
Design of S-box and IN V S -box using Composite

Field Arithmetic for AES Algorithm

Sushma D K
Department of Electronics and Communication

The Oxford College of Engineering

Bangalore, India

Dr. Manju Devi
Department of Electronics and Communication

The Oxford College of Engineering

Bangalore, India

Abstract— The efficient implementation of combined

ByteSub and InvByteSub transformation for encryption and

decryption in advanced encryption standard (AES) architecture

using the composite field arithmetic in finite fields GF (256) or

GF (28) hence this approach is more advantages than the

conventional LUT method that incurs unbreakable delay, large

amount of memory and area. The proposed architecture which

is combined implementing of S-box and InvS-box makes use of

an enable pin to perform encryption and decryption in AES.

The architecture uses combinational logic, as both S-box and

InvS-box are implemented on same hardware reduces the area

and gate count by large amount. The power consumption is

reduced by resource sharing of multiplicative inverse module of

proposed system. The proposed architecture is implemented on

Spatan6 FPGA board using Verilog HDL in Xilinx ISE 14.6.

Keywords— Composite field arithmetic, AES, Galois field,

look-up table, FPGA

I. INTRODUCTION

Cryptographic development in recent years has been a

challenging and high priority research area in both fields of

mathematics and engineering. Due to advancement in

embedded system and need of encryption in it has made

encryption more resource constraint in terms of power, area

and delay. Advanced Encryption Standard (AES) was

adopted as the standard for encryption and decryption by

National Institute of Standards. AES uses larger key sizes

(128, 192 and 256bits) hence provides higher security than

any other encryption technique. Encryption algorithms are

mainly of two types one is private key or symmetric key and

the other is public key. Private key algorithms uses only one

key, for both encryption and decryption whereas, public key

algorithms involve two different keys, for encryption and

decryption [1].Symmetric key cryptography is one of the

main subjects in cryptography where a key of a certain size

will shared for the encryption and decryption processes..

Computation of mathematical inversion in finite field

arithmetic by Sub-Byte transformation consumes the most of

the resource. The AES algorithm is used in different

application fields like Radio Frequency Identification (RFID)

tags, World Wide Web (WWW) servers, Automated Teller

Machines (ATMs), smart cards, cellular phones, digital video

and sensor nodes. AES can be implemented in both hardware

and software. The four important operations in AES

algorithm are S-Box, inverse S-Box, MixColumn and

InverseMixColumn steps in these are computationally more

involved than addroundkey and shift row operations. The

designs, which do not use ROMs or big lookup tables,

implementations for S-Box and inverse S-Box have been

popular of late for in VLSI or FPGA implementations.

Byte Substitution and Inverse Byte Substitution

transformation is non-linear transformation that maps each

byte of the state that is 128 bits to different value using the

substitution tables for S-box and InvS-box. It can be

implemented by using memory method and memory-less

method. In memory method, ROM based LUT (Look-up

table) is used to compute the S-box that utilizes more

memory, which increases area, power of AES and thus

disadvantage of this is unbreakable delay and latency because

of finite time of the architecture. In memory-less method,

implementation of S-Box using LUT and SOP approach is

fast but effective in cost.

The structure of this paper is as follows. The construction of

ByteSub and InvByteSub transformations is explained in

section II. The Composite arithmetic operations is explained

in section III. Hardware implementation of the proposed

architecture is described in section IV

II. THE CONSTRUCTION OF BYTESUB AND

INVBYTESUB TRANSFORMATION FOR AES

The ByteSub& InvByteSub transformation are calculated by

the application of the multiplicative inverse to the plain text

in GF (28) and then affine transformation is applied to it. For

decryption, the InvByteSub transformation is calculated by

the application of the inverse affine transformation to cipher

text before applying the multiplicative inverse [6]. The

multiplicative inverse operation is involved in both the

ByteSub and its inverse transformations.

Fig 1: Combined ByteSub and invByteSub transformation

Here ‘Aff’ block represents affine transform, ‘Aff-1’

represents inverse affine transform, the EN/DN will act as

selection line of s-box and InvS-box, and ‘Mul_inv’ block

represents multiplication inverse in GF(28) .Implementing the

architecture of S-Box (and its inverse) using combinational

logic has an advantage of small area occupancy and on using

pipelined structure and also increases the clock frequency.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCESC - 2018 Conference Proceedings

Volume 6, Issue 13

Special Issue - 2018

1

A. Affine and inverse affine transform

The Affine and Affine-1 are the Affine Transformation
and its inverse while the vector is the multiplicative inverse
of the input byte from the state array. From here, it is
observed that both the SubByte and the InvSubByte
transformation involve a multiplicative inversion operation.
Thus, both transformations may actually share the same
multiplicative inversion module in a combined architecture.
Switching between SubByte and InvSubByte is just a matter
of changing the value of EN/DN. EN is set to 0 for SubByte
while 1 is set when InvSubByte operation is desired.

The SubBytes is a nonlinear transformation, which
computes the multiplicative inverse of each byte of the State
in followed by an affine transformation. The SubBytes can be
described by (1)

 = (1)

Were Si,j(0<i,j<4) is considered a element of GF(28) M is 8x8

binary matrix and c is a 8 bit binary vector with only 4

nonzero bits. The transformations in the decryption process

perform the inverse of the corresponding transformations in

the encryption process. Specifically, the InvSubByte

performs the following operation on each byte of the State by

(2)

 (2)

Where S and S’ are input and output bytes in 8-D vector
formats.

B. Multiplicative inverse module:

This multiplicative inverse module is a complex
operation, such that it is divided which is the major operation
in both the ByteSub and in inverse ByteSub transformation. It
takes more than 630 gates to implement it with repetitive
multiplications in GF (28). So, to reduce the gate count in
large amount, composite field arithmetic is used.

Fig 2: Multiplicative inverse module for AES algorithm

i. Isomorphic mapping function and its inverse

Composite field is denoted as GF((2n)m) , this is
Isomorphic to the finite field GF(2k), for k = nm. The
composite field GF(28) can be formed iteratively from lower
order fields like GF(2) using the irreducible polynomials
which are mentioned in (5)

 (3)

Where φ = {10}2 & δ = {1100}2. To represent an element
of finite field GF(28) in its composite field, an isomorphic
mapping function is used and after applying the
multiplicative inverse for output of isomorphic function,
again to convert the result into finite field GF(28), an inverse
isomorphic mapping function is used. The 8 × 8 binary
matrices of isomorphic (δ) and its inverse (δ-1) functions can
be decided by the irreducible Polynomial p(x) = x8 + x4 + x3
+ x +1 of the finite field GF (28) and by the irreducible
polynomials of its composite fields which are mentioned in
(3). Let ‘a’ be an element (can represent in column matrix of
order 8×1) in GF (28), then the isomorphic mapping can be
written as a matrix multiplication, δ×a and its inverse as
another matrix multiplication δ-1×a, as shown in (4) and (5).

ii. Multiplicative inversion in GF(28):

In the composite field GF(28) , an element can be
expressed as bx + c, where b, c in GF(24) are first and second
nibbles of the byte and x is a root of irreducible polynomial
P2(x) in eq(3). The multiplicative inverse of bx + c modulo
P2(x) can be computed by using Extended Euclidean
algorithm [2] [5] as shown in (6).

(6)

From the above equation implies that there are multiply,
addition, squaring and multiplication inversion in GF(24)
operations in Galois Field.

III. COMPOSITE FIELD ARITHMETIC OPERATIONS

Any arbitrary polynomial can be represented by bx + c
where b is upper half term and c is the lower half term.
Therefore, from here, a binary number in Galois Field q can
be spilt to qH x + qL for instance, if q = {1011}2, it can be
represented as {10}2x + {11}2, where qH is {10}2 and qL is
{11}2. The decomposing is done by making use of the
irreducible polynomials introduced at (3). Using this idea, the
logical equations for the addition, squaring, multiplication
and inversion can be derived.

A. Addition in GF(24):

Addition of 2 elements in Galois Field can be translated to
simple bitwise XOR operation between the 2 elements.

B. Squaring in GF(24):

Let ‘q’ is an element in GF(24) which can written as qH x + qL

and this can be split, let ‘k’ is another element in GF(24)

which is equal to square of q as given in equation.

kH x+ kL = (qHx+qL)2 = qH
2x2+qL

2 (7)

The x2 term can be modulo reduced using the irreducible

polynomial from (3). By setting x2 = x + φ, doing so yields

the new expressions below.

 (8)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCESC - 2018 Conference Proceedings

Volume 6, Issue 13

Special Issue - 2018

2

The hardware logic diagram to the above equations is shown

below in fig:3.

Fig3: Hardware logic diagram of square in GF(24)

C. Multiplication with constant λ

Let q and k are the 4bit elements of GF(24) and let k=qλ,

where λ={1100}2 hence neglect lower λL and the equation

given by

k = qH λH x2 +qL λH x (9)

Modulo reduction can be performed by substituting x2 = x +

φ using the irreducible polynomial in (3) to yield the

expression below

 (10)

Fig 4: Hardware logic diagram of multiplication with constant λ

D. Multiplication with constant φ in GF(22):

Let k = qφ, where k = {k1 k0}2, q = {q1q0}2 and φ = {10}2

are elements of GF (22).

k= (q1 x +q0) x= q1x2+q0 (11)

Substitute the x2 term with x2 = x + 1, yield the expression

below

k=q1(x+1) + q0x= (q1+q0)x+q1 (12)

The formula obtained to compute its multiplications with

constant φ operation in GF(22) is

 (13)

 (14)

Fig 5: Hardware logic diagram of multiplication with constant φ

E. Multiplication inversion in GF(24):

The composite field decomposition approach is used to

compute the multiplicative inverse of q (where q is an

element of GF (24)) such that q-1 = {q3 -1,q2 -1,q1
-1,q0

-1}.

Hence reduces the gate count and shortest path delay. The

inverses of the individual bits can be computed from the

equation below

(13)

IV. HARDWARE DESIGN IMPELEMENTATION

AND RESULTS

The analytical validation of the combined S-box and InvS-

box for AES is accoutrement and verified using the Spartan 6

(xc6slx2tqg144) FPGA board using Verilog HDL in Xilinx

14.6 tool. The proposed module is initiated and implemented

in the main module as combined implementation of s-box and

InvS-box by using an enable pin to select SubByte and

InvSubByte transformation for AES algorithm. The

architecture is appliance using two 2:1 multiplexer as shown

in fig.1and the design consists of implementing modules such

as isomorphic function and Invs-isomorphic function,

squaring unit, inversion unit and affine transformation. Thus,

the architecture utilizes 77 slice of LUT’s and the reduction

in area by 50% and decrease in gate count when compared

with previous LUT methods for S-box and low power

consumption. The number of gates and mux used are

tabulated below in table 1.

Table1: synthesis report
HDL SYSNTHSIS REPORT

2:1 Multiplexer 2

Number of XOR gates 116

Slice LUTs 77

Delay (ns) 19.889

The simulation results of the proposed architecture using

Xilinx ISE14.6 is shown below figures. The SubByte and

InvSubByte transformations are formed using the

multiplicative inverse module, mux and affine

transformations by using an enable pin to select either

encryption or decryption based on the selection for the AES

algorithm.

Fig6: Simulation result of SubByte transformations when enable pin EN=1

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCESC - 2018 Conference Proceedings

Volume 6, Issue 13

Special Issue - 2018

3

Fig7: Simulation result of InvSubByte transformations when enable

pin EN=0

 Fig8: Simulation result of combined SubByte &InvSubByte

transformations

The power consumption of this proposed architecture of

combined s-box and InvS-box for SubByte and InvSubByte

of AES algorithm is 0.014w for an input of 128 bits and the

frequency of operation is about 60MHz.

CONCLUSION

For the efficient implementation of proposed

architecture of the SubBytes/InvSubByte is implemented by

combinational logic to avoid the unbreakable delay of LUTs

in the analytical designs. Further, composite field arithmetic

and finite fields is used to reduce the hardware complexity

and also uses different approaches to implement inversion in

subfield GF(24) are compared. The architecture is

implemented on Spartan6 FPGA board using Verilog HDL

code by making use of enable pin to select s-box/ Invs-box

during the operation. The overall delay caused by the logic is

19.8ns and consumes very less power of 14mW and occupies

very less area and memory because of resource sharing in

multiplicative inversion module.

ACKNOWLEDGMENT

We acknowledge to department of electronics and

communication for providing the lab resources.

REFERENCE

1. Edwin NC Mui, "Practical Implementation of Rijndael S-Box

Usingcombinational Logic", Custom R&D Engineer Texco

Enterprise
2. Xinmiao Zhang and Keshab K. Parhi, “High-Speed VLSI

Architectures for the AES Algorithm.”, IEEE Transactions on Very

Large Scale Integration(VLSI) Systems, Vol.12, No. 9, September
2004.

3. P.V.S.ShastI, Anuja Agnihotri, Divya Kachhwaha, Jayasmita Singh

and Dr.M.S.Sutaone, “A Combinational Logic implementation of S-

box of AES”, 54th International Midwest Symposium on Circuit and

Systems, 2011.

4. K. Jarvinen, M. Tommiska, and J. Skytta, “Comparative survey of
high performance cryptographic algorithm implementations on

FPGAs, ” IEEE Proceedings Information Security, vol. 152, no. 1,

pp. 3–12, Oct 2005.
5. K. Shesha Shayee, J. Park, and P. Diniz, “Performance and area

modeling of complete FPGA designs in the presence of loop

transformations,” in 11th Annual IEEE Symposium on field-
Programmable Custom Computing Machines, 2003, FCCM 2003,

April 2003.

6. Bhoopal Rao Gangadari and Shaik Rafi Ahamed, “FPGA
Implementation of Compact S-Box for AES algorithm using

Composite field arithmetic”.
7. X. Zhang and K. Parhi, “High-speed VLSI architectures for the

AES algorithm,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 12, no. 9, pp. 957–967, Sept 2004.
8. L. Ali, I. Aris, F. S. Hossain, and N. Roy, “Design of an ultra-high

speed {AES} processor for next generation {IT} security ,”

Computers & Electrical Engineering, vol. 37, no. 6, pp. 1160 – 1170,
2011.

9. J. M. Granado-Criado and M. A. Vegaz, “A new methodology to

Implement the AES algorithm using partial and dynamic
reconfiguration,” The {VLSI} Journal on Integration, vol. 43, no. 1,

pp. 72 – 80, 2010.

10. Vincent Rijmen, “Efficient Implementation of the Rijndael S-Box.”,
Katholieke Universities Leuven, Dept. ESAT. Belgium.

11. Akashi Satoh, Sumio Morioka, Kohji Takano and Seiji Munetoh, “A

Compact Rijndael Hardware Architecture with S-Box
Optimization.” Springer-Verilog Berlin Heidelberg, 2001.

12. S.SrideviSathya Priya, N.M.SivaMangai “Multiplexer based High

Throughput S-box for AES Application” Karunya University,
ICECS 2015

13. “Advanced Encryption Standard (AES)” Federal Information

Processing Standards Publication 197, 26th November 2001.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCESC - 2018 Conference Proceedings

Volume 6, Issue 13

Special Issue - 2018

4

