recognizes
communication primitives and not complex protocols.

In [4] Nazanin A. et al., inform that all patterns are
documented in natural language and also reproduced via
diagrams. Architectural patterns use an simple outline for
visualization purpose, SE patterns make use of UML diagrams
to illustrate design patterns in this field. HCI design patterns
face problems in visualization and uncertainty. The usage of
Ul Model fragments is referenced in Lucca, Fasolino and
Tramontana [4]. They provides an effective definition for HCI
design patterns. Since this method is not descriptive enough, it
cannot be used for visualization purpose and it only helps for
detection. Till now, a great amount of research has been done
into detecting design patterns but majority of it has been done
in the field of HCI. In [6], Shi and Olsson addressed only
Structural and Behavioural aspects. They divided design
patterns detection methods into static and dynamic analysis
approaches. Among the approaches developed for detection of
patterns, Dong, Sun and Zhao referred in [4] and Shi and
Olsson [6] used Matrix Matching method and reorganization
of GoF patterns to consider only static analysis for detection
of design patterns. Also, Heuzeroth, Holl, Hogstrom and
Lowe [3] examined automatic detection of design pattern
through the usage of both static and dynamic analyses. It can
be noticed that the focus of reviewed approaches is either on
detection or visualization of design patterns. We notice that
the focus of the papers seen above is either on detection or on
visualization.

According to Kniesel, Gunter, and Alexander Binun [9]
their approach brings data fusion to software engineering.
They are the first one to study an approach to detect the design
pattern based on data fusion. Poshyvanyk et al. as referred in
[9] suggest using data fusion to find features in big programs.
They suggest to combine the outputs of the static and dynamic
analysis-based concept detection tools. Kniesel, Gunter, and
Alexander Binun went one step further by combining the
output of tools that already combine different techniques. The
decomposition of patterns into smaller subparts has already
been suggested in SPQR and implemented in SPQR, Fujaba,
EDPDetector4Java(tools mentioned in [9]) and to a limited
extent (one EDP) in SSA. They take this decomposition one

IJERTV 415110491

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 4 Issue 11, November-2015

step further by showing that also much bigger entities can
beneficially be used as witnesses of sought patterns. Our
witness relation was based on our sub-pattern relation.
However, other relation between patterns has not been
discussed and has been kept for future work. The difference
between the above approaches and ours is that we emphasized
that roles need to be regarded at any granularity, not just at the
level of classes. The approach in [9] is partly based on
performing two analysis stages. There are undoubtedly many
parallels of our work to any other work on Design Pattern
Detection. In this paper we have thoroughly discussed some of
the currently available tools and compare our results with
theirs. For a broader discussion of other approaches we refer
to the recent state of the art overview by Kniesel et al[9] and
Dirk Heuzroth[3]. However, most tools were compared only
based on literature, without running them. Only [9], did
practical experiments on the tools, rest of the tool evaluation
was purely on literature. In this paper too, we are publishing
the results based on the experiments that were conducted with
other tools and our tool called the “CLASSIFIER”. Our
experimentation enabled us to provide detailed feedback to the
various tool authors, regarding the robustness, performance,
scalability, precision and recall of the approaches.

I1l. PROPOSED SYSTEM

A design pattern is a concept of source code design and it
can be found out in many ways. As we saw above there are
many tools which analyse design pattern and detect them
using different tools. However, the presentation techniques
are different and some of them do not provide accurate
results. This detection is very important as it becomes
difficult for the secondary developers to make any changes.
Hence, reverse engineering of these applications becomes a
necessity and has to be taken care of. The knowledge of this
design pattern improves the program understanding and
software maintenance. Therefore, an automatic and consistent
design pattern discovery is required. This System detects the
pattern by using a tree structure, this tree structure will be the
basis of comparison and along with the detected pattern we
will also have the tree structure shown where all the defined
methods and classes will be mentioned shown on the tree as a
diagrammatic representation so that the secondary developers
may not waste time searching and understanding the
documentation of each software.

The system here we call as Classifier, detect the patterns
using similarity scoring and create a tree structure for the
developers to understand the code in a better manner. The
components include a parser and a comparer. The parser
parses the java code given to it and the comparer compares
the tree structure to the existing structure and produces the
result. First, a java code has to be given as the input to the
system, and then the system generates a tree structure of the
code. This structure will contain all the classes as given in the
code along with the class definition and instances if any. Here
we use the similarity scoring algorithm for graphs [10] and
detect the patterns. There does not exist a design pattern
always, hence for such codes, the pattern may show none, but
the tree diagram will be produced displaying all the classes
and methods.

www.ijert.org 540

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

International Journal of Engineering Research & Technology (I1JERT)
ISSN: 2278-0181
Vol. 4 Issue 11, November-2015

IV. EXPERIMENTAL RESULT

The proposed system uses different method to detect the
web patterns. The experiment was conducted on a desktop
computer running on Windows 8 Home Basic Operating
System with 2GB RAM and 500GB Hard disk. The program
was run on Spring Tool Suite IDE for the integration of Web
with Java. Spring tool has full Eclipse JEE distribution inside
and comes with Maven, Spring Roo and tc Server developer
edition pre-packaged and pre-configured (you can start using
tc Server or Spring Roo right away without the need to
download or configure them manually).

A. Data

The data or the java source files for testing purposes was
used. These examples are based on specific patterns. We
provide with 2 such examples of Observer and Composite
Patterns. Let us take this code snippet for example [14].

protected void isolate() { System.out.printin(" train the
cameras"); }

}

public class ClassVersusinterface {
public static void main(String[] args) {
SensorSystem ss = new SensorSystem();
ss.register(new Gates());
ss.register(new Lighting());
ss.register(new Surveillance());
ss.soundTheAlarm();

}

interface AlarmListener { public void alarm(); }

class SensorSystem {
private java.util.Vector listeners = new java.util.Vector();

public void register(AlarmListener al) {
listeners.addElement(al); }

public void unregister(AlarmListener al) {
listeners.removeElement(al); }

public void soundTheAlarm() {

for (java.util.Enumeration e=listeners.elements();
e.hasMoreElements();)
((AlarmListener)e.nextElement()).alarm();

}

class Lighting implements AlarmListener {
public void alarm() { System.out.printin("lights up"); }

}

class Gates implements AlarmListener {
public void alarm() { System.out.printIn("gates close"); }

}

class CheckList {
public void byTheNumbers() { // Template Method design
pattern
localize();
isolate();
identify(); }
protected void localize() {
System.out.printin(" establish a perimeter"); }
protected void isolate() {
System.out.printin(" isolate the grid"); }
protected void identify() {
System.out.printin(" identify the source"); }
}
// class inheri. // type inheritance
class Surveillance extends CheckList implements
AlarmListener {
public void alarm() {

System.out.printIn("Surveillance - by the numbers:");
byTheNumbers(); }

1JERTV41S110491

B. Result

We find that the AlarmListener interface is been called by
class Lightning, Gates and Surveillance, and Surveillance also
extends CheckList, which follows the observer pattern.

This code when fed as input to CLASSIFIER and WOP
(Web of Patterns), both the systems detected the pattern
correctly, but the representation was different. WOP showed
rigid formation and limited information with respect to class
and methods whereas CLASSFIER showed a GUI which can
be shaped according to user’s comfort and well presented with
proper address to methods in each class. The Classifier
diagrams are more accurate and understandable than other
systems. The diagram below shows the result for classifier.

CLASSIFIER

Patterns detected: Observer.

+alarm.
“usclate

Fig 3. Result from the given code

The class boxes can be moved as per the user’s understanding
and flexibility which is shown in Fig. 4.

CLASSIFIER
Patterns detected: Observer.

ClassVersusInterface

+man

s
s

|

“slam

~isolate

s
“rea
et
~soundTheAlam
solste

Fig 4. Reshaped Classes

www.ijert.org 541

(Thiswork is licensed under a Creative Commons Attribution 4.0 International License.)

V. CONCLUSION [5]
Classifier is a system which detects the design patterns in
any java source code provided if it exists. The system first [g]
creates a tree structure of the code entered and then compares
it with the existing patterns in the system. When you compare
the work with any other existing tool the accuracy level is
more and the pattern detected are represented using a flexible [7]
GUI which makes it easier for the developers to adjust and
makes changes as how one wants to view it. The detection is
done using similarity scoring for graphs which is open-source 8]
and easily available. For future work one can extend this to
design patterns for web, i.e. html pages and can create similar
structure for the c¢ss and javascript involved. [
REFERENCES [10]
[1] Jerin Thankappan, and Vandana Patil. "Detection of Web Design
Patterns Using Reverse Engineering.” Advances in Computing and
Communication Engineering (ICACCE), 2015 Second International
Conference on. IEEE, 2015.
[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns— [11]
Elements of Reusable Object-Oriented Software”, Addison-Wesley,
Boston, Massachusetts, USA, 1995 [12]
[3] Dirk Heuzroth, Thomas Holl, Gustav Hogstrom, Welf Lowe, 13
“Automatic Design Pattern Detection” IEEE Conference Publications, [13]
2003 [14]
[4] Nazanin Aminzadeh, Siti Salwah Salim, “Detecting and Visualizing
Web Design Patterns”,Computer and Automation Engineering
(ICCAE), the 2nd International Conference,2010
IJERTV41S110491 www.ijert.org

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 4 Issue 11, November-2015

Osama Abu Abbas, “Recovering Interaction Design Patterns in Web
Applications”, Software Maintenance and Reengineering, Ninth
European Conference, 2005

Nija Shi and Ronald A. Olsson, "Reverse Engineering of Design
Patterns from Java Source Code" Automated Software Engineering,
2006. ASE'06. 21st IEEE/ACM International Conference on. IEEE,
2006

Federico Bergenti and Agostino Poggi, "IDEA: A Design Assistant
Based on Automatic Design Pattern Detection" Proceedings of the 12th
international conference on Software Engineering and Knowledge
Engineering, 2000

D.H. Qiu, H. Li, J.L. Sun, “Measuring Software Similarity based on
Structure and Property of Class Diagram” Sixth International
Conference on Advanced Computational Intelligence, 2013

Kniesel, Giinter, and Alexander Binun. "Standing on the shoulders of
giants-a data fusion approach to design pattern detection." Program
Comprehension, 2009. ICPC'09. IEEE 17th International Conference
on. IEEE, 2009.

Chatzigeorgiou, Alexander, Nikolaos Tsantalis, and George
Stephanides. "Application of graph theory to OO software
engineering." Proceedings of the 2006 international workshop on
Workshop on interdisciplinary software engineering research. ACM,
2006.

Pinot-Pattern Inference and
http://web.cs.ucdavis.edu/~shini/research/pinot/

The Web of Patterns Project. http://www-ist.massey.ac.nz/wop/
Fujaba—Tool Suite. http://www.fujaba.de/

Observer Design Pattern in Java.
https://sourcemaking.com/design_patterns/observer/java/2

Recovery Tool.

542

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

