

Design of Pipelined Parallel FFT Architectures Using Folding

Transformation

V.Ragavi

PG Scholar

Srinivasan Engineering College, India

Abstract - In this paper, a novel approach to

develop parallel pipelined architectures for the

Fast Fourier transform (FFT) is presented. The

folding transformation and register minimization
techniques are proposed for designing FFT

architectures. Novel parallel-pipelined 128-point

radix-24 FFT architecture for the computation of

complex and real valued fast Fourier transform are

derived. For Complex valued Fast Fourier

Transform (CFFT), the proposed architecture takes

benefit of underutilized hardware in the serial

architecture to derive L-parallel architectures not

including the increment of hardware complexity by

a factor of L. In addition to, the new parallel-

pipelined architecture for the computation of Real-

valued Fast Fourier Transform (RFFT) is
presented. To reduce the hardware complexity, the

proposed architecture exploits redundancy in the

computation of FFT samples. A comparison is

shown between the proposed design and the

previous architectures.

Keywords – Fast Fourier Transform (FFT),

folding, radix-24, register minimization.

I. INTRODUCTION

DFT is one of the most important tools in

the field of digital signal processing. Several Fast

Fourier Transform (FFT) algorithms have been

developed over the years due to its computational

complexity. FFT plays a critical role in modern

digital communications such as Digital Video

Broadcasting (DVB) and Orthogonal Frequency
Division Multiplexing (OFDM) systems. The

design of pipelined architectures for computation of

FFT of complex valued signals (CFFT) has been

carried out. Different algorithms have been

developed to reduce the computational complexity,

of which Cooley-Tukey radix-2 FFT [1] is very

popular.

Algorithms such as radix-4 [2], split-radix

[3] and radix-22 [4] have been developed based on

the basic radix-2 FFT approach. The one of the

most classical approaches for pipelined
implementation of radix-2 FFT is Radix-2 multi-

path delay commutator (R2MDC) [5]. A standard

usage of the storage buffer in R2MDC leads to the

Radix-2 Single-path delay feedback (R2SDF) [6]

architecture with reduced memory.
The architectures are developed for a

specific-point FFT in [7] and [8], whereas

hypercube theory is used to derive the architectures

in [9].The method of developing these architectures

from the algorithms is not well established.

In additional, most of these hardware

architectures are not fully utilized and require high

hardware complexity. In the period of high speed

digital communications, the high throughput and

low power designs are essential to meet the speed

and power requirements while keeping the

hardware overhead to a minimum. In this paper, a
new approach to design the architecture from the

FFT flow graphs is presented. Folding

transformation [10] and register minimization

techniques [11], [12] are used to derive several

known FFT architectures.

If the input samples are real then the

spectrum is symmetric and approximately half of

the operations are redundant. The applications such

as speech, audio, image, radar, and biomedical

signal processing, a specialized hardware

implementation is best suitable to meet the real-
time constraints. The implantable or portable

device saves power by using this type of

implementation which is a key limitation. Few

pipelined architectures for real valued signals have

been proposed [13] based on the Brunn algorithm.

However, these are not widely used. Different

algorithms such as doubling algorithm, packing

algorithm have been proposed for computation of

RFFT. These approaches are based on removing

the redundancies of the CFFT while the input is

real. RFFT is calculated using the CFFT

architecture in an efficient manner [14].
In the folding transformation, many

butterflies in the same column can be mapped to

one butterfly unit. If the FFT size is N, a folding

factor of N/2 leads to 2-parallel architecture and in

another design, a folding factor of N/4 leads to

design 4-parallel architectures in which four

samples are processed in the same clock cycle.

Various folding sets lead to a family of FFT

707

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70296

architectures. Alternatively, known FFT

architectures can also be described by the proposed

methodology by selecting the appropriate folding

set. To reduce latency and the number of storage

elements, folding sets are designed. The prior FFT

architectures were derived in an informal way, and
their derivations were not explained in a systematic

way. This is the effort to simplify the design of

FFT architectures for arbitrary level of parallelism

in an efficient manner by means of the folding

transformation. In this paper, the prior design

architectures are explained by constructing the

specific folding sets. Then new architecture is

derived for radix and levels of parallelism and for

either Decimation-In-Time (DIT) or Decimation-

In-Frequency (DIF) flow graphs. The new

architecture achieves full hardware utilization. It

may be noted that all prior parallel FFT
architectures did not achieve full hardware

utilization. The new real FFT architecture is also

presented based on higher radices.

In [15], the parallel-pipelined architectures

for the computation of RFFT based on radix-22 and

radix-23 algorithms have been proposed. The real

FFT architectures are not fully utilized. This

drawback is removed by proposed methodology.

The novel parallel-pipelined FFT architectures for

the real-valued signals with full hardware

utilization based on radix-24 algorithm is presented.
It combines the advantages of radix-2n algorithms,

which requires fewer complex multipliers when

compared to radix-2 algorithm, with the reduction

of operations using redundancy.

 This paper is organized as follows. The

folding transformation and register minimization

based FFT architectures design is presented in

Section II. The proposed architecture for complex

FFT is explained in Section III. The proposed

architecture for real FFT is explained in Section IV.

In Section V, the proposed architecture is compared

with the previous approaches and some conclusions
are drawn in Section VI.

II. FFT ARCHITECTURES DESIGN

TECHNIQUES

In this section, the folding transformation
method and register minimization to derive several

known FFT architectures is illustrated in general.

The process is described using an 8-point radix-2

DIF FFT as an example. It can be extended to other

radices in a similar fashion. Figure. 1 shows the

flow graph of a radix-2 8-point DIF FFT. The

graph is divided into three stages and each of them

consists of a set of butterflies and multipliers.

Figure.1 Flow graph of a radix-2 8-point DIF FFT.

This algorithm can be represented as a

data flow graph (DFG) as shown in fig. 2. The

nodes in the DFG represent tasks or computations.
In this case, all the nodes represent the butterfly

computations of the radix-2 FFT algorithm.

Assume nodes A and B have the multiplier

operation on the bottom edge of the butterfly. The

folding transformation is used on the DFG to derive

a pipelined architecture. To transform the DFG, a

folding set is required which is an ordered set of

operations executed by the same functional unit.

Each folding set contains K entries some of which

may be null operations is called the folding factor,

i.e., the number of operations folded into a single
functional unit. The operation in the jth position

within the folding set (where j goes from 0 to K-1)

is executed by the functional unit during the time

partition. The term j is the folding order, i.e., the

time instance to which the node is scheduled to be

executed in hardware.

Figure.2 DFG of a radix-2 8-point DIF FFT.

For example, consider the folding set A = {ϕ, ϕ,

ϕ, ϕ, A0, A1, A2, A3} for K=8. The operation A0

belongs to the folding set A with the folding order

4. The functional unit executes the operations A0,
A1, A2, A3 at the respective time instances and

will be idle during the null operations. The

systematic folding techniques are used to derive

the 8-point FFT architecture. Consider an edge e

connecting the nodes U and V with w (e) delays.

708

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70296

The folding equation (1) for the edge e is

DF (U V) = K w(e)-PU + v - u (1)

where PU is the number of pipeline stages in the

hardware unit which executes the node U [10]. By

using folding sets, folding equations are derived

with negative delays (w/o pipeline) and non

negative delays (with pipeline or retiming).

Consider folding of the DFG in fig.2 with the

folding sets

 A = {ϕ, ϕ, ϕ, ϕ, A0, A1, A2, A3}

 B = {B2, B3, ϕ, ϕ, ϕ, ϕ, B0, B1}

 C = {C1, C2, C3, ϕ, ϕ, ϕ, ϕ, C0}.

Assume that the butterfly operations do

not have any pipeline stages, i.e, PA=0, PB=0,

PC=0.Retiming and/or pipelining can be used to

either satisfy DFUV) ≥0 or determine that the

folding sets are not feasible [10]. The negative

delays on some edges can be observed. The
equations are

DF (A0 B0) = 2 DF (B0 C0) = 1

DF (A0 B2) = - 4 DF (B0 C1) = - 6

DF (A1 B1) = 2 DF (B1 C0) = 0

DF (A1 B1) = - 4 DF (B1 C1) = - 7

DF (A2 B0) = 0 DF (B2 C2) = 1

DF (A2 B2) = - 6 DF (B2 C3) = 2

DF (A3 B1) = 0 DF (B3 C2) = 0

DF (A3 B3) = - 6 DF (B3 C3) =1 (2)

The DFG can be pipelined is shown to
ensure that folded hardware has non-negative

number of delays. The folded delays for the

pipelined DFG are

DF (A0 B0) = 2 DF (B0 C0) = 1

DF (A0 B2) = 4 DF (B0 C1) = 2

DF (A1 B1) = 2 DF (B1 C0) = 0

DF (A1 B1) = 4 DF (B1 C1) = 1

DF (A2 B0) = 0 DF (B2 C2) = 1

DF (A2 B2) = 2 DF (B2 C3) = 2

DF (A3 B1) = 0 DF (B3 C2) = 0
DF (A3 B3) = 2 DF (B3 C3) = 1 (3)

Figure. 3 Block diagram of FFT design techniques

The technique for minimizing register is

lifetime analysis [12] which analyzes the time for

when a data is produced (Tinput) and when a data

finally is consumed (Toutput).

T input = u + PU (4)
 T output = u + PU + maxv {DF (U→V)} (5)

where u is the folding order of U and PU is the

number of pipelining stages in the functional unit

that executes u. From (3) the 24 registers are

required to implement the folded architecture.

Lifetime analysis technique is used to design the

folded architecture with minimum possible

registers. For example, in the current 8-point FFT

design, consider the variables y0, y1,. . . y7, i.e., the

outputs at the nodes A0,A1,A2,A3 respectively. It

takes 16 registers to synthesize these edges in the
folded architecture. The linear lifetime table and

lifetime chart for these variables is shown in figure.

4 and figure. 5. From the lifetime chart, it can be

seen that the folded architecture requires 4 registers

as opposed to 16 registers in a straightforward

implementation. The next step is to perform

forward-backward register allocation.

NODE Tinput Toutput

yo 46

y1 57

y2 -

y3 -

y4 48

y5 59

y6 68

y7 79

Figure.4 Linear lifetime table

Figure.5 Linear lifetime chart

FOLDING

SETS

FOLDING

EQUATIONS

RETIMING

FOLDING

EQUATIONS

LIFETIME

ANALYSIS

REGISTER

ALLOCATION

FOLDED

ARCHITECTURE

709

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70296

Figure. 6 Register allocation table.

From the allocation table in Fig.6 and the

folding equations, the final architecture in Fig. 7
can be synthesized and can be derived by

minimizing the registers on all variables at once.

The hardware utilization is only 50% in the derived

architecture. This can also be observed from the

folding sets where half of the time null operations

are being executed, i.e., hardware is idle. The

pipelined parallel FFT architectures are presented

by using this methodology.

Figure. 7 Folded architecture.

III. PROPOSED ARCHITECTURES

WITH COMPLEX INPUTS (CFFT)

The proposed approach can be described

using folding methodology [10].The 4-parallel 128-

point FFT architecture can be derived using the

following folding sets.

A = {A0, A1, A2, A3} A’ = {A’0, A’1, A’2, A’3}

B = {B3, B0, B1, B2} B’ = {B’3, B’0, B’1, B’2}

C = {C1, C2, C3, C0} C’ = {C’1, C’2, C’3, C’0}

D = {D1, D2, D3, D0} D’ = {D’1, D’2, D’3, D’1}

The folded architecture can be derived by

writing the folding equation [10] for the edges in

the flow graph. The register minimization

techniques and the forward and backward register

allocation scheme [12] are applied to derive the

architecture and then the final architecture can be

derived. The 128-point FFT flow graph is based on

radix-24 algorithm which is decimated in time. To

achieve the high throughput requirement with low

hardware cost, both the proposed pipelining

method and radix-2n algorithms are exploited in this
design.

The proposed 4-parallel 128-point FFT

architecture is shown in figure.8. It consists of two

parallel data paths processing two input samples.

Each data path consists of seven butterfly units,

four constant and two full complex multipliers,

delay elements and multiplexers. The function of

delay elements and switches is to store and reorder

the input data until the other available data is

received for the butterfly operation. The four output

data values generated after the first stage are

multiplied by constant twiddle factors (W1
8 = eij2π/8,

W3
8 = eij2π3/8).

Figure.8 Proposed 128 point CFFT architecture based on radix-24 algorithm

710

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70296

Another constant multiplier stage is

required before the sixth butterfly stage. The CSD

complex constant multiplier processes the

multiplication of twiddle factors W8, W16, W24, W48.

These twiddle factors correspond to cos (π/8),

sin (π/8), and cos(π/4).

IV. PROPOSED ARCHITECTURE WITH

REAL INPUTS (RFFT)

The proposed radix-24 4-parallel

architecture is explained using N = 128 point FFT

is shown in figure.9. Further, the folding sets can

be modified to derive L-parallel architectures of

any N-point RFFT.

The radix-24 algorithm is described in

detail in [8]. We can modify the flow graph similar

to the other radices. The advantage of radix-24

algorithm is that it needs only one full multiplier

every four stages. To derive the 4-parallel

architecture divides the nodes into two groups. The

nodes in the same group are processed by the same
computation unit. Consider the following folding

sets.

 A = {A0, A2, A4, A6} A’ = {A1, A3, A5, A7}

B = {B1, B3, B0, B2} B’ = {B5, B7, B4, B6}

C = {C2, C1, C3, C0} C’ = {C6, C5, C7, C4}

 D = {D3, D0, D2, D1} D’ = {D7, D4, D6, D5}

The mapping of nodes to different

butterfly structures can be different in the case of

4-parallel architecture. The nodes {B4,..., B7} can
be implemented with only a complex multiplier

instead of BFIV structure, as these nodes consists

of only complex multiplication operation. Three

different butterfly structures are necessary to

handle the real and complex data paths.

V. COMPARISON AND ANALYSIS

A.) Complex FFT:

A comparison is made between the

previous pipelined architectures and the proposed

ones for the case of computing an N-point complex

FFT in Table I. The comparison is made in terms of

required number of complex multipliers, adders,

delay elements, twiddle factors and throughput.
The proposed architectures can process 4 samples

in parallel, thus achieving a higher performance

than previous designs. The proposed design

doubles the throughput and halves the latency.

B.) Real FFT:

The Table II shows the hardware

complexity and the throughput of the previous

architectures and the proposed ones for computing

an N-point Real FFT. The hardware complexity of

the architectures depends on the required number
of multipliers, adders and delay elements. The

performance is represented by throughput. The

number of multiplier required in the radix-24

architecture is less compared to the previous

designs. The proposed RFFT architecture leads to

low hardware complexity.

Figure.9 Proposed 128-point RFFT architecture based on radix-2
4
 algorithm

711

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70296

TABLE: I

Comparison of pipelined hardware architectures for the computation of

N -point CFFT

Architecture #Multipliers #Adders #Delays Control Throughput

R2MDC 2(log4N-1) 4log4N 3N/2-2 Simple 1

R2SDF 2(log4N-1) 4log4N N-1 Simple 1

R4SDC (log4N-1) 3log4N 2N-2 Complex 1

R2
2
SDF (log4N-1) 4log4N N-1 Simple 1

R2
3
SDF (log8N-1) 4log4N N-1 Simple 1

Radix-2 FFT 4(log4N-1) 8log4N 2N-4 Simple 2

Radix-2
2

FFT 3(log4N-1) 8log4N 2N-4 Simple 2

Radix-2
3
 FFT log8N-1 4log4N 3N/2-2 Simple 2

Radix-2
4
 FFT 2(log16N-1) 4log2N N-4 Simple 4

TABLE: II

Comparison of pipelined hardware architectures for the computation of

N -point RFFT

Architecture #Multipliers #Adders #Delays Control Throughput

R2MDC 2(log4N-1) 4log4N 3N/2-2 Simple 1

R2SDF 2(log4N-1) 4log4N N-1 Simple 1

R4SDC (log4N-1) 3log4N 2N-2 Simple 1

R2
2
SDF (log4N-1) 4log4N N-1 Simple 1

Radix 2 FFT 2(log4N-1) 4log4N-2 9N/8-2 Simple 2

Radix-2
2

FFT 2(log4N-1) 4log4N-2 9N/8-2 Simple 2

Radix-2
3

FFT (log8N-1) 4log4N-2 N-2 Simple 2

Radix-2
4

FFT 2(log16N-1) 4log2N-2 < 2N Simple 4

712

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70296

VI. CONCLUSION

A novel four parallel 128-point radix-

2
4
 FFT architecture has been developed using

proposed method. The hardware costs of delay
elements and complex adders and the number

of complex multipliers is reduced using higher

radix FFT algorithm by using proposed
approach. The throughput can be further

increased by adding more pipeline stages

which is possible due to the feed-forward

nature of the design. The power consumption
can also be reduced and leads to low hardware

complexity in proposed architectures

compared to previous architectures. The
simulation can be done by using Modelsim

software. A generalized approach to design

efficient architectures for the computation of
RFFT is also proposed. The approach can be

extended to radix-2
5
 and higher radix

algorithms. Further higher parallel

architectures can be developed using the
proposed approach.

REFERENCES

[1] M. Ayinala, M. Brown, K.K. Parhi, “Pipelined

parallel FFT architectures via folding transformation”,

IEEE Transactions on VLSI Systems, pp. 1068-1081,
vol.20, no. 6, June 2012.
 [2] A. V. Oppenheim, R.W. Schafer, and J.R.Buck,
Discrete-Time Signal Processing, 2nd ed. Englewood
Cliffs, NJ: Prentice-Hall, 1998.
[3] P. Duhamel, “Implementation of split-radix FFT
algorithms for complex,real, and real-symmetric data,”
IEEE Trans. Acoust., Speech,Signal Process., vol. 34, no.

2, pp. 285–295, Apr. 1986.
[4] S. He and M. Torkelson, “A new approach to pipeline
FFT processor,” in Proc. of IPPS, 1996, pp. 766–770.
[5] L. R. Rabiner and B. Gold, Theory and Application of
Digital Signal Processing. Englewood Cliffs, NJ:
Prentice-Hall, 1975.
[6] E. H. Wold and A. M. Despain, “Pipeline and
parallel-pipeline FFT processors for VLSI

implementation,” IEEE Trans. Comput., vol. C-33, no. 5,
pp. 414–426, May 1984.
[7] A. M. Despain, “Fourier transfom using CORDIC
iterations,” IEEE Trans. Comput., vol. C-233, no. 10, pp.
993–1001, Oct. 1974.
[8] E. E. Swartzlander, W. K. W. Young, and S. J.
Joseph, “A radix-4 delay commutator for fast Fourier
transform processor implementation,” IEEE J. Solid-

State Circuits, vol. SC-19, no. 5, pp. 702–709, Oct. 1984.
[9] E. E. Swartzlander, V. K. Jain, and H. Hikawa, “A
radix-8 wafer scale FFT processor,” J. VLSI Signal
Process., vol. 4, no. 2/3, pp. 165–176, May 1992.
[10] G. Bi and E. V. Jones, “A pipelined FFT processor
for word-sequential data,” IEEE Trans. Acoust., Speech,
Signal Process., vol. 37, no. 12, pp. 1982–1985, Dec.
1989.

[11] Y. W. Lin, H. Y. Liu, and C. Y. Lee, “A 1-GS/s
FFT/IFFT processor for UWB applications,” IEEE J.
Solid-State Circuits, vol. 40, no. 8, pp. 1726–1735, Aug.
2005.
[12] J. Lee, H. Lee, S. I. Cho, and S. S. Choi, “A High-

Speed two parallel radix-24 FFT/IFFT processor for MB-
OFDM UWB systems,” in Proc IEEE Int. Symp. Circuits
Syst., 2006, pp. 4719–4722.
[13] J. Palmer and B. Nelson, “A parallel FFT
architecture for FPGAs,”Lecture Notes Comput. Sci., vol.
3203, pp. 948–953, 2004.
[14] M. Shin and H. Lee, “A high-speed four parallel
radix-24 FFT/IFFT processor for UWB applications,” in

Proc. IEEE ISCAS, 2008, pp.960–963.
[15] M. Garrido, “Efficient hardware architectures for the
computation of the FFT and other related signal
processing algorithms in real time,” Ph.D. dissertation,
Dept. Signal, Syst., Radiocommun., Univ. Politecnica
Madrid, Madrid, Spain, 2009.
[16] K. K. Parhi, C. Y. Wang, and A. P. Brown,
“Synthesis of control circuits in folded pipelined DSP

architectures,” IEEE J. Solid-State Circuits, vol. 27, no.
1, pp. 29–43, Jan. 1992.
[17] K. K. Parhi, “Systematic synthesis of DSP data
format converters using lifetime analysis and forward-
backward register allocation,” IEEE Trans. Circuits Syst.
II, Exp. Briefs, vol. 39, no. 7, pp. 423–440, Jul. 1992.
[18] J. W. Cooley and J. Tukey, “An algorithm for
machine calculation of complex fourier series,” Math.

Comput., vol. 19, pp. 297–301, Apr.1965.
[19] K. K. Parhi, “Calculation of minimum number of
registers in arbitrary life time chart,” IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 41, no. 6, pp. 434–436,
Jun. 1995.
[20] D. Sinha and A. H. Tewfik, “TDCS, OFDM, and
MC-CDMA: A brief tutorial,” IEEE Commun.Mag., vol.
43, no. 9, pp. S11–S16, Sep. 2005.
[21] J. W. Picone, “Signal modeling techniques in speech

recognition,” Proc. IEEE, vol. 81, no. 9, pp. 1215–1247,
Sep. 1993.
[22] M. H. Cheng, L. C. Chen, Y. C. Hung, and C. M.
Yang, “A real-time maximum likelihood heart-rate
estimator for wearable textile sensors,” in Proc. IEEE
30th Annu. Int. Conf. EMBS, 2008, pp. 254–257.
[23] T. Netoff, Y. Park, and K. K. Parhi, “Seizure
prediction using costsensitive support vector machine,”

in Annu. Int. Conf. EMBS, 2009, pp. 3322–3325.
[24] R. Storn, “A novel radix-2 pipeline architecture for
the coputation of the DFT,” in Proc. IEEE ISCAS, 1988,
pp. 1899–1902.
[25] Y. Wu, “New FFT structures based on the Bruun
algorithm,” IEEETrans. Acoust., Speech Signal Process.,
vol. 38, no. 1, pp. 188–191,
Jan. 1990

713

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70296

