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    Abstract— In high speed communication system, Reed-Solomon 

(RS) codes are widely used to provide error protection especially 

against the burst errors. Reed Solomon codes are non-binary, 

linear block based forward error correction code. In this paper a 

Reed-Solomon encoder and an efficient decoder having better 

error correcting capability has been designed. The Reed Solomon 

encoding is done by adding redundant information to the data so 

that the receiver can correct errors caused by channel noise. The 

error correcting capability can be improved by incorporating the 

reliability information from the channel into algebraic soft 

decision Low Complexity Chase (LCC) decoding algorithm. The 

RS decoder makes use of the LCC decoding based on hard 

decision decoding (HDD) with the Reduced inversion-less 

Berlekamp-Massey (RiBM) algorithm.The coding is done in 

VHDL language, synthesized using Xilinx ISE 13.2 and simulated 

using ModelSim. 

    Keywords — Hard decision decoding (HDD), Algebraic Soft-

Decision Decoding (ASD), Low Complexity Chase (LCC), Unified 

syndrome computation 

 

I. INTRODUCTION 

Digital communication system is used to transmit an 

information bearing signal from the source to a destination 

through a communication channel. Channel coding is an 

important signal processing operation for the efficient 

transmission of digital information over the channel. The 

power of Forward Error Correction (FEC) is that the system 

can, without retransmissions, find and correct limited errors 

caused by a transmission or storage system. Reed-Solomon 

(RS) code is a well-known non-binary linear block FEC code. 

It is popularly used for error correction in many applications 

like storage devices (CD, DVD), wireless communications, 

high speed modems and satellite communications.  

 
 

Fig. 1 Reed Solomon Codeword 

 

RS code can be specified as RS (n, k) with m-bit symbols, 

where n=2
m

-1 as shown in Figure 1.The variable n is the size of 

the codeword with the unit of symbols, k is the number of data 

symbols and 2t is the number of parity symbols. A 

predetermined sized block of data (k bytes) is encoded so that 

the result is a data block of size n, where n>k. This n block 

contains the k original data bytes, along with n-k parity bytes, 

representing the redundancy in the signal, for transmission over 

the noisy channel. Within the block, the RS algorithm works on 

multiple bits of data at a time, typically a byte. Each byte is a 

symbol, and the nature of the RS algorithm allows for the 

correction of whole symbols, as opposed to correcting 

individual bits. This means that the RS decoder can correct up 

to ‗t‘ symbols that contain errors in a code word, where 2t=n-k. 

This is the particular characteristic which allows RS codes to 

be effective at correcting burst errors in addition to random 

errors. 

                     

           
 

Fig. 2 System model 

 

The proposed system consists of four main blocks: RS 

encoder, BPSK modulator, AWGN channel, BPSK 

demodulator and RS decoder as shown in figure 2. The RS 

encoder unit takes the incoming data and adds redundancy to 

obtain the codeword. The encoded message codeword are fed 

into a modulator, which maps each of the information sequence 

into signal waveforms. The channel over which the waveforms 

are transmitted will corrupt the waveforms by adding 

symmetric additive white Gaussian noise (AWGN). At the 

receiver, the digital demodulator processes the channel 

corrupted signal waveforms and reduces it into a sequence of 

data symbols. Among the two Reed-Solomon decoding 

algorithms ASD has significant coding gain over HDD. 

Comparing the different ASD algorithms the Low Complexity 

Chase (LCC) decoding is found to have less computation 

complexity with similar or higher coding gain. The LCC 

algorithm consists of three main steps: multiplicity assignment, 
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interpolation and factorization, where interpolation stage 

involves major part of the computation. So instead of 

employing the sophisticated interpolation algorithm, the LCC 

decoding is done based on the HDD, to get the error locator 

and error evaluator  polynomial. 

This paper is organized as follows. Section 2 gives a brief 

overview of RS encoder and its corresponding architecture. In 

Section 3, Reed Solomon LCC decoder based on HDD is 

discussed. In section 4, the simulation results of the encoder 

and decoder sections were discussed. Conclusions and ongoing 

works are discussed in section 5. 

II. REED SOLOMON ENCODER 

The RS encoder takes a block of symbols and adds extra 

parity check symbols. A RS codeword can be computed from 

input message symbols by employing a generator polynomial. 

A generator polynomial depends on the order of the Galois 

field over which RS code has been defined and numbers of 

error to be corrected.The generating polynomial for most 

conventional RS code (n, k) takes the form 

g(X) = g0 +g1X ……+ g2t-1 X
2t-1

+X
2t

              (1) 

Since the degree of generating polynomial is 2t, there are 

2t roots of generating polynomial, which are the successive 

powers of α, where α is the generator of Galois field GF (2
m
). 

Each symbol is considered as an element of Galois Field where 

α is the primitive element. Hence the roots of generating 

polynomial can be designated as α, α
2
, α

3
… α

2t
. We can start 

the root with any desired power of α.  

 

 

 

Fig. 3. Systematic encoding using LFSR 

 

Consider RS (7,3) code as an example. The number of 

parity bits in the code is n-k=4. Hence we can describe the 

generating polynomial as given in equation 2 

g(X)=(X-α)(X-α
2
)(X-α

3
)(X-α

4
)                  (2) 

In Galois field arithmetic, addition and subtraction are 

considered as XOR operation, therefore g(X) can be expressed 

as 

          g(X) = α
3
 + α

1
 X + α

0
 X

 2
 + α

3
 X 

3
 + X 

4  
                (3) 

 

The parity polynomial, p(X) is appended to the leftmost (n-

k) stages of the codeword polynomial U(X). Therefore 

message polynomial, m(X) is multiplied with X
n - k

 to right-

shift m(X) by (n–k) positions. Then X 
n - k

 m(X) can be 

expressed as:  

                 X 
n - k

 m(X) = q(X) g(X) + p(X)                       (4) 

where q(X) and p(X) are quotient and remainder polynomials, 

respectively. As in the binary case, the remainder is the parity. 

Equation  4 can also be expressed as: 

p(X ) = X 
n - k

 m(X ) modulo g(X)            (5) 

The resulting codeword polynomial, U(X) can be written as 

U(X) = p(X) + X 
n - k

 m(X)                       (6) 

 

III. REED SOLOMON DECODER 

 
This method combines the hard-decision decoding 

techniques with the LCC decoding method to decode the RS 

codes using channel information. The block diagram of Reed-

Solomon LCC decoder based on HDD is shown in figure 4. 

The steps of the decoder are: multiplicity assignment, unified 

syndrome computation, Key Equation Solver (KES), Chien 

Search for error location calculation, decoding failure detection, 

Forney‘s algorithm for error value calculation and error 

correction. The LCC decoding process creates 2

 different test 

vectors using the reliability information from the received 

points (channel). A unified syndrome computation algorithm is 

used in which the syndromes of one test vector can be obtained 

from syndromes of previous test vector. If an error is detected, 

the process of correction begins by locating the errors first. 

Generally Berlekamp-Massey Algorithm is used to calculate 

the error locator polynomial. The precise location of the errors 

is calculated by using Chien search algorithm. Then magnitude 

of the errors is calculated using Forney algorithm. In this 

HDD-based LCC decoding algorithm, the test vectors are 

selected for correction during the decoding on occurrence of 

the HDD failure. The magnitude of the error is added to the 

received codeword to obtain a correct codeword.  

 

 

 
 

Fig. 4. RS LCC decoder based on LCC 

 

A.  Multiplicity Assignment 

The LCC decoding process creates 2
η
 different test vectors 

using the reliability information from the received points, 

where η<2t. To create the test vectors a ratio between the 

probability of the hard-decision symbol and the second-best 

decision is established. This ratio indicates how good the hard 

decision is. The desired probability ratio for the received 

message polynomial r(x) for i = 0 to n-1 is 

Corrected 

 Codeword 

 

1665

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20881



     (7) 

Where ri_HD is the hard decision of the symbol ri, and ri_2HD its 

second more reliable decision. Corresponding to the η points 

with the worst probability ratio (between the hard decision and 

second-best decision), a set of 2
η 

combinations called test 

vectors are created by selecting the hard-decision symbol (ri) 

or the second-best decision (ri_2HD) in the η less reliable points. 

Once the test vectors are created, it is required to select one of 

them, and correct the errors of the message, if it is possible. 

Now just η symbols have to be marked with zero 

multiplicity to create the 2
η 

test vectors, as the rest of symbols 

are marked with one multiplicity. To classify the multiplicity of 

the points, the probability ratio for the received message 

polynomial r(x) are ordered, and the η least values are marked 

as zero multiplicity: the η points with the least values will be 

marked as the points with different values for the test vectors. 

B. Unified Syndrome Computation (USC) Architecture 

The architecture of the USC consists of the syndrome 

calculation architecture and the syndrome update architecture. 

They are separated into different pipelining stages. For the 

syndrome calculation architecture, it is the same as ordinary 

syndrome architecture in HDD decoders as shown in Figure 5. 

 

 
 

Fig. 5.  Syndrome Calculation 

        The syndrome consists of n–k symbols and the values are 

computed from the received code word. The syndrome depends 

only on the error vector, and is independent of the transmitted 

code word. The method typically used to directly evaluate the 

received code word R(x) at each α
n-k 

is shown in figure 5. So 

the syndrome values can be obtained by substituting x = α
i
 in 

the received polynomial.                          

              Si = R(α
i
 )       for  i=0,1,…..n-k                         (8) 

The syndromes of the first test vector are calculated and 

stored in registers from S1 to S2t, and later pass the syndrome 

update module in order. At the same time, the positions of  

unreliable points with their rHD-i and r2HD-i, i  Z , are also stored.   

       

 

Fig. 6.  Syndrome Update Architecture 

In update architecture, the multiplexer 1, 2 and 3 choose 

rHD-,  r2HD- and 
 

of one unreliable point in Z. This selected 

point is the only different point between the current test vector 

and the next one and its position is denoted as ε. The difference 

of rHD- and r2HD- is calculated by sending them into an GF (2
3
) 

adder and is multiplied by 
 
 to get (rHD-+ r2HD-) 


. The value 

in Sdiff , which is (rHD-+ r2HD-) 
 
is added to the value in S1, 

then the sum is fed back to the register queue to update the 

syndromes. Also (rHD- + r2HD-) 
2 

is calculated and added to 

S2. In this way, the stored syndromes of the first test vector can 

be updated by adding the corresponding syndrome difference 

to each item in the syndromes. Finally all the syndromes shift 

to the adder to finish the complete update. 

C. Key Equation Solver       

When all the syndrome values are zero then the received 

codeword is a correct codeword. If any of the syndrome value 

is nonzero then there is error in the received codeword. These 

syndrome values are then given as the input of the RiBM 

algorithm.  

                       λ(x) S(x) =Ω(x) mod x
2t

                             (9) 

where    λ(x) = 1+λ1x +…..+ λe x
e
                            (10)   

             ω(x) = ω0 + ω1x+ …..+ ωe-1 x 
e-1

                 (11) 

This Key Equation Solver (KES) block gives two 

polynomials. The error locator polynomial computation and 

error evaluator polynomial computation takes place in this 

RiBM algorithm and performs the evaluation of the error 

locator polynomial coefficients λ(x) and error evaluator 

polynomial coefficients ω(x) thereby correct the errors as the 

received word is being read out of the decoder. 

D. Error Location Calculation 

The locations of the errors are determined based on the 

error locator polynomial, λ(x). Chien search is used for finding 

roots of the error locator polynomial. In this process  α
-j
 

(0≤j≤n-1) is given as input to the key equation to calculate the 

polynomial λ(x). If λ (α
-j
) is equal to 0, then α

-j
 is an error 
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location.

 

Fig. 7. Architecture for Chien-Search Algorithm 

E. Decoding Failure Detector 

After error location calculation, the number of zeros/roots 

of this step is compared with degree of λ(x).   If both are equal 

then corresponding test vector is selected for Forney‘s 

algorithm. It means that the first vector which is free from 

decoding failure will be used to make a decoding of the 

received message. Therefore, if one of the 2
η
 test vectors has 

less than t +1 errors, then the decoder will be able to correct 

them in all cases.  

F.  Error Value Calculation 

 
Fig. 8.  Architecture for Forney algorithm 

Forney Algorithm is used for evaluating the error values. 

The error position and the coefficients of ω(x) is taken here as 

input. It is also using the Galois field multiplier as the Chien 

search algorithm. If the error number is equal to or less than t, 

λ(x) and ω(x) will be obtained by the above equations 10 and 

11 and the error value may be expressed by Forney‘s formula 

as, 

                      Yi =     x ω(x)       x=α
-j
                           (12) 

                                   λodd (x) 

G. Error Correction 

The output of the chien/forney block is the error vector. 

This vector is the same size as the codeword. The vector 

contains non zero values in locations that correspond to errors. 

Because the error vector is generated in the reverse order of the 

received codeword, a FIFO must be applied to either the 

received codeword or the error vector to match the order of the 

bytes in both vectors. The output of the adder is the decoder's 

estimate of the original codeword. 

 

 
 

Fig. 9.  Error Correction module 

IV. SIMULATION RESULTS 

The design entry is modelled using VHDL in Xilinx ISE 

Design Suite 13.2 and the simulation of the design is 

performed using Modelsim to validate the functionality of the 

design.  

Here a (7,3) Reed-Solomon code is designed using 

VHDL, for which the number of message symbols is 

3 and total number of symbols in the codeword is 7. 

Each symbol contains 3 bits (m=3) and error 

correcting capability of the code is 2 symbols (t=2). 

So we have to add 2t i.e. 4 parity symbols. Figure 10 

shows the simulation output of (7,3) RS encoder. Message 

is shown as ‗m‘ and 4 check symbols (p1, p2, p3, p4) are 

attached with the input message ‗m‘. 

 

Fig. 10.  RS encoder output 

 

                         

Fig. 11.  Syndrome Computation output 

Figure 11 shows the output of syndrome computation block. 

If there is no error in the received codeword ‘r‘ then syndrome 

value is zero, ‗err‘ signal will be low. If erroneous data is 

received, then ‗err‘ signal is high and it indicates presence of 

errors and rest of the blocks will be active. 
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Fig. 12.  Syndrome Update output 

Figure 12 shows the syndrome update output of all the test 

vectors. By knowing the multiplicities of the received test 

vector and their positions, the syndrome computation of η 

unreliable points thereby all test vectors can be obtained. 

 

 

Fig. 13  RiBM output  

Figure 13 shows the simulation result of RiBM block.‘s‘ is the 

syndrome input. ‘lamda‘ gives the coefficients of error locator 

polynomial obtained from the‘delta‘ array. RiBM algorithm 

computes the error locator polynomial in 2t=4 clock cycles. 

V. CONCLUSIONS 

The increasing demand for the efficient and reliable digital 

data transmission and storage systems has led to the 

widespread use of Reed Solomon Forward Error Correction 

code. This paper intends to design a Reed Solomon encoder 

and LCC decoder based on unified syndrome computation. The 

RS encoded data after passing through the AWGN channel is 

reached at the decoder with different multiplicities.With 

Unified Syndrome Computation architecture, syndrome 

computation of all the test vectors is obtained in order to select 

the correct test vector in case of a decoding failure. Also the 

error polynomial is generated using KES to locate the error and 

its magnitude for error correction. 
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