
Design of Reed Solomon Encoder and LCC

Decoder Based on Unified Syndrome Computation

 Jeseena S

 Suby Varghese

PG Student/Department of ECE Assistant Professor/Department of ECE

TKM Institute of Technology, Kollam, TKM Institute of Technology, Kollam

 Kerala, India Kerala, India

 Abstract— In high speed communication system, Reed-Solomon

(RS) codes are widely used to provide error protection especially

against the burst errors. Reed Solomon codes are non-binary,

linear block based forward error correction code. In this paper a

Reed-Solomon encoder and an efficient decoder having better

error correcting capability has been designed. The Reed Solomon

encoding is done by adding redundant information to the data so

that the receiver can correct errors caused by channel noise. The

error correcting capability can be improved by incorporating the

reliability information from the channel into algebraic soft

decision Low Complexity Chase (LCC) decoding algorithm. The

RS decoder makes use of the LCC decoding based on hard

decision decoding (HDD) with the Reduced inversion-less

Berlekamp-Massey (RiBM) algorithm.The coding is done in

VHDL language, synthesized using Xilinx ISE 13.2 and simulated

using ModelSim.

 Keywords — Hard decision decoding (HDD), Algebraic Soft-

Decision Decoding (ASD), Low Complexity Chase (LCC), Unified

syndrome computation

I. INTRODUCTION

Digital communication system is used to transmit an

information bearing signal from the source to a destination

through a communication channel. Channel coding is an

important signal processing operation for the efficient

transmission of digital information over the channel. The

power of Forward Error Correction (FEC) is that the system

can, without retransmissions, find and correct limited errors

caused by a transmission or storage system. Reed-Solomon

(RS) code is a well-known non-binary linear block FEC code.

It is popularly used for error correction in many applications

like storage devices (CD, DVD), wireless communications,

high speed modems and satellite communications.

Fig. 1 Reed Solomon Codeword

RS code can be specified as RS (n, k) with m-bit symbols,

where n=2
m

-1 as shown in Figure 1.The variable n is the size of

the codeword with the unit of symbols, k is the number of data

symbols and 2t is the number of parity symbols. A

predetermined sized block of data (k bytes) is encoded so that

the result is a data block of size n, where n>k. This n block

contains the k original data bytes, along with n-k parity bytes,

representing the redundancy in the signal, for transmission over

the noisy channel. Within the block, the RS algorithm works on

multiple bits of data at a time, typically a byte. Each byte is a

symbol, and the nature of the RS algorithm allows for the

correction of whole symbols, as opposed to correcting

individual bits. This means that the RS decoder can correct up

to ‗t‘ symbols that contain errors in a code word, where 2t=n-k.

This is the particular characteristic which allows RS codes to

be effective at correcting burst errors in addition to random

errors.

Fig. 2 System model

The proposed system consists of four main blocks: RS

encoder, BPSK modulator, AWGN channel, BPSK

demodulator and RS decoder as shown in figure 2. The RS

encoder unit takes the incoming data and adds redundancy to

obtain the codeword. The encoded message codeword are fed

into a modulator, which maps each of the information sequence

into signal waveforms. The channel over which the waveforms

are transmitted will corrupt the waveforms by adding

symmetric additive white Gaussian noise (AWGN). At the

receiver, the digital demodulator processes the channel

corrupted signal waveforms and reduces it into a sequence of

data symbols. Among the two Reed-Solomon decoding

algorithms ASD has significant coding gain over HDD.

Comparing the different ASD algorithms the Low Complexity

Chase (LCC) decoding is found to have less computation

complexity with similar or higher coding gain. The LCC

algorithm consists of three main steps: multiplicity assignment,

1664

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20881

interpolation and factorization, where interpolation stage

involves major part of the computation. So instead of

employing the sophisticated interpolation algorithm, the LCC

decoding is done based on the HDD, to get the error locator

and error evaluator polynomial.

This paper is organized as follows. Section 2 gives a brief

overview of RS encoder and its corresponding architecture. In

Section 3, Reed Solomon LCC decoder based on HDD is

discussed. In section 4, the simulation results of the encoder

and decoder sections were discussed. Conclusions and ongoing

works are discussed in section 5.

II. REED SOLOMON ENCODER

The RS encoder takes a block of symbols and adds extra

parity check symbols. A RS codeword can be computed from

input message symbols by employing a generator polynomial.

A generator polynomial depends on the order of the Galois

field over which RS code has been defined and numbers of

error to be corrected.The generating polynomial for most

conventional RS code (n, k) takes the form

g(X) = g0 +g1X ……+ g2t-1 X
2t-1

+X
2t

 (1)

Since the degree of generating polynomial is 2t, there are

2t roots of generating polynomial, which are the successive

powers of α, where α is the generator of Galois field GF (2
m
).

Each symbol is considered as an element of Galois Field where

α is the primitive element. Hence the roots of generating

polynomial can be designated as α, α
2
, α

3
… α

2t
. We can start

the root with any desired power of α.

Fig. 3. Systematic encoding using LFSR

Consider RS (7,3) code as an example. The number of

parity bits in the code is n-k=4. Hence we can describe the

generating polynomial as given in equation 2

g(X)=(X-α)(X-α
2
)(X-α

3
)(X-α

4
) (2)

In Galois field arithmetic, addition and subtraction are

considered as XOR operation, therefore g(X) can be expressed

as

 g(X) = α
3
 + α

1
 X + α

0
 X

 2
 + α

3
 X

3
 + X

4
 (3)

The parity polynomial, p(X) is appended to the leftmost (n-

k) stages of the codeword polynomial U(X). Therefore

message polynomial, m(X) is multiplied with X
n - k

 to right-

shift m(X) by (n–k) positions. Then X
n - k

 m(X) can be

expressed as:

 X
n - k

 m(X) = q(X) g(X) + p(X) (4)

where q(X) and p(X) are quotient and remainder polynomials,

respectively. As in the binary case, the remainder is the parity.

Equation 4 can also be expressed as:

p(X) = X
n - k

 m(X) modulo g(X) (5)

The resulting codeword polynomial, U(X) can be written as

U(X) = p(X) + X
n - k

 m(X) (6)

III. REED SOLOMON DECODER

This method combines the hard-decision decoding

techniques with the LCC decoding method to decode the RS

codes using channel information. The block diagram of Reed-

Solomon LCC decoder based on HDD is shown in figure 4.

The steps of the decoder are: multiplicity assignment, unified

syndrome computation, Key Equation Solver (KES), Chien

Search for error location calculation, decoding failure detection,

Forney‘s algorithm for error value calculation and error

correction. The LCC decoding process creates 2

 different test

vectors using the reliability information from the received

points (channel). A unified syndrome computation algorithm is

used in which the syndromes of one test vector can be obtained

from syndromes of previous test vector. If an error is detected,

the process of correction begins by locating the errors first.

Generally Berlekamp-Massey Algorithm is used to calculate

the error locator polynomial. The precise location of the errors

is calculated by using Chien search algorithm. Then magnitude

of the errors is calculated using Forney algorithm. In this

HDD-based LCC decoding algorithm, the test vectors are

selected for correction during the decoding on occurrence of

the HDD failure. The magnitude of the error is added to the

received codeword to obtain a correct codeword.

Fig. 4. RS LCC decoder based on LCC

A. Multiplicity Assignment

The LCC decoding process creates 2
η
 different test vectors

using the reliability information from the received points,

where η<2t. To create the test vectors a ratio between the

probability of the hard-decision symbol and the second-best

decision is established. This ratio indicates how good the hard

decision is. The desired probability ratio for the received

message polynomial r(x) for i = 0 to n-1 is

Corrected

 Codeword

1665

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20881

 (7)

Where ri_HD is the hard decision of the symbol ri, and ri_2HD its

second more reliable decision. Corresponding to the η points

with the worst probability ratio (between the hard decision and

second-best decision), a set of 2
η

combinations called test

vectors are created by selecting the hard-decision symbol (ri)

or the second-best decision (ri_2HD) in the η less reliable points.

Once the test vectors are created, it is required to select one of

them, and correct the errors of the message, if it is possible.

Now just η symbols have to be marked with zero

multiplicity to create the 2
η

test vectors, as the rest of symbols

are marked with one multiplicity. To classify the multiplicity of

the points, the probability ratio for the received message

polynomial r(x) are ordered, and the η least values are marked

as zero multiplicity: the η points with the least values will be

marked as the points with different values for the test vectors.

B. Unified Syndrome Computation (USC) Architecture

The architecture of the USC consists of the syndrome

calculation architecture and the syndrome update architecture.

They are separated into different pipelining stages. For the

syndrome calculation architecture, it is the same as ordinary

syndrome architecture in HDD decoders as shown in Figure 5.

Fig. 5. Syndrome Calculation

 The syndrome consists of n–k symbols and the values are

computed from the received code word. The syndrome depends

only on the error vector, and is independent of the transmitted

code word. The method typically used to directly evaluate the

received code word R(x) at each α
n-k

is shown in figure 5. So

the syndrome values can be obtained by substituting x = α
i
 in

the received polynomial.

 Si = R(α
i
) for i=0,1,…..n-k (8)

The syndromes of the first test vector are calculated and

stored in registers from S1 to S2t, and later pass the syndrome

update module in order. At the same time, the positions of 

unreliable points with their rHD-i and r2HD-i, i  Z , are also stored.

Fig. 6. Syndrome Update Architecture

In update architecture, the multiplexer 1, 2 and 3 choose

rHD-, r2HD- and 


of one unreliable point in Z. This selected

point is the only different point between the current test vector

and the next one and its position is denoted as ε. The difference

of rHD- and r2HD- is calculated by sending them into an GF (2
3
)

adder and is multiplied by 

 to get (rHD-+ r2HD-) 


. The value

in Sdiff , which is (rHD-+ r2HD-) 

is added to the value in S1,

then the sum is fed back to the register queue to update the

syndromes. Also (rHD- + r2HD-) 
2

is calculated and added to

S2. In this way, the stored syndromes of the first test vector can

be updated by adding the corresponding syndrome difference

to each item in the syndromes. Finally all the syndromes shift

to the adder to finish the complete update.

C. Key Equation Solver

When all the syndrome values are zero then the received

codeword is a correct codeword. If any of the syndrome value

is nonzero then there is error in the received codeword. These

syndrome values are then given as the input of the RiBM

algorithm.

 λ(x) S(x) =Ω(x) mod x
2t

 (9)

where λ(x) = 1+λ1x +…..+ λe x
e
 (10)

 ω(x) = ω0 + ω1x+ …..+ ωe-1 x
e-1

 (11)

This Key Equation Solver (KES) block gives two

polynomials. The error locator polynomial computation and

error evaluator polynomial computation takes place in this

RiBM algorithm and performs the evaluation of the error

locator polynomial coefficients λ(x) and error evaluator

polynomial coefficients ω(x) thereby correct the errors as the

received word is being read out of the decoder.

D. Error Location Calculation

The locations of the errors are determined based on the

error locator polynomial, λ(x). Chien search is used for finding

roots of the error locator polynomial. In this process α
-j

(0≤j≤n-1) is given as input to the key equation to calculate the

polynomial λ(x). If λ (α
-j
) is equal to 0, then α

-j
 is an error

1666

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20881

location.

Fig. 7. Architecture for Chien-Search Algorithm

E. Decoding Failure Detector

After error location calculation, the number of zeros/roots

of this step is compared with degree of λ(x). If both are equal

then corresponding test vector is selected for Forney‘s

algorithm. It means that the first vector which is free from

decoding failure will be used to make a decoding of the

received message. Therefore, if one of the 2
η
 test vectors has

less than t +1 errors, then the decoder will be able to correct

them in all cases.

F. Error Value Calculation

Fig. 8. Architecture for Forney algorithm

Forney Algorithm is used for evaluating the error values.

The error position and the coefficients of ω(x) is taken here as

input. It is also using the Galois field multiplier as the Chien

search algorithm. If the error number is equal to or less than t,

λ(x) and ω(x) will be obtained by the above equations 10 and

11 and the error value may be expressed by Forney‘s formula

as,

 Yi = x ω(x) x=α
-j
 (12)

 λodd (x)

G. Error Correction

The output of the chien/forney block is the error vector.

This vector is the same size as the codeword. The vector

contains non zero values in locations that correspond to errors.

Because the error vector is generated in the reverse order of the

received codeword, a FIFO must be applied to either the

received codeword or the error vector to match the order of the

bytes in both vectors. The output of the adder is the decoder's

estimate of the original codeword.

Fig. 9. Error Correction module

IV. SIMULATION RESULTS

The design entry is modelled using VHDL in Xilinx ISE

Design Suite 13.2 and the simulation of the design is

performed using Modelsim to validate the functionality of the

design.

Here a (7,3) Reed-Solomon code is designed using

VHDL, for which the number of message symbols is

3 and total number of symbols in the codeword is 7.

Each symbol contains 3 bits (m=3) and error

correcting capability of the code is 2 symbols (t=2).

So we have to add 2t i.e. 4 parity symbols. Figure 10

shows the simulation output of (7,3) RS encoder. Message

is shown as ‗m‘ and 4 check symbols (p1, p2, p3, p4) are

attached with the input message ‗m‘.

Fig. 10. RS encoder output

Fig. 11. Syndrome Computation output

Figure 11 shows the output of syndrome computation block.

If there is no error in the received codeword ‘r‘ then syndrome

value is zero, ‗err‘ signal will be low. If erroneous data is

received, then ‗err‘ signal is high and it indicates presence of

errors and rest of the blocks will be active.

1667

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20881

Fig. 12. Syndrome Update output

Figure 12 shows the syndrome update output of all the test

vectors. By knowing the multiplicities of the received test

vector and their positions, the syndrome computation of η

unreliable points thereby all test vectors can be obtained.

Fig. 13 RiBM output

Figure 13 shows the simulation result of RiBM block.‘s‘ is the

syndrome input. ‘lamda‘ gives the coefficients of error locator

polynomial obtained from the‘delta‘ array. RiBM algorithm

computes the error locator polynomial in 2t=4 clock cycles.

V. CONCLUSIONS

The increasing demand for the efficient and reliable digital

data transmission and storage systems has led to the

widespread use of Reed Solomon Forward Error Correction

code. This paper intends to design a Reed Solomon encoder

and LCC decoder based on unified syndrome computation. The

RS encoded data after passing through the AWGN channel is

reached at the decoder with different multiplicities.With

Unified Syndrome Computation architecture, syndrome

computation of all the test vectors is obtained in order to select

the correct test vector in case of a decoding failure. Also the

error polynomial is generated using KES to locate the error and

its magnitude for error correction.

ACKNOWLEDGMENT

 We would like to thank the Principal, Head of

the Department and all the teaching and non-

teaching staffs of TKM Institute of Technology for

helping us to complete the work as mentioned in the

paper.

REFERENCES

[1] Wei Zhang, Hao Wang, Boyang Pan,―Reduced Complexity LCC Reed

Solomon Decoder based on Unified Syndrome Computation”,

Proceedings of the IEEE transactions on Very Large Scale Integration
(VLSI) Systems, Vol. 21, pp.974-978, 2013.

[2] Jaydeb Bhaumik, Sundar Das, Satyajit ―Design of RS (255,251)

Encoder and Decoder on FPGA‖,International Journal of Soft
Computing and Engineering, volume 2, pp.2231-2307, 2013

[3] Xinmiao Zhang and Jiangli Zhu ―Hardware complexities of algebraic

soft decision reed solomon decoders and comparisons ,‖ in circuits and
systems (APCCAS) 2012 IEEE Asia pacific conference pp. 216-219,

2012

[4] F. Garcia-Herrero, J. Valls, and P. K. Meher, ―High speed RS(255, 239)
decoder based on LCC decoding,‖Circuits Syst. Signal Process.,vol. 30,

no. 6, pp. 1643–1669, 2011.

[5] Chang Limin, Song Lu, Duan Fengyang, ―Research and Realization of
RS Codec based on FPGA Technique”, Proceedings of the IEEE

International Conference on Mechatronics and Automation, pp.481-486,

2009
[6] Xinmiao Zhang, ―High Speed VLSI architecture for low complexity

Chase Soft- decision Reed Solomon Decoding‖, Information Theory and

application workshop, 2009
[7] Chang Limin, Song Lu, Duan Fengyang, ―Research and Realization of

RS Codec based on FPGA Technique”, Proceedings of the IEEE

International Conference on Mechatronics and Automation, pp.481-486,
2009

[8] Shu Lin, Daniel J. Costello, ―Error Control Coding: Fundamentals and

Applications‖, Second Edition, Prentice-Hall, 2005
[9] Arshad Ahmed, Ralf Koetter, Naresh R. Shanbhag, ―VLSI architectures

for soft decision decoding of Reed Solomon codes ‖, Proceedings of

IEEE international Conference on Communications, Vol. 5,pp.2584-
2590, 2004

[10] Bernard Sklar, ―Digital Communications: Fundamentals and

Applications‖, Second Edition, Prentice-Hall, 2001

1668

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20881

