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Abstract— Heat exchangers are catching more and more
attention for their applications in Space heating, refrigeration,
Air-conditioning, Power plants, Chemical Plants, Petro chemical
plants and Natural gas plants. The Effectiveness of Heat
exchanger plays major role while selecting a suitable Heat
exchanger for respective application. Effectiveness can be found
out by Theoretical approach, which includes Ilot of
approximation, or Practical method, which includes prototyping
and testing or Numerical method, it’s a well proven method in
modern days. Since the experiments cost long periods and great
expenses than the numerical methods. Simulation based on
computational fluid dynamics (CFD) [2] is a good approach to
adapt.

In this work, the authors have tried to optimize the Heat
exchanger to get maximum effectiveness, by changing baffle
arrangements. Totally five different baffle designs where
considered to carry out the CFD analysis and to find the most
effective design
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STAR-CCM, CFD Analysis.

l. INTRODUCTION

A heat exchanger is a device built for efficient heat transfer
from one medium to another, whether the media are separated
by a solid wall so that they never mix, or the media are in
direct contact. They are widely used in space heating,
refrigeration, air conditioning, power plants, chemical plants,
petrochemical plants, petroleum refineries and natural gas
processing. One common example of a heat exchanger is the
radiator in a car, in which the heat source, being a hot engine-
cooling fluid, water, transfers heat to air flowing through the
radiator [i.e. the heat transfer medium].

Flow Arrangement

Tao=Tio
Figure.1: Flow Arrangement; A - Counter flow; B — Parallel Flow
Heat exchangers [3] may be classified according to their flow
arrangement. In parallel-flow heat exchangers, the two fluids
enter the exchanger at the same end, and travel in parallel to
one another to the other side. In counter-flow heat exchangers

the fluids enter the exchanger from opposite ends. The counter
current design is most efficient, in that it can transfer the most
heat from the heat transfer medium. In a cross-flow heat
exchanger, the fluids travel roughly perpendicular to one
another through the exchanger.

For efficiency, heat exchangers are designed to maximize [6]
the surface area of the wall between the two fluids, while
minimizing [6] resistance to fluid flow through the exchanger.
The exchanger's performance can also be affected by the
addition of fins or corrugations in one or both directions,
which increase surface area and may channel fluid flow or
induce turbulence. The driving temperature across the heat
transfer surface varies with position, but an appropriate mean
temperature can be defined. In most simple systems this is the
log-mean temperature difference (LMTD). Sometimes direct
knowledge of the LMTD is not available and the NTU method
is used Effectiveness (¢) is defined as the ratio of the

actual heat transfer rate for a heat exchanger to the maximum
possible heat transfer rate.
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Types of heat exchangers

Shell and tube heat exchanger

Plate heat exchanger

Regenerative heat exchanger

Adiabatic wheel heat exchanger

Plate fin heat exchanger

Waste heat recovery units

Dynamic scraped surface heat exchanger
e Phase change heat exchanger
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Figure.2. Shell and heat exchanger
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Shell and tube heat exchangers consist of a series of tubes.
One set of these tubes contains the fluid that must be either
heated or cooled. The second fluid runs over the tubes that are
being heated or cooled so that it can either provide the heat or
absorb the heat required. A set of tubes is called the tube
bundle and can be made up of several types of tubes: plain,
longitudinally finned, etc. Shell and Tube heat exchangers are
typically used for high pressure applications (with pressures
greater than 30 bar and temperatures greater than 260°C.This
is because the shell and tube heat exchangers are robust due to
their shape. There are several thermal design features that are
to be taken into account when designing the tubes in the shell
and tube heat exchangers. These include:

Tube diameter: Using a small tube diameter makes the heat
exchanger both economical and compact. However, it is more
likely for the heat exchanger to foul up faster and the small
size makes mechanical cleaning of the fouling difficult. To
prevail over the fouling and cleaning problems, larger tube
diameters can be used. Thus to determine the tube diameter,
the available space, cost and the fouling nature of the fluids
must be considered.

Tube thickness: The thickness of the wall of the tubes is
usually determined to ensure:

There is enough room for corrosion

That flow-induced vibration has resistance
Axial strength

Ability to easily stock spare parts cost
Sometimes the wall thickness is determined
by the maximum pressure differential across
the wall.

o O O O

Tube length: heat exchangers are usually cheaper when they
have a smaller shell diameter and a long tube length. Thus,
typically there is an aim to make the heat exchanger as long as
physically possible whilst not exceeding production
capabilities. However, there are many limitations for this,
including the space available at the site where it is going to be
used and the need to ensure that there are tubes available in
lengths that are twice the required length (so that the tubes can
be withdrawn and replaced). Also, it has to be remembered
that long, thin tubes are difficult to take out and replace.

give greater heat transfer as they force the fluid to flow in a
more turbulent fashion around the piping. Square patterns are
employed where high fouling is experienced and cleaning is
more regular.

Baffle Design: baffles are used in shell and tube heat
exchangers to direct fluid across the tube bundle. They run
perpendicularly to the shell and hold the bundle, preventing
the tubes from sagging over a long length. They can also
prevent the tubes from vibrating. The most common type of
baffle is the segmental baffle. The semicircular segmental
baffles are oriented at 180 degrees to the adjacent baffles
forcing the fluid to flow upward and downwards between the
tube bundles. Baffle spacing is of large thermodynamic
concern when designing shell and tube heat exchangers.
Baffles must be spaced with consideration for the conversion
of pressure drop and heat transfer. For thermo economic
optimization it is suggested that the baffles be spaced no
closer than 20% of the shell’s inner diameter. Having baffles
spaced too closely causes a greater pressure drop because of
flow redirection. Consequently having the baffles spaced too
far apart means that there may be cooler spots in the corners
between baffles. It is also important to ensure the baffles are
spaced close enough that the tubes do not sag. The other main
type of baffle is the disc and donut baffle which consists of
two concentric baffles, the outer wider baffle looks like a
donut, whilst the inner baffle is shaped as a disk. This type of
baffle forces the fluid to pass around each side of the disk then
through the donut baffle generating a different type of fluid
flow.

Due to the many variables involved, selecting optimal heat
exchangers is challenging. Hand calculations are possible, but
much iteration is typically needed. As such, heat exchangers
are most often selected via computer programs, either by
system designers, who are typically engineers, or by
equipment vendors.

In order to select an appropriate heat exchanger, the system
designers [8] (or equipment vendors) would firstly consider
the design limitations for each heat exchanger type. Although
cost is often the first criterion evaluated, there are several
other important selection criteria which include:

e High/ Low pressure limits

e  Thermal Performance
Tube pitch: when designing the tubes, it is practical to ensure ° Temperatu_re ranges _ _ _
that the tube pitch (i.e., the centre-centre distance of adjoining *  Product Mix (liquid/liquid, particulates or high-solids
tubes) is not less than 1.25 times the tubes' outside diameter. A liquid)
larger tube pitch leads to a larger overall shell diameter which e Pressure Drops across the exchanger
leads to a more expensive heat exchanger. e  Fluid flow capacity

e Cleanability, maintenance and repair
Tube corrugation: this type of tubes, mainly used for the e Materials required for construction

inner tubes, increases the turbulence of the fluids and the
effect is very important in the heat transfer giving a better
performance.

Tube Layout: refers to how tubes are positioned within the
shell. There are four main types of tube layout, which are,
triangular (30°), rotated triangular (60°), square (90°) and
rotated square (45°). The triangular patterns are employed to

e Ability and ease of future expansion
Choosing the right heat exchanger (HX) requires some
knowledge of the different heat exchanger types, as well as the
environment in which the unit must operate. Typically in the
manufacturing industry, several differing types of heat
exchangers are used for just the one process or system to
derive the final product. For example, a kettle HX for pre-
heating, a double pipe HX for the ‘carrier’ fluid and a plate
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Cold flow inlet

and frame HX for final cooling. With sufficient knowledge of
heat exchanger types and operating requirements, an
appropriate selection can be made to optimize [6] the process.

Problem description

In many researches held on Heat exchangers it is specified that
effectiveness is the best way to measure its efficiency. So, in
such cases, it is of extreme important to find the best design at
which we get the Maximum effectiveness of Heat exchanger,
which is the objective of this work.

To study the Effectiveness variation by varying the baffles
in cross flow heat exchanger. Computational [5] validation of
experimental data has rarely been conducted in the cross flow
heat exchangers. The current work aims to not only add to the
computational validations of cross flow heat exchangers [4]
but also to thoroughly investigate the flow physics. Heat
exchanger is well understood from a theoretical flow
perspective but not as well from a computational Figure.4. Crossflow heat exchanger with hotflow outlet and cold flow inlet
aerodynamics perspective.

Hot outlet

Il.  METHODOLOGY
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Figure.3. Methodology
Preprocessing:
Step 1: Construction of Geometry.
This problem has three geometries namely,
1. Hot fluid section
2. pipe section
3. cold fluid section

The geometries of given problem are created by using
SOLIDWORKS software. The dimensions of the geometries /
are:

Shell cross section: 130 x 100 mm
Shell inlet and outlet : 80 x 80 mm Cold flow outlet
Height of the shell : 400mm Figure.5.Crossflow heat exchanger with buffle walls, hot flow inlet and cold
Tube internal diameter =46mm, flow outlet

tube thickness =2mm

Length of tubes =420mm

No. of tubes=3

Step 2 : Meshing the Model
There are two types of meshing.

1. Surface mesh with triangular faces.

2. Volume mesh with Polyhedral and prism layer.
Since the geometries having some complexity[9], surface

mesh was done by hypermesh [6] tool and volume mesh was
generated in STAR-CCM+ with polyhedral faces.
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Cell Type = Polyhedral There are five cases have been analyzed by modifying
Total number of cells = 106352 length of the baffle.
No. Of interior faces = 423029 Case-A:-
Temperature (i)
2000
304,00
368,00
4200

I 316.00
29000

Figure.7. Temperature contour plot

Figure.6.Meshed design space

Veiocity (m/s)

Setting physics of the Problem g

Since in this problem consists of three phases we need to
select three physics, one for gas, second for liquid and another
for SOLID.

Physics selected for gas and liquid :-

Three Dimensional Flow.

stationary

Constant density

Steady Flow.

Segregated flow model

TURBULENT FLOW with K-Epsilon model.
Physics selected for solid :- Figure.8. Velocity vector plot

Three Dimensional Flow.

STATIONARY

CONSTANT DENSITY

Steady Flow. Feotaals
Segregated solid energy.
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The Boundary Conditions oom
In this problem there are two inlet one for coolant other
for hot steam through the pipe, both are velocity inlet
type. Similarly there are two outlets in which pressure
outlet type for the hot steam (pipe fluid) and flow split

1E-4

Residual

1E-6

outlet type for coolant outlet. The solid pipe cross BT
section is given as symmetry type and remaining are 1E8
keep as a wall which are smooth, no slip and adiabatic. 1es | |
i} 100 200 300 400 500 600 700
The velocity at both the inlet is 0.05 m/s. the pressure e

— Continuity — X-momentum —Y-momentum — Z-momentum — Tke — Tdr — Energy

at the tube outlet is one atmosphere.
Figure.9. .Residual plot
Coolant temperature =290k

Hot steam temperature = 420Kk.

Turbulent intensity is 5% for hot steam and 10% for
coolant liquid used. The length scale are 5mm and
10mm for steam and coolant respectively.

Results and discussions:-
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Figure.10.Hot outflow temperature plot

Case-B:-
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Figure. 14. Hot outflow temperature plot
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Case-C:-
Figure.11. Temperature contour plot
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Figure.15. Temperature contour plot
000000

Figure.12. Velocity vector plot
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Case-D:-
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Figure.22. Hot outflow temperature plot Figure.25. Streamlines plot
Case-E:-
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Figure.24.Velocity vector plot
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Table.1: Comparison of effectiveness values at various

case | Length Outlet Effectiveness
of temperature(k) (%)

baffle

(mm)
A 260 292.813 0.978361538
B 270 293.262 0.974907692
C 300 295.95 0.954230769
D 330 295.75 0.955769231
E 340 292.80 0.978461538

baffle plate lengths

Temperature (k)

Temperature
297
296
295
294
293 Temperat
292 ure

0 5 10

cases

Figure.28. Temperature Variation after optimization

Effectiveness

effectiveness

0.98
0.975
0.97
0.965
0.96
0.955
0.95

effectiven
ess

cases
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Figure.29. Effectiveness after optimization

1. CONCLUSIONS

The results states that simple modification in the
baffle plate arrangement and design gives the
significant changes in the effectiveness of the heat
exchanger. In case A and E, the baffle length ends
above and below the third tube, shows the good
effectiveness and less dead regions are recirculation
zones compared to the cases B and D. But in the
case of C, the pressure buildup at the baffle end and
so the recirculation zone is large. So if the tubes are
fully submerged and the uniform flow over the
tubes gives the better effectiveness.
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