International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Voal. 2 Issue 11, November - 2013

Design of Universal Serial Bus for Low Cost Field
Programmable Gate Array

V.Arun , ASSISTANT PROFESSOR,MLRIT , DUNDIGAL , HYDERABAD
D.Laxma Reddy, ASSISTANT PROFESSOR, MLRIT, DUNDIGAL, HYDERABAD

1JERTV 215110886

ABSTRACT:

The objective of the paper is to develop a
USB device core, comprising of a Transmitter and
Receiver on FPGA integrated circuits using VHDL as
the coding language. Higher speed and quality
requests for communications between digital systems
and devices introduced the need of developing a new
standard to allow replacement of the traditional
series and parallel interfaces, thus allowing not only
an increased speed in data transfer, but also a
chance to connect different data receivers and
transmitters over one common structure, bus type.
This would allow the development of a data
communication system that would be simple to
manage but also very efficient. The answer to this
challenge, the well known USB standard has become,
during the last years, the basic communication
module for digital systems, replacing, with many
advantages, the previous and traditional series and
parallel communication interfaces. uUsB
characteristics include low cost, easiness of use, and
simple construction. Thus, USB standard must be
considered as something to be used in any kind of
device requiring data communication with other
systems or devices.

1. INTRODUCTION

The main reason why new interfaces donlt
appear very often is that existing interfaces have the
advantage of all of the peripherals that users don[t
want to scrap. By choosing compatibility with the
existing Centronics parallel interface and RS-232
serial-port interface, the developers of the original
IBM PC sped up the design process and enabled
users to connect to printers and modems already in
the market. These interfaces proved serviceable for
close to two decades. But as computers became more
powerful and the number and kinds of peripherals
Increased, the older interfaces became a bottleneck of
slow communications with limited options for
expansion. This is the situation that prompted the
development of USB. There has been two versions of
USB standards previously USB1.0 and USBI.1
(September 1998) these versions supported only two
speeds Low and Full speed. April 2000 saw the
release of USB 2.0 which added the option to use
high speed.

2. BENEFITS OF USB

Ease of Use: Ease of use was a major design goal
for USB, and the result is an interface that’s a
pleasure to use for many reasons:

One interface for many devices USB is
versatile enough to be usable with a variety of
peripheral types. Instead of having a different
connector type and supporting hardware for each
peripheral, one interface serves many.

Automatic configuration When a user connects
a USB peripheral to a PC, Windows detects the
peripheral and loads the appropriate software driver.
The first time the peripheral connects, Windows may
prompt the user to insert a disk with driver software,
but other than that, installation is automatic There[]s
no need to restart the system before using the
peripheral.

Easy to connect With USB, there[Js no need to
open the computer[]s enclosure to add an expansion
card for each peripheral. A typical PC has four or
more USB ports. You can expand the number of
ports by adding hubs with additional ports.

Easy cables USB cable connectors are keyed so
you canlt plug them in wrong. A cable segment can
be as long as 5 meters. With hubs, a peripheral can be
as far as 30 meters from its host PC. USB connectors
are small and compact in contrast to typical RS-232
and parallel connectors. To ensure reliable operation,
the USB specification includes detailed requirements
that all cables and connectors must meet.

Hot pluggable. You can connect and disconnect a
USB peripheral whenever you want, whether or not
the system and peripheral are powered, without
damaging the PC or device. The operating system
detects when a peripheral is attached and readies it
for use.

No user settings. USB peripherals don[t have
user-selectable settings such as port addresses and
interrupt-request (IRQ) lines so there are no jumpers
to set or configuration utilities to run.

www.ijert.org

4202

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Voal. 2 Issue 11, November - 2013

1JERTV 215110886

No power supply required (sometimes): The
USB interface includes power-supply and ground
lines that providle a nominal +5V from the
computer’s or hub’s power supply. A peripheral that
requires up to 500 mill amperes can draw all of its
power from the bus instead of having to provide a
power supply. In contrast, peripherals that use other
interfaces may have to choose between including a
power

3. DATAENCODING
All data on USB is encoded. The encoding format is
called Non-Return to Zero Inverted (NRZI).

WATOSED L0010l
DATA SENT . -
W2l Eicooe P]

Figure: Example of NRZI Encoding

Instead of defining logic Os and 1s as voltages, NRZI
encoding defines logic 0 as a voltage change, and
logic 1 as a voltage that remains the same. Figure 2.6
shows a example. Each logic 0 results in a change
from the previous state. Each logic 1 result in no
change in the voltages. The bits transmit least-
significant-bit (LSB) first.

4.USB PROTOCOLS

Unlike RS-232 or similar serial interfaces
where the format of data being sent is not defined,
USB is made up of several layers of protocols.

Each USB transaction consists of a Token Packet
(Header defining what it expects to follow), Optional
Data Packet, (Containing the payload) Status Packet
(Used to acknowledge transactions and to provide a
means of error correction) USB is a host centric bus.
The host initiates all transactions. The first packet,
also called a token is generated by the host to
describe what is to follow and whether the data
transaction will be a read or write and what the
device’s address and designated endpoint is. The next
packet is generally a data packet carrying the payload
and is followed by a handshaking packet, reporting if
the data or token was received successfully, or if the
endpoint is stalled or not available to accept data.

5. COMMON USB PACKET FIELDS

Data on the USB bus is transmitted LSB bit first.
USB packets consist of the following fields [7, 3]
Sync: All packets must start with a sync field. The
sync field is 8 bits long, which is used to synchronize
the clock of the receiver with the transmitter. The last
two bits indicate where the PID fields starts.

PID: PID stands for Packet ID. This field is used to
identify the type of packet that is being sent. The
following table shows the possible values.

ADDR: The address field specifies which device
the packet is designated for. Being 7 bits in length
allows for 127 devices to be supported. Address 0 is
not valid, as any device which is not yet assigned an
address must respond to packets sent to address zero
ENDP: The endpoint field is made up of 4 bits,
allowing 16 possible endpoints. Low speed devices,
however can only have 2 endpoint additional
addresses on top of the default pipe. (4 Endpoints
Max)

CRC: Cyclic Redundancy Checks are performed on
the data within the packet payload. All token packets
have a 5 bit CRC while data packets have a 16 bit
CRC.

EOP: End of packet is signaled by a Single Ended
Zero (SE0) for approximately 2 bit times followed by
aJ for 1 bit time.

6. TYPES OF TRANSFERS

USB is designed to handle many types of
peripherals with varying requirements for transfer
rate, response time, and error correcting. There are
four types of data transfers each handling different
needs and a device can support the transfer types that
is best suited for its purpose.
The four transfer types are
CONTROL TRANSFERS are the only type
that has functions defined by the USB specification.
Control transfers enable the host to read information
about a device, set a devicells address, and select
configurations and other settings. Control transfers
may also send vendor-specific requests that send and
receive data for any purpose. All USB devices must
support control transfers.
BULK TRANSFERS are intended for situations
where the rate of transfer isnl[lt critical, such as
sending a file to a printer, receiving data from a
scanner, or accessing files on a drive. For these
applications, quick transfers are nice but the data can
wait if necessary. If the bus is very busy, bulk
transfers are delayed, but if the bus is otherwise idle,
bulk transfers are very fast. Only full- and high-speed
devices can do bulk transfers.
INTERRUPT TRANSFERS are for devices

that must receive the hostlls or devicells attention

www.ijert.org

4203

periodically. Other than control transfers, interrupt
transfers are the only way that low-speed devices can
transfer data. Keyboards and mice use interrupt
transfers to send key press and mouse-movement
data. Interrupt transfers can use any speed.
ISOCHRONOUS TRANSFERS have
guaranteed delivery time but no error correcting.
Data that might use isochronous transfers includes
audio or video to be played in real time. Isochronous
is the only transfer type that doesn’t support
automatic re-transmitting of data received with
errors, so occasional errors must be acceptable. Only
full- and high-speed devices can do isochronous
transfers.

7.USB TRANSMITTER
USB TRANSMITTER STATE MACHINE

Bytier1,
THEA3=0

Figure: State Machine Diagram of USB Transmitter
The state diagram shown above depicts the

operation of the State Machine Controller. The
Transmitter State Machine Controller in the USB is
responsible for the transmission of the appropriate
packets, with their appropriate CRCs. The USB
Transmitter transmits four kinds of packets. Each of
the packets has different formats. The SYNC and PID
fields are common in all the packets
USB Transmitter:

Transmitter Block Diagram:

The block diagram shown below is that of the
USB Transmitter. The inputs of the transmitter are
Data, TxEna, Addr and PID Type. All the inputs go
to the State Machine Controller, and the Register
Array. TxEna signal initiates the state machine to
start the transmission. The outputs of the state
machine enable the respective fields of the packets to
be transmitted. For example, if Sync Ena is the
output, the SYNC field is transmitted from the

1JERTV 215110886

Blytale

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Voal. 2 Issue 11, November - 2013

Register Array. When the PID is to be transmitted,
the PID type is checked, and is transmitted with its
compliment. The PID determines the type of packet
being transmitted. Thus, the packets are transmitted
accordingly from the Register array.

R iy
(s]
L—
e] —

kF

i

E_
;
5]
Hit]

l M, CrusCal |
~ixStateMachine| E

o Controler |, et | (oo |
: |
Rzl Eneo ‘
i
I E
3
. B
MnhiuByled
et st trgl
Sy

Figure : Transmitter Block Diagram

8.USB RECEIVER
STATE DIAGRAM OF TOKEN PACKET

Byleform=1&
creherr=1

Byteform=1&
Creok=1

2] f_eform=1

B nidok=1 Byteform=1

Figure 5.1 State Diagram of Token Packet

USB —Rx receives a Token Packet which has 5 states:

www.ijert.org 4204

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Voal. 2 Issue 11, November - 2013

o Idle purpose. The codes written in these languages can

e PID also be synthesized using a third party Electronic

e DevAddr Design and Automation tool (EDA) tool or the

e EndPtAddr software tool provided by the vendor. With the help

e CRC-5 of these tools it is also possible to optimize the design
State Diagram of Data Packet for speed or space.

FIELD PROGRAMMABLE GATE

oo vl ARRAY (FPGA)
hofter,)m Traditional gate arrays contain a number of
P K\v building blocks or primitive cells etched on a single

r silicon substrate. The connections between cells are
g permanent and made later. These are non

/ Worctiole
/ dctbare] stacriover=1

/ o reprogrammable high-density devices containing
about 5 millions gates. The FPGAs have similar
structure to gate arrays however they have

\Ea(aﬂniouer.o programmable elements.
o The programmable cell is called Logic

_/af et Element (LE) in case of Altera device and
&oidok=1

Configurable Logic Block (CLB) in Xilinx devices.

FPGA wuse the Complementary Metal Oxide

ar:hdef =1

Figure: State Diagram of Data Packet Semiconductor SRAM technology and are thus reset
USB —Rx receives a data packet which has 4 states: at power.

o Idle

e PID 10. RESULTS

o DATA SIMULATION RESULTS:

e CRC-16

The results of the USB Transmitter and Receiver

USB Receiver: explained before are discussed here.

Regiuray

e
==
0
52' j Ipal\l\\l\‘i\mlF?\‘llH;?]FH‘HH@\p?\ll\l\ﬂDIF‘;\‘\I\\NEOIFS\I‘IHIFH‘
P O A B A
Controller hm ! [l ’ TSR Ty ‘ s S i
: l | [I
min e | T T
v e Wy |u T
A T U O |
. o o Lol . J| -
Figure: USB Receiver Block Diagram h i | ‘ | ‘ _‘] ‘
9. INTRODUCTION TO [L o | D
PROGRAMMABLE LOGIC DEVICES

Programmable Devices are integrated circuits
which can be programmed “in house” or on the field.
The design and implementation of an application on
these devices can be achieved with the help of
software tools. Hardware descriptive languages such Figure: Simulation Result of Transmitter.
as Verilog and VHDL are widely used for this

|JERTV21S110886 www.ijert.org 4205

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Voal. 2 Issue 11, November - 2013

[8]Pavel Kubalik and Jiri Bucek: FPGA

i IMPLEMENTATION OF USB 1.1 DEVICE CORE
2003.
W \llgll‘l\\I|:\[|:I\F‘;\‘IIH_\‘I_\H‘_II_\II\'jlplg_l‘l\l\|4|\mll_\‘_ll\l‘\\I\lIIHF\n\‘ \VC/W%NB.bSeI;(;E(?Ié)gic.org/usbnutshe”
_3.2‘.”“ 3 JU-Wﬂ-ﬂ- I—-ﬂ- L ﬂ- L U www.usb.org.
W] o —— www.xilinx.com
L] 1]
fuist |1 o | \ | \ \ AUTHOR’S BIOGRAPHY
pMag | [T | | 3 . .
b W] e | B]I;/llr.ARQN ddld B.Tech in
’—“ ‘ — ,—‘ ' ectronics and communication 1n
h o ELESEL L0 | =T JNTU Hyderabad , M.Tech in
o N -y — Embedded systems from, JNTU
(3 LI i | o L e Hyderab ad. His interested areas in
Embedded systems and image

processing.

Figure: Simulation Result of Receiver.

11. CONCLUSION

In this paper a USB device core i.e., a
Transmitter and Receiver performing the USB
communication is designed. The design was done
using VHDL as the coding language. The tool used
was Xilinx ISE 10.1. The FPGA board used was

Mr. Laxma Reddy did B.Tech in
Electronics and communication
Engineering from Mother Theresa
College of Engineering ,Affiliated to

Spartan 3E. The transmitter module could only be Jjntuh, Hyderabad and M.Tech in computer
implemented on the FPGA.The receiver module was communications from RRS college of engineering
done up to synthesis level. and Technology, INTU Hyderabad. His interested

areas in communications and image processing.

12.REFERENCES

BOOKS:

[1] Craig. Peacock “USB in a Nutshell. Making
Sense of the USB Standard”

[2] Don Anderson, "Universal Serial Bus System
Architecture", 2nd. Edition, Mindshare Inc. 2001.
ISBN- 13: 978-0201309751.

[3]Douglas L. Perry “VHDL: Programming by
Example” 4th edition, McGraw- Hill Professional,
ISBN 978-0071400701.

[4]Elio A. A. De Maria, Edgardo Gho, Carlos E.
Maidana, Fernando I Szklanny, Hugo R. Tantignone:
A LOW COST FPGA BASED USB DEVICE CORE
in programmable logic, 2008, 4th southern
conference on 26 — 28 March 2008 pages: 149 — 154,
2008.

[5]Jan Axelson “USB Complete — The Developers
Guide”, Fourth Edition, Lakeview Research LLC
Madison, WI 53704.

[6]John Hyde “USB Design by Example A Practical
Guide to Building I/O Devices”, 2nd Edition. Intel
University press. ISBN 0—471-37048-7.

[7]V Bhasker “A VHDL Primer” Third Edition,
Pearson Education, ISBN 81- 7808-016-8.

|JERTV21S110886 www.ijert.org 4206

