
 Proceedings of International Conference “ICSEM’13”

Ragavi.V, K.Renuka

487

Design of pipelined parallel FFT architectures
Using folding transformation

RAGAVI.V, K.RENUKA

M.E (VLSI Design) Assistant Professor (ECE)
Srinivasan Engineering College Srinivasan Engineering College
ragavimevlsi@gmail.com1 renudev20@gmail.com2

Abstract - In this paper, a novel approach to develop parallel
pipelined architectures for the Fast Fourier transform (FFT) is
presented. The folding transformation and register minimization
techniques are proposed for designing FFT architectures. Novel
parallel-pipelined 128-point radix-24 FFT architecture for the
computation of complex and real valued fast Fourier transform are
derived. For Complex valued Fast Fourier Transform (CFFT), the
proposed architecture takes benefit of underutilized hardware in
the serial architecture to derive L-parallel architectures not
including the increment of hardware complexity by a factor of L. In
addition to, the new parallel-pipelined architecture for the
computation of Real-valued Fast Fourier Transform (RFFT) is
presented. To reduce the hardware complexity, the proposed
architecture exploits redundancy in the computation of FFT
samples. A comparison is shown between the proposed design and
the previous architectures.

Index Terms – Fast Fourier Transform (FFT), folding, radix-24,
register minimization.

I. INTRODUCTION

DFT is one of the most important tools in the field
of digital signal processing. Several Fast Fourier Transform
(FFT) algorithms have been developed over the years due to
its computational complexity. FFT plays a critical role in
modern digital communications such as Digital Video
Broadcasting (DVB) and Orthogonal Frequency Division
Multiplexing (OFDM) systems. The design of pipelined
architectures for computation of FFT of complex valued
signals (CFFT) has been carried out. Different algorithms
have been developed to reduce the computational
complexity, of which Cooley-Tukey radix-2 FFT [1] is very
popular.

 Algorithms such as radix-4 [2], split-radix [3] and
radix-22 [4] have been developed based on the basic radix-2
FFT approach. The one of the most classical approaches for
pipelined

implementation of radix-2 FFT is Radix-2 multi-path delay
commutator (R2MDC) [5]. A standard usage of the storage
buffer in R2MDC leads to the Radix-2 Single-path delay
feedback (R2SDF) [6] architecture with reduced memory.

The architectures are developed for a specific-point
FFT in [7] and [8], whereas hypercube theory is used to

derive the architectures in [9].The method of developing
these architectures from the algorithms is not well
established.

In additional, most of these hardware architectures
are not fully utilized and require high hardware complexity.
In the period of high speed digital communications, the high
throughput and low power designs are essential to meet the
speed and power requirements while keeping the hardware
overhead to a minimum. In this paper, a new approach to
design the architecture from the FFT flow graphs is
presented. Folding transformation [10] and register
minimization techniques [11], [12] are used to derive
several known FFT architectures.

If the input samples are real then the spectrum is
symmetric and approximately half of the operations are
redundant. The applications such as speech, audio, image,
radar, and biomedical signal processing, a specialized
hardware implementation is best suitable to meet the real-
time constraints. The implantable or portable device saves
power by using this type of implementation which is a key
limitation. Few pipelined architectures for real valued
signals have been proposed [13] based on the Brunn
algorithm. However, these are not widely used. Different
algorithms such as doubling algorithm, packing algorithm
have been proposed for computation of RFFT. These
approaches are based on removing the redundancies of the
CFFT while the input is real. RFFT is calculated using the
CFFT architecture in an efficient manner [14].

In the folding transformation, many butterflies in

the same column can be mapped to one butterfly unit. If the
FFT size is N, a folding factor of N/2 leads to 2-parallel
architecture and in another design, a folding factor of N/4
leads to design 4-parallel architectures in which four
samples are processed in the same clock cycle. Various
folding sets lead to a family of FFT architectures.
Alternatively, known FFT architectures can also be
described by the proposed methodology by selecting the
appropriate folding set. To reduce latency and the number of
storage elements, folding sets are designed. The prior FFT
architectures were derived in an informal way, and their
derivations were not explained in a systematic way. This is
the effort to simplify the design of FFT architectures for
arbitrary level of parallelism in an efficient manner by

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

 Proceedings of International Conference “ICSEM’13”

Ragavi.V, K.Renuka

488

means of the folding transformation. In this paper, the prior
design architectures are explained by constructing the
specific folding sets. Then new architecture is derived for
radix and levels of parallelism and for either Decimation-In-
Time (DIT) or Decimation-In-Frequency (DIF) flow graphs.
The new architecture achieves full hardware utilization. It
may be noted that all prior parallel FFT architectures did not
achieve full hardware utilization. The new real FFT
architecture is also presented based on higher radices.

In [15], the parallel-pipelined architectures for the
computation of RFFT based on radix-22 and radix-23
algorithms have been proposed. The real FFT architectures
are not fully utilized. This drawback is removed by
proposed methodology. The novel parallel-pipelined FFT
architectures for the real-valued signals with full hardware
utilization based on radix-24 algorithm is presented. It
combines the advantages of radix-2n algorithms, which
requires fewer complex multipliers when compared to radix-
2 algorithm, with the reduction of operations using
redundancy.
 This paper is organized as follows. The folding
transformation and register minimization based FFT
architectures design is presented in Section II. The proposed
architecture for complex FFT is explained in Section III.
The proposed architecture for real FFT is explained in
Section IV. In Section V, the proposed architecture is
compared with the previous approaches and some
conclusions are drawn in Section VI.

II. FFT ARCHITECTURES DESIGN TECHNIQUES

In this section, the folding transformation method

and register minimization to derive several known FFT
architectures is illustrated in general. The process is
described using an 8-point radix-2 DIF FFT as an example.
It can be extended to other radices in a similar fashion. Fig.
1 shows the flow graph of a radix-2 8-point DIF FFT. The
graph is divided into three stages and each of them consists
of a set of butterflies and multipliers. The twiddle factor in
between the stages indicates a multiplication by
where WN denotes the Nth root of unity, among its exponent
evaluated modulo N.

Fig.1 Flow graph of a radix-2 8-point DIF FFT.

This algorithm can be represented as a data flow
graph (DFG) as shown in Fig. 2. The nodes in the DFG
represent tasks or computations. In this case, all the nodes
represent the butterfly computations of the radix-2 FFT

algorithm. Assume nodes A and B have the multiplier
operation on the bottom edge of the butterfly. The folding
transformation is used on the DFG in Fig. 2 to derive a
pipelined architecture.

To transform the DFG, a folding set is required
which is an ordered set of operations executed by the same
functional unit. Each folding set contains K entries some of
which may be null operations is called the folding factor,
i.e., the number of operations folded into a single functional
unit. The operation in the jth position within the folding set
(where j goes from 0 to K-1) is executed by the functional
unit during the time partition. The term j is the folding
order, i.e., the time instance to which the node is scheduled
to be executed in hardware.

Fig. 2 DFG of a radix-2 8-point DIF FFT.

For example, consider the folding set A = {�, �, �, �, A0,
A1, A2, A3} for K=8. The operation belongs to the
folding set A with the folding order 4. The functional unit
executes the operations A0, A1, A2, A3 at the respective
time instances and will be idle during the null operations.
The systematic folding techniques are used to derive the 8-
point FFT architecture. Consider an edge e connecting the
nodes U and V with w (e) delays. The folding equation (1)
for the edge e is

DF (U � V) = K w(e)-PU + v - u (1)

where PU is the number of pipeline stages in the hardware
unit which executes the node U [10]. By using folding sets,
folding equations are derived with negative delays (w/o
pipeline) and non negative delays (with pipeline or
retiming). Consider folding of the DFG in Fig.2 with the
folding sets

A = {�, �, �, �, A0, A1, A2, A3}
B = {B2, B3, �, �, �, �, B0, B1}
C = {C1, C2, C3, �, �, �, �, C0}.

Assume that the butterfly operations do not have any
pipeline stages, i.e, PA=0, PB=0, PC=0.Retiming and/or
pipelining can be used to either satisfy DFU�V) ≥0 or
determine that the folding sets are not feasible [10]. The
negative delays on some edges can be observed. The
equations are

DF (A0 � B0) = 2 DF (B0 � C0) = 1

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

 Proceedings of International Conference “ICSEM’13”

Ragavi.V, K.Renuka

489

DF (A0 � B2) = - 4 DF (B0 � C1) = - 6
DF (A1 � B1) = 2 DF (B1 � C0) = 0
DF (A1 � B1) = - 4 DF (B1 � C1) = - 7
DF (A2 � B0) = 0 DF (B2 � C2) = 1
DF (A2 � B2) = - 6 DF (B2 � C3) = 2
DF (A3 � B1) = 0 DF (B3 � C2) = 0
DF (A3 � B3) = - 6 DF (B3 � C3) =1 (2)

The DFG can be pipelined is shown to ensure that folded
hardware has non-negative number of delays. The folded
delays for the pipelined DFG are
DF (A0 � B0) = 2 DF (B0 � C0) = 1
DF (A0 � B2) = 4 DF (B0 � C1) = 2
DF (A1 � B1) = 2 DF (B1 � C0) = 0
DF (A1 � B1) = 4 DF (B1 � C1) = 1
DF (A2 � B0) = 0 DF (B2 � C2) = 1
DF (A2 � B2) = 2 DF (B2 � C3) = 2
DF (A3 � B1) = 0 DF (B3 � C2) = 0
DF (A3 � B3) = 2 DF (B3 � C3) = 1 (3)

Fig. 3 Block diagram of FFT design techniques

The technique for minimizing register is lifetime analysis
[12] which analyzes the time for when a data is produced
(Tinput) and when a data finally is consumed (Toutput).

T input = u + PU (4)
T output = u + PU + maxv {D F (U→V)} (5)

where u is the folding order of U and PU is the number of
pipelining stages in the functional unit that executes u. From
(3) the 24 registers are required to implement the folded
architecture. Lifetime analysis technique is used to design
the folded architecture with minimum possible registers. For
example, in the current 8-point FFT design, consider the
variables y0, y1,. . . y7, i.e., the outputs at the nodes
A0,A1,A2,A3 respectively. It takes 16 registers to
synthesize these edges in the folded architecture. The linear
lifetime table and lifetime chart for these variables is shown
in Fig. 4 and Fig. 5. From the lifetime chart, it can be seen
that the folded architecture requires 4 registers as opposed to
16 registers in a straightforward implementation. The next
step is to perform forward-backward register allocation.

NODE Tinput���� Toutput

yo 4�6

y1 5�7

y2 -

y3 -

y4 4�8

y5 5�9

y6 6�8

y7 7�9

Fig.4 Linear lifetime table

Fig.5 Linear lifetime chart

Fig. 6 Register allocation table.

From the allocation table in Fig.6 and the folding equations,
the final architecture in Fig. 7 can be synthesized and can be
derived by minimizing the registers on all variables at once.
The hardware utilization is only 50% in the derived
architecture. This can also be observed from the folding sets
where half of the time null operations are being executed,
i.e., hardware is idle. The pipelined parallel FFT
architectures are presented by using this methodology.

FOLDING
SETS

FOLDING
EQUATIONS

RETIMING
FOLDING

EQUATIONS

LIFETIME
ANALYSIS

REGISTER
ALLOCATION

FOLDED
ARCHITECTURE

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

 Proceedings of International Conference “ICSEM’13”

Ragavi.V, K.Renuka

490

Fig. 7 Folded architecture.

III. PROPOSED ARCHITECTURES WITH COMPLEX
INPUTS (CFFT)

The proposed approach can be described using

folding methodology [10].The 4-parallel 128-point FFT
architecture can be derived using the following folding sets.

A = {A0, A1, A2, A3} A’ = {A’0, A’1, A’2, A’3}
B = {B3, B0, B1, B2} B’ = {B’3, B’0, B’1, B’2}
C = {C1, C2, C3, C0} C’ = {C’1, C’2, C’3, C’0}
D = {D1, D2, D3, D0} D’ = {D’1, D’2, D’3, D’1}

The folded architecture can be derived by writing
the folding equation [10] for the edges in the flow graph.
The register minimization techniques and the forward and
backward register allocation scheme [12] are applied to
derive the architecture and then the final architecture can be
derived. The 128-point FFT flow graph is based on radix-24
algorithm which is decimated in time. To achieve the high
throughput requirement with low hardware cost, both the
proposed pipelining method and radix-2n algorithms are
exploited in this design.

The proposed 4-parallel 128-point FFT architecture
is shown in fig.8. It consists of two parallel data paths
processing two input samples. Each data path consists of
seven butterfly units, four constant and two full complex
multipliers, delay elements and multiplexers. The function
of delay elements and switches is to store and reorder the
input data until the other available data is received for the
butterfly operation. The four output data values generated
after the first stage are multiplied by constant twiddle
factors (W1

8 = eij2π/8, W3
8 = eij2π3/8). These twiddle factors can

be implemented efficiently using Canonic Signed Digit
(CSD) approach. The outputs after the third stage are
multiplied by the nontrivial twiddle factor.

Fig.8 Proposed
128 point CFFT architecture based on radix-24 algorithm

Another constant multiplier stage is required before

the sixth butterfly stage. The CSD complex constant
multiplier processes the multiplication of twiddle factors W8,
W16, W24, W48. These twiddle factors correspond to cos (π/8),
sin (π/8), and cos(π/4).

IV. PROPOSED ARCHITECTURE WITH REAL INPUTS

(RFFT)

The proposed radix-24 4-parallel architecture is

explained using N = 128 point FFT is shown in fig.9.
Further, the folding sets can be modified to derive L-parallel
architectures of any N-point RFFT.

The radix-24 algorithm is described in detail in [8].
We can modify the flow graph similar to the other radices.
The advantage of radix-24 algorithm is that it needs only one
full multiplier every four stages. To derive the 4-parallel
architecture divides the nodes into two groups. The nodes in
the same group are processed by the same computation unit.
Consider the following folding sets.

A = {A0, A2, A4, A6} A’ = {A1, A3, A5, A7}
B = {B1, B3, B0, B2} B’ = {B5, B7, B4, B6}
C = {C2, C1, C3, C0} C’ = {C6, C5, C7, C4}
D = {D3, D0, D2, D1} D’ = {D7, D4, D6, D5}

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

 Proceedings of International Conference “ICSEM’13”

Ragavi.V, K.Renuka

491

The mapping of nodes to different butterfly
structures can be different in the case of 4-parallel
architecture. The nodes {B4,..., B7} can be implemented
with only a complex multiplier instead of BFIV structure, as
these nodes consists of only complex multiplication
operation.

Three different butterfly structures are necessary to
handle the real and complex data paths. Similar to radix-23
architectures, complex multipliers need to operate on
samples computed at different time instances.

V. COMPARISON AND ANALYSIS

A.) Complex FFT:

A comparison is made between the previous

pipelined architectures and the proposed ones for the case of
computing an N-point complex FFT in Table 1. The
comparison is made in terms of required number of complex
multipliers, adders, delay elements, twiddle factors and

throughput. The proposed architectures can process 4
samples in parallel, thus achieving a higher performance
than previous designs. When compared to some previous
architecture, the proposed design doubles the throughput
and halves the latency.

B.) Real FFT:

The Table 2 shows the hardware complexity and

the throughput of the previous architectures and the
proposed ones for computing an N-point Real FFT. The
hardware complexity of the architectures depends on the
required number of multipliers, adders and delay elements.
The performance is represented by throughput. The number
of multiplier required in the radix-24 architecture is less
compared to the previous designs. The proposed RFFT
architecture leads to low hardware complexity.

Fig.9 Proposed 128-point RFFT architecture based on radix-24 algorithm

Table : 1 Comparison of Pipelined Hardware Architectures for the Computation of N -Point CFFT

ARCHITECTURE # MULTIPLIERS # ADDERS # DELAYS THROUGHPUT

R2MDC 2(log4N-1) 4log4N 3N/2-2 1

R2SDF 2(log4N-1) 4log4N N-1 1

R22SDF (log4N-1) 4log4N N-1 1

R23SDF (log8N-1) 4log4N N-1 1

Radix-2 (4-parallel) 4(log4N-1) 8log4N 2N-4 4

Radix-22 (4-parallel) 3(log4N-1) 8log4N 2N-4 4

Radix-23 (4-parallel) log8N-1 4log4N 3N/2-2 2

Radix-24 (4-parallel) 2(log16N-1) 4log2N N-4 4

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

 Proceedings of International Conference “ICSEM’13”

Ragavi.V, K.Renuka

492

Table : 2 Comparison of Pipelined Hardware Architectures
for the Computation of N -Point RFFT

VI. CONCLUSION

A novel four parallel 128-point radix-24 FFT architecture
has been developed using proposed method. The hardware
costs of delay elements and complex adders and the number
of complex multipliers is reduced using higher radix FFT
algorithm by using proposed approach. The throughput can
be further increased by adding more pipeline stages which is
possible due to the feed-forward nature of the design. The
power consumption can also be reduced and leads to low
hardware complexity in proposed architectures compared to
previous architectures. The simulation can be done by using
Modelsim software. A generalized approach to design
efficient architectures for the computation of RFFT is also
proposed. The approach can be extended to radix-25 and
higher radix algorithms. Further higher parallel architectures
can be developed using the proposed approach.

REFERENCES

[1] J. Cooley and J. Tuckey, “An Algorithm for the Machine
Calculation of the Complex fourier series”, Math. Comput,
vol. 19, pp. 297–301, Apr. 1965.
[2] J.A.C. Bingham, “Multicarrier modulation for data
transmission: an idea whose time has come,” IEEE
Communication Magazine, vol. 28, no. 5, pp. 5-14, May
1990.

[3] P. Duhamel, “Implementation of split-radix FFT
algorithms for complex, real, and real-symmetric data”,
IEEE Trans. Acoust., Speech,Signal Process., vol. 34, no. 2,
pp. 285–295, Apr. 1986.
[4] S. He and M. Torkelson, “A new approach to pipeline
FFT processor”, in Proc. of IPPS, 1996, pp. 766–770.
[5] L. R. Rabiner and B. Gold, “Theory and Application of
Digital Signal Processing”, Englewood Cliffs, NJ: Prentice-
Hall, 1975.
[6] E. H. Wold and A. M. Despain, “Pipeline and parallel-
pipeline FFT processors for VLSI implementation”, IEEE
Trans. Comput., vol.C-33, no. 5, pp. 414–426, May 1984.
[7] Y. W. Lin, H. Y. Liu, and C. Y. Lee, “A 1-GS/s
FFT/IFFT processor for UWB applications”, IEEE J. Solid-
State Circuits, vol. 40, no. 8, pp. 1726–1735, Aug. 2005.
[8] J. Lee, H. Lee, S. I. Cho, S. S. Choi, ”A High-Speed two
parallel radix-24 FFT/IFFT processor for MB-OFDM UWB
systems”, IEEE Trans. on Fundamentals of Electronics,
Communications and Computer Sciences, pp. 1206-1211,
April 2008.
[9] M. Garrido, “Efficient hardware architectures for the
computation of the FFT and other related signal processing
algorithms in real time”, Ph.D. dissertation, Dept. Signal,
Syst., Radiocommun., Univ. Politecnica Madrid, Madrid,
Spain, 2009.
[10] K. K. Parhi, C. Y. Wang, and A. P. Brown, “Synthesis
of control circuits in folded pipelined DSP architectures,”
IEEE J. Solid-State Circuits, vol. 27, no. 1, pp. 29–43, Jan.
1992.
[11] K. K. Parhi, “Systematic synthesis of DSP data format
converters using lifetime analysis and forward-backward
register allocation,” IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 39, no. 7, pp. 423–440, Jul. 1992.
[12] K. K. Parhi, “Calculation of minimum number of
registers in arbitrary life time chart,” IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 41, no. 6, pp. 434–436, Jun. 1995.
[13] Y. Wu, “New FFT structures based on the Bruun
algorithm,” IEEE Trans. Acoust., Speech Signal Process.,
vol. 38, no. 1, pp. 188–191, Jan. 1990.
[14] W.W. Smith and J. M. Smith, Handbook of Real-Time
Fast Fourier Transforms. Piscataway, NJ: Wiley-IEEE
Press, 1995.
[15] M. Ayinala, M. Brown, K.K. Parhi, “Pipelined parallel
FFT architectures via folding transformation”, IEEE
Transactions on VLSI Systems, pp. 1068-1081, vol.20, no. 6,
June 2012.

ARCHITE
CTURE

#MULTIP
LIERS

#ADD
ERS

#DEL
AYS

THROUG
HPUT

R2MDC 2(log4N-1) 4log2N 2(3N/2-
2)

1

R2SDF 2(log4N-1) 4log2N 2(N-1) 1

R22SDF (log4N-1) 4log2N 2(N-1) 1

R23SDF (log8N-1) 4log2N 2(N-1) 1

Radix-23(4-
parallel)

2(log8N-1) 4log2N
-2

< 2N 4

Radix-24(4-
parallel)

2(log16N-1) 4log2N
-2

< 2N 4

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

