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Abstract - In this paper, a novel approach to 

develop parallel pipelined architectures for the 

Fast Fourier transform (FFT) is presented. The 

folding transformation and register minimization 
techniques are proposed for designing FFT 

architectures. Novel parallel-pipelined 128-point 

radix-24 FFT architecture for the computation of 

complex and real valued fast Fourier transform are 

derived. For Complex valued Fast Fourier 

Transform (CFFT), the proposed architecture takes 

benefit of underutilized hardware in the serial 

architecture to derive L-parallel architectures not 

including the increment of hardware complexity by 

a factor of L. In addition to, the new parallel-

pipelined architecture for the computation of Real-

valued Fast Fourier Transform (RFFT) is 
presented. To reduce the hardware complexity, the 

proposed architecture exploits redundancy in the 

computation of FFT samples. A comparison is 

shown between the proposed design and the 

previous architectures.  

 

Keywords – Fast Fourier Transform (FFT), 

folding, radix-24, register minimization. 

 

I. INTRODUCTION 
 

DFT is one of the most important tools in 

the field of digital signal processing. Several Fast 

Fourier Transform (FFT) algorithms have been 

developed over the years due to its computational 

complexity. FFT plays a critical role in modern 

digital communications such as Digital Video 

Broadcasting (DVB) and Orthogonal Frequency 
Division Multiplexing (OFDM) systems. The 

design of pipelined architectures for computation of 

FFT of complex valued signals (CFFT) has been 

carried out. Different algorithms have been 

developed to reduce the computational complexity, 

of which Cooley-Tukey radix-2 FFT [1] is very 

popular. 

Algorithms such as radix-4 [2], split-radix 

[3] and radix-22 [4] have been developed based on 

the basic radix-2 FFT approach. The one of the 

most classical approaches for pipelined 
implementation of radix-2 FFT is Radix-2 multi- 

path delay commutator (R2MDC) [5]. A standard 

usage of the storage buffer in R2MDC leads to the 

Radix-2 Single-path delay feedback (R2SDF) [6] 

architecture with reduced memory.  
The architectures are developed for a 

specific-point FFT in [7] and [8], whereas 

hypercube theory is used to derive the architectures 

in [9].The method of developing these architectures 

from the algorithms is not well established.  

In additional, most of these hardware 

architectures are not fully utilized and require high 

hardware complexity. In the period of high speed 

digital communications, the high throughput and 

low power designs are essential to meet the speed 

and power requirements while keeping the 

hardware overhead to a minimum.  In this paper, a 
new approach to design the architecture from the 

FFT flow graphs is presented. Folding 

transformation [10] and register minimization 

techniques [11], [12] are used to derive several 

known FFT architectures.  

If the input samples are real then the 

spectrum is symmetric and approximately half of 

the operations are redundant. The applications such 

as speech, audio, image, radar, and biomedical 

signal processing, a specialized hardware 

implementation is best suitable to meet the real-
time constraints. The implantable or portable 

device saves power by using this type of 

implementation which is a key limitation. Few 

pipelined architectures for real valued signals have 

been proposed [13] based on the Brunn algorithm. 

However, these are not widely used. Different 

algorithms such as doubling algorithm, packing 

algorithm have been proposed for computation of 

RFFT. These approaches are based on removing 

the redundancies of the CFFT while the input is 

real. RFFT is calculated using the CFFT 

architecture in an efficient manner [14].  
In the folding transformation, many 

butterflies in the same column can be mapped to 

one butterfly unit. If the FFT size is N, a folding 

factor of N/2 leads to 2-parallel architecture and in 

another design, a folding factor of N/4 leads to 

design 4-parallel architectures in which four 

samples are processed in the same clock cycle. 

Various folding sets lead to a family of FFT 

707

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70296



  
  

 

  

 

architectures. Alternatively, known FFT 

architectures can also be described by the proposed  

methodology by selecting the appropriate folding 

set. To reduce latency and the number of storage 

elements, folding sets are designed. The prior FFT 

architectures were derived in an informal way, and 
their derivations were not explained in a systematic 

way. This is the effort to simplify the design of 

FFT architectures for arbitrary level of parallelism 

in an efficient manner by means of the folding 

transformation. In this paper, the prior design 

architectures are explained by constructing the 

specific folding sets. Then new architecture is 

derived for radix and levels of parallelism and for 

either Decimation-In-Time (DIT) or Decimation-

In-Frequency (DIF) flow graphs. The new 

architecture achieves full hardware utilization. It 

may be noted that all prior parallel FFT 
architectures did not achieve full hardware 

utilization. The new real FFT architecture is also 

presented based on higher radices. 

In [15], the parallel-pipelined architectures 

for the computation of RFFT based on radix-22 and 

radix-23 algorithms have been proposed. The real 

FFT architectures are not fully utilized. This 

drawback is removed by proposed methodology. 

The novel parallel-pipelined FFT architectures for 

the real-valued signals with full hardware 

utilization based on radix-24 algorithm is presented. 
It combines the advantages of radix-2n algorithms, 

which requires fewer complex multipliers when 

compared to radix-2 algorithm, with the reduction 

of operations using redundancy. 

 This paper is organized as follows. The 

folding transformation and register minimization 

based FFT architectures design is presented in 

Section II. The proposed architecture for complex 

FFT is explained in Section III. The proposed 

architecture for real FFT is explained in Section IV. 

In Section V, the proposed architecture is compared 

with the previous approaches and some conclusions 
are drawn in Section VI. 

 

II. FFT ARCHITECTURES DESIGN 

TECHNIQUES 
 

In this section, the folding transformation 
method and register minimization to derive several 

known FFT architectures is illustrated in general. 

The process is described using an 8-point radix-2 

DIF FFT as an example. It can be extended to other 

radices in a similar fashion. Figure. 1 shows the 

flow graph of a radix-2 8-point DIF FFT. The 

graph is divided into three stages and each of them 

consists of a set of butterflies and multipliers.  

 

           
 

Figure.1 Flow graph of a radix-2 8-point DIF FFT. 

 

This algorithm can be represented as a 

data flow graph (DFG) as shown in fig. 2. The 

nodes in the DFG represent tasks or computations. 
In this case, all the nodes represent the butterfly 

computations of the radix-2 FFT algorithm. 

Assume nodes A and B have the multiplier 

operation on the bottom edge of the butterfly. The 

folding transformation is used on the DFG to derive 

a pipelined architecture. To transform the DFG, a 

folding set is required which is an ordered set of 

operations executed by the same functional unit. 

Each folding set contains K entries some of which 

may be null operations is called the folding factor, 

i.e., the number of operations folded into a single 
functional unit. The operation in the jth position 

within the folding set (where j goes from 0 to K-1) 

is executed by the functional unit during the time 

partition. The term j is the folding order, i.e., the 

time instance to which the node is scheduled to be 

executed in hardware. 

 

 
 

Figure.2 DFG of a radix-2 8-point DIF FFT. 

 

For example, consider the folding set A = {ϕ, ϕ, 

ϕ, ϕ, A0, A1, A2, A3} for K=8. The operation A0 

belongs to the folding set A with the folding order 

4. The functional unit executes the operations A0, 
A1, A2, A3 at the respective time instances and 

will be idle during the null operations. The 

systematic folding techniques are used to derive 

the 8-point FFT architecture. Consider an edge e 

connecting the nodes U and V with w (e) delays.  
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The folding equation (1) for the edge e is 

 

DF (U  V) = K w(e)-PU + v - u           (1) 

where PU is the number of pipeline stages in the 

hardware unit which executes the node U [10]. By 

using folding sets, folding equations are derived 

with negative delays (w/o pipeline) and non 

negative delays (with pipeline or retiming). 

Consider folding of the DFG in fig.2 with the 

folding sets 
 

   A = {ϕ, ϕ, ϕ, ϕ, A0, A1, A2, A3} 

                B = {B2, B3, ϕ, ϕ, ϕ, ϕ, B0, B1} 

  C = {C1, C2, C3, ϕ, ϕ, ϕ, ϕ, C0}. 

 

Assume that the butterfly operations do 

not have any pipeline stages, i.e, PA=0, PB=0, 

PC=0.Retiming and/or pipelining can be used to 

either satisfy DFUV) ≥0 or determine that the 

folding sets are not feasible [10]. The negative 

delays on some edges can be observed. The 
equations are  

 

DF (A0  B0) = 2 DF (B0  C0) = 1 

DF (A0  B2) = - 4 DF (B0  C1) = - 6 

DF (A1  B1) = 2 DF (B1  C0) = 0 

DF (A1  B1) = - 4 DF (B1  C1) = - 7 

DF (A2  B0) = 0 DF (B2  C2) = 1 

DF (A2  B2) = - 6 DF (B2  C3) = 2 

DF (A3  B1) = 0 DF (B3  C2) = 0 

DF (A3  B3) = - 6 DF (B3  C3) =1       (2) 

 

The DFG can be pipelined is shown to 
ensure that folded hardware has non-negative 

number of delays. The folded delays for the 

pipelined DFG are 

 

DF (A0  B0) = 2 DF (B0  C0) = 1 

DF (A0  B2) = 4 DF (B0  C1) = 2 

DF (A1  B1) = 2 DF (B1  C0) = 0 

DF (A1  B1) = 4 DF (B1  C1) = 1 

DF (A2  B0) = 0 DF (B2  C2) = 1 

DF (A2  B2) = 2 DF (B2  C3) = 2 

DF (A3  B1) = 0 DF (B3  C2) = 0 
DF (A3  B3) = 2 DF (B3  C3) = 1      (3) 

 

 

 

 

 

 

 
 

 

 

 

Figure. 3 Block diagram of FFT design techniques 

The technique for minimizing register is 

lifetime analysis [12] which analyzes the time for 

when a data is produced (Tinput) and when a data 

finally is consumed (Toutput). 

 

T input = u + PU         (4) 
  T output = u + PU + maxv {DF (U→V)}     (5) 

 

where u is the folding order of U and PU is the 

number of pipelining stages in the functional unit 

that executes u. From (3) the 24 registers are 

required to implement the folded architecture. 

Lifetime analysis technique is used to design the 

folded architecture with minimum possible 

registers. For example, in the current 8-point FFT 

design, consider the variables y0, y1,. . . y7, i.e., the 

outputs at the nodes A0,A1,A2,A3 respectively. It 

takes 16 registers to synthesize these edges in the 
folded architecture. The linear lifetime table and 

lifetime chart for these variables is shown in figure. 

4 and figure. 5. From the lifetime chart, it can be 

seen that the folded architecture requires 4 registers 

as opposed to 16 registers in a straightforward 

implementation. The next step is to perform 

forward-backward register allocation. 

 

NODE Tinput Toutput 

yo 46 

y1 57 

y2 - 

y3 - 

y4 48 

y5 59 

y6 68 

y7 79 

 

Figure.4 Linear lifetime table 
 

 
 

Figure.5 Linear lifetime chart 
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Figure. 6 Register allocation table. 

 

From the allocation table in Fig.6 and the 

folding equations, the final architecture in Fig. 7 
can be synthesized and can be derived by 

minimizing the registers on all variables at once. 

The hardware utilization is only 50% in the derived 

architecture. This can also be observed from the 

folding sets where half of the time null operations 

are being executed, i.e., hardware is idle. The 

pipelined parallel FFT architectures are presented 

by using this methodology. 

 

 
 

Figure. 7 Folded architecture. 

 

III. PROPOSED ARCHITECTURES 

WITH COMPLEX INPUTS (CFFT) 
 

The proposed approach can be described 

using folding methodology [10].The 4-parallel 128-

point FFT architecture can be derived using the 

following folding sets. 

 

A = {A0, A1, A2, A3}  A’ = {A’0, A’1, A’2, A’3} 

B = {B3, B0, B1, B2}   B’ = {B’3, B’0, B’1, B’2} 

C = {C1, C2, C3, C0}   C’ = {C’1, C’2, C’3, C’0} 

D = {D1, D2, D3, D0}  D’ = {D’1, D’2, D’3, D’1} 

 
The folded architecture can be derived by 

writing the folding equation [10] for the edges in 

the flow graph. The register minimization 

techniques and the forward and backward register 

allocation scheme [12] are applied to derive the 

architecture and then the final architecture can be 

derived. The 128-point FFT flow graph is based on 

radix-24 algorithm which is decimated in time. To 

achieve the high throughput requirement with low 

hardware cost, both the proposed pipelining 

method and radix-2n algorithms are exploited in this 
design.  

The proposed 4-parallel 128-point FFT 

architecture is shown in figure.8. It consists of two 

parallel data paths processing two input samples. 

Each data path consists of seven butterfly units, 

four constant and two full complex multipliers, 

delay elements and multiplexers. The function of 

delay elements and switches is to store and reorder 

the input data until the other available data is 

received for the butterfly operation. The four output 

data values generated after the first stage are 

multiplied by constant twiddle factors (W1
8 = eij2π/8, 

W3
8 = eij2π3/8).  

Figure.8 Proposed 128 point CFFT architecture based on radix-24 algorithm 
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Another constant multiplier stage is 

required before the sixth butterfly stage. The CSD 

complex constant multiplier processes the 

multiplication of twiddle factors W8, W16, W24, W48. 

These twiddle factors correspond to cos (π/8),  

sin (π/8), and cos(π/4). 

 

IV. PROPOSED ARCHITECTURE WITH 

REAL INPUTS (RFFT) 

 
The proposed radix-24 4-parallel 

architecture is explained using N = 128 point FFT 

is shown in figure.9. Further, the folding sets can 

be modified to derive L-parallel architectures of 

any N-point RFFT.  

The radix-24 algorithm is described in 

detail in [8]. We can modify the flow graph similar 

to the other radices. The advantage of radix-24 

algorithm is that it needs only one full multiplier 

every four stages. To derive the 4-parallel 

architecture divides the nodes into two groups. The 

nodes in the same group are processed by the same 
computation unit. Consider the following folding 

sets.  

 

 A = {A0, A2, A4, A6} A’ = {A1, A3, A5, A7} 

B = {B1, B3, B0, B2}     B’ = {B5, B7, B4, B6} 

C = {C2, C1, C3, C0}      C’ = {C6, C5, C7, C4} 

 D = {D3, D0, D2, D1} D’ = {D7, D4, D6, D5} 

 

The mapping of nodes to different 

butterfly structures can be different in the case of  

4-parallel architecture. The nodes {B4,..., B7} can 
be implemented with only a complex multiplier  

 

instead of BFIV structure, as these nodes consists 

of only complex multiplication operation. Three 

different butterfly structures are necessary to 

handle the real and complex data paths. 

 

V. COMPARISON AND ANALYSIS 
 

A.) Complex FFT: 

 

A comparison is made between the 

previous pipelined architectures and the proposed 

ones for the case of computing an N-point complex 

FFT in Table I. The comparison is made in terms of 

required number of complex multipliers, adders, 

delay elements, twiddle factors and throughput.  
The proposed architectures can process 4 samples 

in parallel, thus achieving a higher performance 

than previous designs. The proposed design 

doubles the throughput and halves the latency. 

 

B.) Real FFT: 

 

The Table II shows the hardware 

complexity and the throughput of the previous 

architectures and the proposed ones for computing 

an N-point Real FFT. The hardware complexity of 

the architectures depends on the required number 
of multipliers, adders and delay elements. The 

performance is represented by throughput. The 

number of multiplier required in the radix-24 

architecture is less compared to the previous 

designs. The proposed RFFT architecture leads to 

low hardware complexity.  

 

 

 

 

Figure.9 Proposed 128-point RFFT architecture based on radix-2
4
 algorithm
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TABLE: I 

Comparison of pipelined hardware architectures for the computation of  

N -point CFFT 

 

Architecture #Multipliers #Adders #Delays Control Throughput 

R2MDC 2(log4N-1) 4log4N 3N/2-2 Simple 1 

R2SDF 2(log4N-1) 4log4N N-1 Simple 1 

R4SDC (log4N-1) 3log4N 2N-2 Complex 1 

R2
2
SDF (log4N-1) 4log4N N-1 Simple 1 

R2
3
SDF (log8N-1) 4log4N N-1 Simple 1 

Radix-2 FFT 4(log4N-1) 8log4N 2N-4 Simple 2 

Radix-2
2 

FFT 3(log4N-1) 8log4N 2N-4 Simple 2 

Radix-2
3
 FFT log8N-1 4log4N 3N/2-2 Simple 2 

Radix-2
4
 FFT 2(log16N-1) 4log2N N-4 Simple 4 

 

TABLE: II 

Comparison of pipelined hardware architectures for the computation of 

N -point RFFT 

 

 

 

 

 

 

 

 

 

 

 

Architecture #Multipliers #Adders #Delays Control Throughput 

R2MDC 2(log4N-1) 4log4N 3N/2-2 Simple 1 

R2SDF 2(log4N-1) 4log4N N-1 Simple 1 

R4SDC (log4N-1) 3log4N 2N-2 Simple 1 

R2
2
SDF (log4N-1) 4log4N N-1 Simple 1 

Radix 2 FFT 2(log4N-1) 4log4N-2 9N/8-2 Simple 2 

Radix-2
2 

FFT 2(log4N-1) 4log4N-2 9N/8-2 Simple 2 

Radix-2
3 

FFT (log8N-1) 4log4N-2 N-2 Simple 2 

Radix-2
4 

FFT 2(log16N-1) 4log2N-2 < 2N Simple 4 
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VI. CONCLUSION 

 
A novel four parallel 128-point radix-

2
4
 FFT architecture has been developed using 

proposed method. The hardware costs of delay 
elements and complex adders and the number 

of complex multipliers is reduced using higher 

radix FFT algorithm by using proposed 
approach. The throughput can be further 

increased by adding more pipeline stages 

which is possible due to the feed-forward 

nature of the design. The power consumption 
can also be reduced and leads to low hardware 

complexity in proposed architectures 

compared to previous architectures. The 
simulation can be done by using Modelsim 

software. A generalized approach to design 

efficient architectures for the computation of 
RFFT is also proposed. The approach can be 

extended to radix-2
5
 and higher radix 

algorithms. Further higher parallel 

architectures can be developed using the 
proposed approach. 
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