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Abstract— The efficient implementation of combined 

ByteSub and InvByteSub transformation for encryption and 

decryption in advanced encryption standard (AES) architecture 

using the composite field arithmetic in finite fields GF (256) or 

GF (28) hence this approach is more advantages than the 

conventional LUT method that incurs unbreakable delay, large 

amount of memory and area. The proposed architecture which 

is combined implementing of S-box and InvS-box makes use of 

an enable pin to perform encryption and decryption in AES. 

The architecture uses combinational logic, as both S-box and 

InvS-box are implemented on same hardware reduces the area 

and gate count by large amount. The power consumption is 

reduced by resource sharing of multiplicative inverse module of 

proposed system. The proposed architecture is implemented on 

Spatan6 FPGA board using Verilog HDL in Xilinx ISE 14.6. 

Keywords— Composite field arithmetic, AES, Galois field, 

look-up table, FPGA 

I.  INTRODUCTION  

Cryptographic development in recent years has been a 

challenging and high priority research area in both fields of 

mathematics and engineering. Due to advancement in 

embedded system and need of encryption in it has made 

encryption more resource constraint in terms of power, area 

and delay. Advanced Encryption Standard (AES) was 

adopted as the standard for encryption and decryption by 

National Institute of Standards. AES uses larger key sizes 

(128, 192 and 256bits) hence provides higher security than 

any other encryption technique. Encryption algorithms are 

mainly of two types one is private key or symmetric key and 

the other is public key. Private key algorithms uses only one 

key, for both encryption and decryption whereas, public key 

algorithms involve two different keys, for encryption and 

decryption [1].Symmetric key cryptography is one of the 

main subjects in cryptography where a key of a certain size 

will shared for the encryption and decryption processes.. 

Computation of mathematical inversion in finite field 

arithmetic by Sub-Byte transformation consumes the most of 

the resource. The AES algorithm is used in different 

application fields like Radio Frequency Identification (RFID) 

tags, World Wide Web (WWW) servers, Automated Teller 

Machines (ATMs), smart cards, cellular phones, digital video 

and sensor nodes. AES can be implemented in both hardware 

and software. The four important operations in AES 

algorithm are S-Box, inverse S-Box, MixColumn and 

InverseMixColumn steps in these are computationally more 

involved than addroundkey and shift row operations. The 

designs, which do not use ROMs or big lookup tables, 

implementations for S-Box and inverse S-Box have been 

popular of late for in VLSI or FPGA implementations. 

Byte Substitution and Inverse Byte Substitution 

transformation is non-linear transformation that maps each 

byte of the state that is 128 bits to different value using the 

substitution tables for S-box and InvS-box. It can be 

implemented by using memory method and memory-less 

method. In memory method, ROM based LUT (Look-up 

table) is used to compute the S-box that utilizes more 

memory, which increases area, power of AES and thus 

disadvantage of this is unbreakable delay and latency because 

of finite time of the architecture. In memory-less method, 

implementation of S-Box using LUT and SOP approach is 

fast but effective in cost. 

The structure of this paper is as follows. The construction of 

ByteSub and InvByteSub transformations is explained in 

section II. The Composite arithmetic operations is explained 

in section III. Hardware implementation of the proposed 

architecture is described in section IV 

II. THE CONSTRUCTION OF BYTESUB AND 

INVBYTESUB TRANSFORMATION FOR AES 

The ByteSub& InvByteSub transformation are calculated by 

the application of the multiplicative inverse to the plain text 

in GF (28) and then affine transformation is applied to it. For 

decryption, the InvByteSub transformation is calculated by 

the application of the inverse affine transformation to cipher 

text before applying the multiplicative inverse [6]. The 

multiplicative inverse operation is involved in both the 

ByteSub and its inverse transformations.  

 
  

Fig 1: Combined ByteSub and invByteSub transformation 

 

Here ‘Aff’ block represents affine transform, ‘Aff-1’ 

represents inverse affine transform, the EN/DN will act as 

selection line of s-box and InvS-box, and ‘Mul_inv’ block 

represents multiplication inverse in GF(28) .Implementing the 

architecture of S-Box (and its inverse) using combinational 

logic has an advantage of small area occupancy and on using 

pipelined structure and also increases the clock frequency. 
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A. Affine and inverse affine transform  

The Affine and Affine-1 are the Affine Transformation 
and its inverse while the vector is the multiplicative inverse 
of the input byte from the state array. From here, it is 
observed that both the SubByte and the InvSubByte 
transformation involve a multiplicative inversion operation. 
Thus, both transformations may actually share the same 
multiplicative inversion module in a combined architecture. 
Switching between SubByte and InvSubByte is just a matter 
of changing the value of EN/DN. EN is set to 0 for SubByte 
while 1 is set when InvSubByte operation is desired.  

The SubBytes is a nonlinear transformation, which 
computes the multiplicative inverse of each byte of the State 
in followed by an affine transformation. The SubBytes can be 
described by (1) 

          =           (1) 

Were Si,j(0<i,j<4) is considered a element of GF(28) M is 8x8 

binary matrix and c is a 8 bit binary vector with only 4 

nonzero bits. The transformations in the decryption process 

perform the inverse of the corresponding transformations in 

the encryption process. Specifically, the InvSubByte 

performs the following operation on each byte of the State by 

(2) 

 (2) 

Where S and S’ are input and output bytes in 8-D vector 
formats. 

B. Multiplicative inverse module: 

This multiplicative inverse module is a complex 
operation, such that it is divided which is the major operation 
in both the ByteSub and in inverse ByteSub transformation. It 
takes more than 630 gates to implement it with repetitive 
multiplications in GF (28). So, to reduce the gate count in 
large amount, composite field arithmetic is used. 

 

Fig 2: Multiplicative inverse module for AES algorithm 

i. Isomorphic mapping function and its inverse  

Composite field is denoted as GF((2n)m) , this is 
Isomorphic to the finite field GF(2k), for k = nm. The 
composite field GF(28) can be formed iteratively from lower 
order fields like GF(2) using the irreducible polynomials 
which are mentioned in (5) 

    (3) 

Where φ = {10}2 & δ = {1100}2. To represent an element 
of finite field GF(28) in its composite field, an isomorphic 
mapping function is used and after applying the 
multiplicative inverse for  output of isomorphic function, 
again to convert the result into finite field GF(28), an inverse 
isomorphic mapping function is used. The 8 × 8 binary 
matrices of isomorphic (δ) and its inverse (δ-1) functions can 
be decided by the irreducible Polynomial p(x) = x8 + x4 + x3 
+ x +1 of the finite field GF (28) and by the irreducible 
polynomials of its composite fields which are mentioned in 
(3). Let ‘a’ be an element (can represent in column matrix of 
order 8×1) in GF (28), then the isomorphic mapping can be 
written as a matrix multiplication, δ×a and its inverse as 
another matrix multiplication δ-1×a, as shown in (4) and (5). 

 

ii. Multiplicative inversion in GF(28): 

In the composite field GF(28) , an element can be 
expressed as bx + c, where b, c in GF(24) are first and second 
nibbles of the byte and x is a root of irreducible polynomial 
P2(x) in eq(3). The multiplicative inverse of bx + c modulo 
P2(x) can be computed by using Extended Euclidean 
algorithm [2] [5] as shown in (6). 

(6) 

From the above equation implies that there are multiply, 
addition, squaring and multiplication inversion in GF(24) 
operations in Galois Field. 

III. COMPOSITE FIELD ARITHMETIC OPERATIONS 

Any arbitrary polynomial can be represented by bx + c 
where b is upper half term and c is the lower half term. 
Therefore, from here, a binary number in Galois Field q can 
be spilt to qH x + qL for instance, if q = {1011}2, it can be 
represented as {10}2x + {11}2, where qH is {10}2 and qL is 
{11}2. The decomposing is done by making use of the 
irreducible polynomials introduced at (3). Using this idea, the 
logical equations for the addition, squaring, multiplication 
and inversion can be derived. 

A. Addition in GF(24): 

Addition of 2 elements in Galois Field can be translated to 
simple bitwise XOR operation between the 2 elements. 

B. Squaring in GF(24): 

Let ‘q’ is an element in GF(24) which can written as qH x + qL 

and this can be split, let ‘k’ is another element in GF(24) 

which is equal to square of q as given in equation. 

kH x+ kL = (qHx+qL)2 = qH
2x2+qL

2                             (7) 

The x2 term can be modulo reduced using the irreducible 

polynomial from (3). By setting x2 = x + φ, doing so yields 

the new expressions below. 

      (8) 
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The hardware logic diagram to the above equations is shown 

below in fig:3. 

 
  

Fig3: Hardware logic diagram of square in GF(24) 

C. Multiplication with constant λ 

Let q and k are the 4bit elements of GF(24)  and let k=qλ, 

where λ={1100}2 hence neglect lower λL and the equation 

given by 

k = qH λH x2 +qL λH x  (9) 

Modulo reduction can be performed by substituting x2 = x + 

φ using the irreducible polynomial in (3) to yield the 

expression below 

  (10) 

 
Fig 4: Hardware logic diagram of multiplication with constant λ 

D. Multiplication with constant φ in GF(22): 

 

Let k = qφ, where k = {k1 k0}2, q = {q1q0}2 and φ = {10}2 

are elements of GF (22). 

k= (q1 x +q0) x= q1x2+q0   (11) 

Substitute the x2 term with x2 = x + 1, yield the expression 

below 

k=q1(x+1) + q0x= (q1+q0)x+q1  (12) 

The formula obtained to compute its multiplications with 

constant φ operation in GF(22) is   

   (13) 

 (14) 

Fig 5: Hardware logic diagram of multiplication with constant φ 

 

E. Multiplication inversion in GF(24): 

The composite field decomposition approach is used to 

compute the multiplicative inverse of q (where q is an 

element of GF (24)) such that q-1 = {q3 -1,q2 -1,q1
-1,q0

-1}. 

Hence reduces the gate count and shortest path delay. The 

inverses of the individual bits can be computed from the 

equation below 

(13) 

IV. HARDWARE  DESIGN IMPELEMENTATION 

AND RESULTS  

The analytical validation of the combined S-box and InvS-

box for AES is accoutrement and verified using the Spartan 6 

(xc6slx2tqg144) FPGA board using Verilog HDL in Xilinx 

14.6 tool. The proposed module is initiated and implemented 

in the main module as combined implementation of s-box and 

InvS-box by using an enable pin to select SubByte and 

InvSubByte transformation for AES algorithm. The 

architecture is appliance using two 2:1 multiplexer as shown 

in fig.1and the design consists of implementing modules such 

as isomorphic function and Invs-isomorphic function, 

squaring unit, inversion unit and affine transformation. Thus, 

the architecture utilizes 77 slice of LUT’s and the reduction 

in area by 50% and decrease in gate count when compared 

with previous LUT methods for S-box and low power 

consumption. The number of gates and mux used are 

tabulated below in table 1. 

Table1: synthesis report 
HDL SYSNTHSIS REPORT 

2:1 Multiplexer  2 

Number of XOR gates 116 

Slice LUTs 77 

Delay (ns) 19.889 

 

The simulation results of the proposed architecture using 

Xilinx ISE14.6 is shown below figures. The SubByte and 

InvSubByte transformations are formed using the 

multiplicative inverse module, mux and affine 

transformations by using an enable pin to select either 

encryption or decryption based on the selection for the AES 

algorithm. 

 

 

Fig6: Simulation result of SubByte transformations when enable pin EN=1 
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Fig7: Simulation result of InvSubByte transformations when enable 

pin EN=0 

 

 Fig8: Simulation result of combined SubByte &InvSubByte 

transformations 

 

The power consumption of this proposed architecture of 

combined s-box and InvS-box for SubByte and InvSubByte 

of AES algorithm is 0.014w for an input of 128 bits and the 

frequency of operation is about 60MHz. 

CONCLUSION  

For the efficient implementation of proposed 

architecture of the SubBytes/InvSubByte is implemented by 

combinational logic to avoid the unbreakable delay of LUTs 

in the analytical designs. Further, composite field arithmetic 

and finite fields is used to reduce the hardware complexity 

and also uses different approaches to implement inversion in 

subfield GF(24) are compared. The architecture is 

implemented on Spartan6 FPGA board using Verilog HDL 

code by making use of enable pin to select s-box/ Invs-box 

during the operation. The overall delay caused by the logic is 

19.8ns and consumes very less power of 14mW and occupies 

very less area and memory because of resource sharing in 

multiplicative inversion module.  
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