Special Issue- 2018

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCESC - 2018 Conference Proceedings

Design of S-box and INV S-box using Composite
Field Arithmetic for AES Algorithm

Sushma D K
Department of Electronics and Communication
The Oxford College of Engineering
Bangalore, India

Abstract— The efficient implementation of combined
ByteSub and InvByteSub transformation for encryption and
decryption in advanced encryption standard (AES) architecture
using the composite field arithmetic in finite fields GF (256) or
GF (2% hence this approach is more advantages than the
conventional LUT method that incurs unbreakable delay, large
amount of memory and area. The proposed architecture which
is combined implementing of S-box and InvS-box makes use of
an enable pin to perform encryption and decryption in AES.
The architecture uses combinational logic, as both S-box and
InvS-box are implemented on same hardware reduces the area
and gate count by large amount. The power consumption is
reduced by resource sharing of multiplicative inverse module of
proposed system. The proposed architecture is implemented on
Spatan6 FPGA board using Verilog HDL in Xilinx ISE 14.6.

Keywords— Composite field arithmetic, AES, Galois field,
look-up table, FPGA

l. INTRODUCTION

Cryptographic development in recent years has been a
challenging and high priority research area in both fields of
mathematics and engineering. Due to advancement in
embedded system and need of encryption in it has made
encryption more resource constraint in terms of power, area
and delay. Advanced Encryption Standard (AES) was
adopted as the standard for encryption and decryption by
National Institute of Standards. AES uses larger key sizes
(128, 192 and 256bits) hence provides higher security than
any other encryption technique. Encryption algorithms are
mainly of two types one is private key or symmetric key and
the other is public key. Private key algorithms uses only one
key, for both encryption and decryption whereas, public key
algorithms involve two different keys, for encryption and
decryption [1].Symmetric key cryptography is one of the
main subjects in cryptography where a key of a certain size
will shared for the encryption and decryption processes..
Computation of mathematical inversion in finite field
arithmetic by Sub-Byte transformation consumes the most of
the resource. The AES algorithm is used in different
application fields like Radio Frequency Identification (RFID)
tags, World Wide Web (WWW) servers, Automated Teller
Machines (ATMs), smart cards, cellular phones, digital video
and sensor nodes. AES can be implemented in both hardware
and software. The four important operations in AES
algorithm are S-Box, inverse S-Box, MixColumn and
InverseMixColumn steps in these are computationally more
involved than addroundkey and shift row operations. The
designs, which do not use ROMs or big lookup tables,

Dr. Manju Devi
Department of Electronics and Communication
The Oxford College of Engineering
Bangalore, India

implementations for S-Box and inverse S-Box have been
popular of late for in VLSI or FPGA implementations.

Byte Substitution and Inverse Byte Substitution
transformation is non-linear transformation that maps each
byte of the state that is 128 bits to different value using the
substitution tables for S-box and InvS-box. It can be
implemented by using memory method and memory-less
method. In memory method, ROM based LUT (Look-up
table) is used to compute the S-box that utilizes more
memory, which increases area, power of AES and thus
disadvantage of this is unbreakable delay and latency because
of finite time of the architecture. In memory-less method,
implementation of S-Box using LUT and SOP approach is
fast but effective in cost.

The structure of this paper is as follows. The construction of
ByteSub and InvByteSub transformations is explained in
section Il. The Composite arithmetic operations is explained
in section Ill. Hardware implementation of the proposed
architecture is described in section 1V

1. THE CONSTRUCTION OF BYTESUB AND
INVBYTESUB TRANSFORMATION FOR AES

The ByteSub& InvByteSub transformation are calculated by
the application of the multiplicative inverse to the plain text
in GF (28) and then affine transformation is applied to it. For
decryption, the InvByteSub transformation is calculated by
the application of the inverse affine transformation to cipher
text before applying the multiplicative inverse [6]. The
multiplicative inverse operation is involved in both the
ByteSub and its inverse transformations.

™

1 Mul_inv
am' ol g ™ module
I

Fig 1: Combined ByteSub and invByteSub transformation

Here °‘Aff” block represents affine transform, ‘Aff-1’
represents inverse affine transform, the EN/DN will act as
selection line of s-box and InvS-box, and ‘Mul_inv’ block
represents multiplication inverse in GF(28) .Implementing the
architecture of S-Box (and its inverse) using combinational
logic has an advantage of small area occupancy and on using
pipelined structure and also increases the clock frequency.

Volume 6, | ssue 13

Published by, www.ijert.org 1

Special Issue- 2018

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCESC - 2018 Conference Proceedings

A. Affine and inverse affine transform

The Affine and Affine-1 are the Affine Transformation
and its inverse while the vector is the multiplicative inverse
of the input byte from the state array. From here, it is
observed that both the SubByte and the InvSubByte
transformation involve a multiplicative inversion operation.
Thus, both transformations may actually share the same
multiplicative inversion module in a combined architecture.
Switching between SubByte and InvSubByte is just a matter
of changing the value of EN/DN. EN is set to O for SubByte
while 1 is set when InvSubByte operation is desired.

The SubBytes is a nonlinear transformation, which
computes the multiplicative inverse of each byte of the State
in followed by an affine transformation. The SubBytes can be
described by (1)

Si=M-S;t+cC 1)
Were S;;(0<i,j<4) is considered a element of GF(28) M is 8x8
binary matrix and c is a 8 bit binary vector with only 4
nonzero bits. The transformations in the decryption process
perform the inverse of the corresponding transformations in
the encryption process. Specifically, the InvSubByte
performs the following operation on each byte of the State by

()

Su= M SO,
Where S and S’ are input and output bytes in 8-D vector

formats.

B. Multiplicative inverse module:

inverse module

This multiplicative is a complex

operation, such that it is divided which is the major operation
in both the ByteSub and in inverse ByteSub transformation. It
takes more than 630 gates to implement it with repetitive
multiplications in GF (28). So, to reduce the gate count in
large amount, composite field arithmetic is used.

¢———— multiplicative inversion ——

5'x

&
affine
transformation

Fig 2: Multiplicative inverse module for AES algorithm
i. Isomorphic mapping function and its inverse

Composite field is denoted as GF((2"W™) , this is
Isomorphic to the finite field GF(2%), for k = nm. The
composite field GF(28) can be formed iteratively from lower
order fields like GF(2) using the irreducible polynomials
which are mentioned in (5)

GF(2)= GF(2) - Py (x)=x
GF2%) = GF(25)?) - P (X)=X° + X+ 0
GF((27))= GF({((Z7)")"):

+x+1

2 h

Pr(x)=x" +x+% 3)

Where ¢ = {10}> & 6 = {1100},. To represent an element
of finite field GF(28) in its composite field, an isomorphic
mapping function is wused and after applying the
multiplicative inverse for output of isomorphic function,
again to convert the result into finite field GF(28), an inverse
isomorphic mapping function is used. The 8 x 8 binary
matrices of isomorphic (8) and its inverse (§1) functions can
be decided by the irreducible Polynomial p(x) = x& + x* + x3
+ x +1 of the finite field GF (28 and by the irreducible
polynomials of its composite fields which are mentioned in
(3). Let “a’ be an element (can represent in column matrix of
order 8x1) in GF (28), then the isomorphic mapping can be
written as a matrix multiplication, dxa and itS inverse as
another matrix multiplication &*xa, as shown in (4) and (5).

ar

y 1
L]

ER-
=
o= o
e oo

1
1
b1 ay
1 1

o 1
o 0
o 1
11

ay

[
[l
- R - -
eE=roee~a
-
~ooo oS00

]
o
L]
1

1

1

1

1

CoC B e -
B H - -

R
- - -]

OO oo Do
-)

00 = oo

ii. Multiplicative inversion in GF(28):

In the composite field GF(28) , an element can be
expressed as bx + ¢, where b, ¢ in GF(2%) are first and second
nibbles of the byte and x is a root of irreducible polynomial
P2(x) in eq(3). The multiplicative inverse of bx + ¢ modulo
P2(x) can be computed by using Extended Euclidean
algorithm [2] [5] as shown in (6).

(o) =bpa e oo o x+ e+ D)2+ co o)}

From the above equation implies that there are multiply,
addition, squaring and multiplication inversion in GF(2%)
operations in Galois Field.

I1l. COMPOSITE FIELD ARITHMETIC OPERATIONS

Any arbitrary polynomial can be represented by bx + ¢
where b is upper half term and c is the lower half term.
Therefore, from here, a binary number in Galois Field g can
be spilt to gu x + g for instance, if g = {1011}, it can be
represented as {10}.x + {11},, where qu is {10}, and q. is
{11},. The decomposing is done by making use of the
irreducible polynomials introduced at (3). Using this idea, the
logical equations for the addition, squaring, multiplication
and inversion can be derived.

A. Addition in GF(2%):
Addition of 2 elements in Galois Field can be translated to
simple bitwise XOR operation between the 2 elements.

B. Squaring in GF(2%):

Let ‘q’ is an element in GF(2*) which can written as qu X + q.
and this can be split, let ‘k’ is another element in GF(2%)
which is equal to square of g as given in equation.

kn x+ ki = (grx+qu)” = quix*+q.” (7

The x? term can be modulo reduced using the irreducible
polynomial from (3). By setting x> = x + ¢, doing so yields
the new expressions below.

ey = a5

ey = g5 P g,

ey, =g, 2 a,

ko —g: @ g, D g (8)

Volume 6, | ssue 13

Published by, www.ijert.org 2

Special Issue- 2018

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCESC - 2018 Conference Proceedings

The hardware logic diagram to the above equations is shown
below in fig:3.

, 4 t ’é} 4
x* P A -
O
o o
WL AL

Fig3: Hardware logic diagram of square in GF(24)

C. Multiplication with constant A

Let g and k are the 4bit elements of GF(2%) and let k=qA,
where A={1100}, hence neglect lower A and the equation
given by

K = gu An X2 +qL An X 9)
Modulo reduction can be performed by substituting x? = x +
¢ using the irreducible polynomial in (3) to yield the
expression below
ky =g, ®q,
ks =qs ©q, Dg, By,

ko =as
ko = a- (10)
; 4 i M 4
x* /" OB L ‘ e
- |

Fig 4: Hardware logic diagram of multiplication with constant A

D. Multiplication with constant ¢ in GF(2?):

Let k = qo, where k = {ki k0}2, g = {01q0}2 and ¢ = {10}2
are elements of GF (22).

k= (ql x +g0) x= q1x2+g0 (112)

Substitute the x2 term with x2 = x + 1, yield the expression
below

k=Q1(x+1) + gox= (1+Go)X+01 (12)

The formula obtained to compute its multiplications with
constant ¢ operation in GF(2?) is

k=g, @4g,

oy = a, (13)

2
X #

(14)
Fig 5: Hardware logic diagram of multiplication with constant ¢

E. Multiplication inversion in GF(2%):

The composite field decomposition approach is used to
compute the multiplicative inverse of g (where g is an
element of GF (2%) such that g-1 = {gs *g> L1 %q0'}
Hence reduces the gate count and shortest path delay. The
inverses of the individual bits can be computed from the
equation below

0 =0900.09049, 90,

%, =00:4,90,0.0,904,99,904

6 =004 20:0.9, 99,990,009, 99, 29,0 90,09, 89,84,

............ P 1 S P Ui S L PRI (13)

IV. HARDWARE DESIGN IMPELEMENTATION
AND RESULTS

The analytical validation of the combined S-box and InvS-
box for AES is accoutrement and verified using the Spartan 6
(xcbslx2tqgl44) FPGA board using Verilog HDL in Xilinx
14.6 tool. The proposed module is initiated and implemented
in the main module as combined implementation of s-box and
InvS-box by using an enable pin to select SubByte and
InvSubByte transformation for AES algorithm. The
architecture is appliance using two 2:1 multiplexer as shown
in fig.1and the design consists of implementing modules such
as isomorphic function and Invs-isomorphic function,
squaring unit, inversion unit and affine transformation. Thus,
the architecture utilizes 77 slice of LUT’s and the reduction
in area by 50% and decrease in gate count when compared
with previous LUT methods for S-box and low power
consumption. The number of gates and mux used are
tabulated below in table 1.

Tablel: synthesis report

HDL SYSNTHSIS REPORT
2:1 Multiplexer 2
Number of XOR gates 116
Slice LUTs 77
Delay (ns) 19.889

The simulation results of the proposed architecture using
Xilinx ISE14.6 is shown below figures. The SubByte and
InvSubByte transformations are formed using the
multiplicative inverse module, mux and affine
transformations by using an enable pin to select either
encryption or decryption based on the selection for the AES
algorithm.

2]‘_‘:‘J“u ﬂm'ix Lo v/ G ,,‘@Re%aunch

AN /+/‘_2¢/"

Fig6: Simulation result of SubByte transformations when enable pin EN=1

Volume 6, | ssue 13

Published by, www.ijert.org 3

Special Issue- 2018

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCESC - 2018 Conference Proceedings

Fig7: Simulation result of InvSubByte transformations when enable
pin EN=0

B
s

Fig8: Simulation result of combined SubByte &InvSubByte
transformations

The power consumption of this proposed architecture of
combined s-box and InvS-box for SubByte and InvSubByte
of AES algorithm is 0.014w for an input of 128 bits and the
frequency of operation is about 60MHz.

CONCLUSION

For the efficient implementation of proposed
architecture of the SubBytes/InvSubByte is implemented by
combinational logic to avoid the unbreakable delay of LUTs
in the analytical designs. Further, composite field arithmetic
and finite fields is used to reduce the hardware complexity
and also uses different approaches to implement inversion in
subfield GF(2%) are compared. The architecture is
implemented on Spartan6 FPGA board using Verilog HDL
code by making use of enable pin to select s-box/ Invs-box
during the operation. The overall delay caused by the logic is
19.8ns and consumes very less power of 14mW and occupies
very less area and memory because of resource sharing in
multiplicative inversion module.

ACKNOWLEDGMENT

We acknowledge to department of electronics and
communication for providing the lab resources.

REFERENCE

1. Edwin NC Mui, "Practical Implementation of Rijndael S-Box
Usingcombinational Logic”, Custom R&D Engineer Texco
Enterprise

2. Xinmiao Zhang and Keshab K. Parhi, “High-Speed VLSI
Architectures for the AES Algorithm.”, IEEE Transactions on Very
Large Scale Integration(VLSI) Systems, Vol.12, No. 9, September
2004.

3. P.V.S.Shastl, Anuja Agnihotri, Divya Kachhwaha, Jayasmita Singh
and Dr.M.S.Sutaone, “A Combinational Logic implementation of S-
box of AES”, 54th International Midwest Symposium on Circuit and
Systems, 2011.

4. K. Jarvinen, M. Tommiska, and J. Skytta, “Comparative survey of
high performance cryptographic algorithm implementations on
FPGAs, ” IEEE Proceedings Information Security, vol. 152, no. 1,
pp. 3-12, Oct 2005.

5. K. Shesha Shayee, J. Park, and P. Diniz, “Performance and area
modeling of complete FPGA designs in the presence of loop
transformations,” in 11th Annual IEEE Symposium on field-
Programmable Custom Computing Machines, 2003, FCCM 2003,
April 2003.

6. Bhoopal Rao Gangadari and Shaik Rafi Ahamed, “FPGA
Implementation of Compact S-Box for AES algorithm using
Composite field arithmetic”.

7. X. Zhang and K. Parhi, “High-speed VLSI architectures for the
AES algorithm,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 12, no. 9, pp. 957-967, Sept 2004.

8. L. Ali, L Aris, F. S. Hossain, and N. Roy, “Design of an ultra-high
speed {AES} processor for next generation {IT} security ,”
Computers & Electrical Engineering, vol. 37, no. 6, pp. 1160 — 1170,
2011.

9. J. M. Granado-Criado and M. A. Vegaz, “A new methodology to
Implement the AES algorithm using partial and dynamic
reconfiguration,” The {VLSI} Journal on Integration, vol. 43, no. 1,
pp. 72 — 80, 2010.

10. Vincent Rijmen, “Efficient Implementation of the Rijndael S-Box.”,
Katholieke Universities Leuven, Dept. ESAT. Belgium.

11. Akashi Satoh, Sumio Morioka, Kohji Takano and Seiji Munetoh, “A
Compact Rijndael Hardware Architecture with S-Box
Optimization.” Springer-Verilog Berlin Heidelberg, 2001.

12. S.SrideviSathya Priya, N.M.SivaMangai “Multiplexer based High
Throughput S-box for AES Application” Karunya University,
ICECS 2015

13. “Advanced Encryption Standard (AES)” Federal Information
Processing Standards Publication 197, 26th November 2001.

Volume 6, | ssue 13

Published by, www.ijert.org 4

