
 Proceedings of International Conference “ICSEM’13” 

Ragavi.V, K.Renuka 

487 

 

Design of pipelined parallel FFT architectures  
Using folding transformation 

 
RAGAVI.V,         K.RENUKA 

M.E (VLSI Design)      Assistant Professor (ECE) 
Srinivasan Engineering College     Srinivasan Engineering College 
ragavimevlsi@gmail.com1                                                                     renudev20@gmail.com2 

   

 
 

 
Abstract - In this paper, a novel approach to develop parallel 
pipelined architectures for the Fast Fourier transform (FFT) is 
presented. The folding transformation and register minimization 
techniques are proposed for designing FFT architectures. Novel 
parallel-pipelined 128-point radix-24 FFT architecture for the 
computation of complex and real valued fast Fourier transform are 
derived. For Complex valued Fast Fourier Transform (CFFT), the 
proposed architecture takes benefit of underutilized hardware in 
the serial architecture to derive L-parallel architectures not 
including the increment of hardware complexity by a factor of L. In 
addition to, the new parallel-pipelined architecture for the 
computation of Real-valued Fast Fourier Transform (RFFT) is 
presented. To reduce the hardware complexity, the proposed 
architecture exploits redundancy in the computation of FFT 
samples. A comparison is shown between the proposed design and 
the previous architectures.  
 
Index Terms – Fast Fourier Transform (FFT), folding, radix-24, 
register minimization. 
 

I. INTRODUCTION 
 

DFT is one of the most important tools in the field 
of digital signal processing. Several Fast Fourier Transform 
(FFT) algorithms have been developed over the years due to 
its computational complexity. FFT plays a critical role in 
modern digital communications such as Digital Video 
Broadcasting (DVB) and Orthogonal Frequency Division 
Multiplexing (OFDM) systems. The design of pipelined 
architectures for computation of FFT of complex valued 
signals (CFFT) has been carried out. Different algorithms 
have been developed to reduce the computational 
complexity, of which Cooley-Tukey radix-2 FFT [1] is very 
popular. 

 Algorithms such as radix-4 [2], split-radix [3] and 
radix-22 [4] have been developed based on the basic radix-2 
FFT approach. The one of the most classical approaches for 
pipelined  
 
implementation of radix-2 FFT is Radix-2 multi-path delay 
commutator (R2MDC) [5]. A standard usage of the storage 
buffer in R2MDC leads to the Radix-2 Single-path delay 
feedback (R2SDF) [6] architecture with reduced memory.  

The architectures are developed for a specific-point 
FFT in [7] and [8], whereas hypercube theory is used to 

derive the architectures in [9].The method of developing 
these architectures from the algorithms is not well 
established.  

In additional, most of these hardware architectures 
are not fully utilized and require high hardware complexity. 
In the period of high speed digital communications, the high 
throughput and low power designs are essential to meet the 
speed and power requirements while keeping the hardware 
overhead to a minimum.  In this paper, a new approach to 
design the architecture from the FFT flow graphs is 
presented. Folding transformation [10] and register 
minimization techniques [11], [12] are used to derive 
several known FFT architectures.  

If the input samples are real then the spectrum is 
symmetric and approximately half of the operations are 
redundant. The applications such as speech, audio, image, 
radar, and biomedical signal processing, a specialized 
hardware implementation is best suitable to meet the real-
time constraints. The implantable or portable device saves 
power by using this type of implementation which is a key 
limitation. Few pipelined architectures for real valued 
signals have been proposed [13] based on the Brunn 
algorithm. However, these are not widely used. Different 
algorithms such as doubling algorithm, packing algorithm 
have been proposed for computation of RFFT. These 
approaches are based on removing the redundancies of the 
CFFT while the input is real. RFFT is calculated using the 
CFFT architecture in an efficient manner [14].  

 
In the folding transformation, many butterflies in 

the same column can be mapped to one butterfly unit. If the 
FFT size is N, a folding factor of N/2 leads to 2-parallel 
architecture and in another design, a folding factor of N/4 
leads to design 4-parallel architectures in which four 
samples are processed in the same clock cycle. Various 
folding sets lead to a family of FFT architectures. 
Alternatively, known FFT architectures can also be 
described by the proposed methodology by selecting the 
appropriate folding set. To reduce latency and the number of 
storage elements, folding sets are designed. The prior FFT 
architectures were derived in an informal way, and their 
derivations were not explained in a systematic way. This is 
the effort to simplify the design of FFT architectures for 
arbitrary level of parallelism in an efficient manner by 
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means of the folding transformation. In this paper, the prior 
design architectures are explained by constructing the 
specific folding sets. Then new architecture is derived for 
radix and levels of parallelism and for either Decimation-In-
Time (DIT) or Decimation-In-Frequency (DIF) flow graphs. 
The new architecture achieves full hardware utilization. It 
may be noted that all prior parallel FFT architectures did not 
achieve full hardware utilization. The new real FFT 
architecture is also presented based on higher radices. 

In [15], the parallel-pipelined architectures for the 
computation of RFFT based on radix-22 and radix-23 
algorithms have been proposed. The real FFT architectures 
are not fully utilized. This drawback is removed by 
proposed methodology. The novel parallel-pipelined FFT 
architectures for the real-valued signals with full hardware 
utilization based on radix-24 algorithm is presented. It 
combines the advantages of radix-2n algorithms, which 
requires fewer complex multipliers when compared to radix-
2 algorithm, with the reduction of operations using 
redundancy. 
 This paper is organized as follows. The folding 
transformation and register minimization based FFT 
architectures design is presented in Section II. The proposed 
architecture for complex FFT is explained in Section III. 
The proposed architecture for real FFT is explained in 
Section IV. In Section V, the proposed architecture is 
compared with the previous approaches and some 
conclusions are drawn in Section VI. 

 
II. FFT ARCHITECTURES DESIGN TECHNIQUES 

 
In this section, the folding transformation method 

and register minimization to derive several known FFT 
architectures is illustrated in general. The process is 
described using an 8-point radix-2 DIF FFT as an example. 
It can be extended to other radices in a similar fashion. Fig. 
1 shows the flow graph of a radix-2 8-point DIF FFT. The 
graph is divided into three stages and each of them consists 
of a set of butterflies and multipliers. The twiddle factor in 
between the stages indicates a multiplication by  
where WN denotes the Nth root of unity, among its exponent 
evaluated modulo N.        

                      
Fig.1 Flow graph of a radix-2 8-point DIF FFT. 
 

This algorithm can be represented as a data flow 
graph (DFG) as shown in Fig. 2. The nodes in the DFG 
represent tasks or computations. In this case, all the nodes 
represent the butterfly computations of the radix-2 FFT 

algorithm. Assume nodes A and B have the multiplier 
operation on the bottom edge of the butterfly. The folding 
transformation is used on the DFG in Fig. 2 to derive a 
pipelined architecture.  

To transform the DFG, a folding set is required 
which is an ordered set of operations executed by the same 
functional unit. Each folding set contains K entries some of 
which may be null operations is called the folding factor, 
i.e., the number of operations folded into a single functional 
unit. The operation in the jth position within the folding set 
(where j goes from 0 to K-1) is executed by the functional 
unit during the time partition. The term j is the folding 
order, i.e., the time instance to which the node is scheduled 
to be executed in hardware. 

                     
 
Fig. 2 DFG of a radix-2 8-point DIF FFT. 
 

For example, consider the folding set A = {�, �, �, �, A0, 
A1, A2, A3} for K=8. The operation  belongs to the 
folding set A with the folding order 4. The functional unit 
executes the operations A0, A1, A2, A3 at the respective 
time instances and will be idle during the null operations. 
The systematic folding techniques are used to derive the 8-
point FFT architecture. Consider an edge e connecting the 
nodes U and V with w (e) delays. The folding equation (1) 
for the edge e is 

DF (U � V) = K w(e)-PU + v - u           (1) 

where PU is the number of pipeline stages in the hardware 
unit which executes the node U [10]. By using folding sets, 
folding equations are derived with negative delays (w/o 
pipeline) and non negative delays (with pipeline or 
retiming). Consider folding of the DFG in Fig.2 with the 
folding sets 
 
A = {�, �, �, �, A0, A1, A2, A3} 
B = {B2, B3, �, �, �, �, B0, B1}  
C = {C1, C2, C3, �, �, �, �, C0}. 
 
Assume that the butterfly operations do not have any 
pipeline stages, i.e, PA=0, PB=0, PC=0.Retiming and/or 
pipelining can be used to either satisfy DFU�V)  ≥0 or 
determine that the folding sets are not feasible [10]. The 
negative delays on some edges can be observed. The 
equations are  
 
DF (A0 � B0) = 2 DF (B0 � C0) = 1 
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DF (A0 � B2) = - 4 DF (B0 � C1) = - 6 
DF (A1 � B1) = 2 DF (B1 � C0) = 0 
DF (A1 � B1) = - 4 DF (B1 � C1) = - 7 
DF (A2 � B0) = 0 DF (B2 � C2) = 1 
DF (A2 � B2) = - 6 DF (B2 � C3) = 2 
DF (A3 � B1) = 0 DF (B3 � C2) = 0 
DF (A3 � B3) = - 6 DF (B3 � C3) =1       (2) 
 
The DFG can be pipelined is shown to ensure that folded 
hardware has non-negative number of delays. The folded 
delays for the pipelined DFG are  
DF (A0 � B0) = 2 DF (B0 � C0) = 1 
DF (A0 � B2) = 4 DF (B0 � C1) = 2 
DF (A1 � B1) = 2 DF (B1 � C0) = 0 
DF (A1 � B1) = 4 DF (B1 � C1) = 1 
DF (A2 � B0) = 0 DF (B2 � C2) = 1 
DF (A2 � B2) = 2 DF (B2 � C3) = 2 
DF (A3 � B1) = 0 DF (B3 � C2) = 0 
DF (A3 � B3) = 2 DF (B3 � C3) = 1      (3) 
 

 
 

 

 
 
 
 
 
 
 

Fig. 3 Block diagram of FFT design techniques 

The technique for minimizing register is lifetime analysis 
[12] which analyzes the time for when a data is produced 
(Tinput) and when a data finally is consumed (Toutput). 
 
T input = u + PU          (4)  
T output = u + PU + maxv {D F (U→V)}       (5) 

 
where u is the folding order of U and PU is the number of 
pipelining stages in the functional unit that executes u. From 
(3) the 24 registers are required to implement the folded 
architecture. Lifetime analysis technique is used to design 
the folded architecture with minimum possible registers. For 
example, in the current 8-point FFT design, consider the 
variables y0, y1,. . . y7, i.e., the outputs at the nodes 
A0,A1,A2,A3 respectively. It takes 16 registers to 
synthesize these edges in the folded architecture. The linear 
lifetime table and lifetime chart for these variables is shown 
in Fig. 4 and Fig. 5. From the lifetime chart, it can be seen 
that the folded architecture requires 4 registers as opposed to 
16 registers in a straightforward implementation. The next 
step is to perform forward-backward register allocation. 

 

NODE Tinput���� Toutput 

yo 4�6 

y1 5�7 

y2 - 

y3 - 

y4 4�8 

y5 5�9 

y6 6�8 

y7 7�9 

 
Fig.4 Linear lifetime table  
 

 
 
Fig.5 Linear lifetime chart 

 

 
 
Fig. 6 Register allocation table.  

 
From the allocation table in Fig.6 and the folding equations, 
the final architecture in Fig. 7 can be synthesized and can be 
derived by minimizing the registers on all variables at once. 
The hardware utilization is only 50% in the derived 
architecture. This can also be observed from the folding sets 
where half of the time null operations are being executed, 
i.e., hardware is idle. The pipelined parallel FFT 
architectures are presented by using this methodology. 

FOLDING 
SETS 

FOLDING 
EQUATIONS 

RETIMING 
FOLDING 

EQUATIONS 

LIFETIME 
ANALYSIS 

REGISTER 
ALLOCATION 

FOLDED 
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Fig. 7 Folded architecture. 

 
III. PROPOSED ARCHITECTURES WITH COMPLEX 
INPUTS (CFFT) 

 
The proposed approach can be described using 

folding methodology [10].The 4-parallel 128-point FFT 
architecture can be derived using the following folding sets. 

 
A = {A0, A1, A2, A3}  A’ = {A’0, A’1, A’2, A’3} 
B = {B3, B0, B1, B2}   B’ = {B’3, B’0, B’1, B’2} 
C = {C1, C2, C3, C0}   C’ = {C’1, C’2, C’3, C’0} 
D = {D1, D2, D3, D0}  D’ = {D’1, D’2, D’3, D’1} 
 

The folded architecture can be derived by writing 
the folding equation [10] for the edges in the flow graph. 
The register minimization techniques and the forward and 
backward register allocation scheme [12] are applied to 
derive the architecture and then the final architecture can be 
derived. The 128-point FFT flow graph is based on radix-24 
algorithm which is decimated in time. To achieve the high 
throughput requirement with low hardware cost, both the 
proposed pipelining method and radix-2n algorithms are 
exploited in this design.  

The proposed 4-parallel 128-point FFT architecture 
is shown in fig.8. It consists of two parallel data paths 
processing two input samples. Each data path consists of 
seven butterfly units, four constant and two full complex 
multipliers, delay elements and multiplexers. The function 
of delay elements and switches is to store and reorder the 
input data until the other available data is received for the 
butterfly operation. The four output data values generated 
after the first stage are multiplied by constant twiddle 
factors (W1

8 = eij2π/8, W3
8 = eij2π3/8). These twiddle factors can 

be implemented efficiently using Canonic Signed Digit 
(CSD) approach. The outputs after the third stage are 
multiplied by the nontrivial twiddle factor.

Fig.8 Proposed 
128 point CFFT architecture based on radix-24 algorithm 

 
Another constant multiplier stage is required before 

the sixth butterfly stage. The CSD complex constant 
multiplier processes the multiplication of twiddle factors W8, 
W16, W24, W48. These twiddle factors correspond to cos (π/8),  
sin (π/8), and cos(π/4). 
 
IV. PROPOSED ARCHITECTURE WITH REAL INPUTS 

(RFFT) 
 
The proposed radix-24 4-parallel architecture is 

explained using N = 128 point FFT is shown in fig.9. 
Further, the folding sets can be modified to derive L-parallel 
architectures of any N-point RFFT.  

The radix-24 algorithm is described in detail in [8]. 
We can modify the flow graph similar to the other radices. 
The advantage of radix-24 algorithm is that it needs only one 
full multiplier every four stages. To derive the 4-parallel 
architecture divides the nodes into two groups. The nodes in 
the same group are processed by the same computation unit. 
Consider the following folding sets.  

 
A = {A0, A2, A4, A6} A’ = {A1, A3, A5, A7} 
B = {B1, B3, B0, B2} B’ = {B5, B7, B4, B6} 
C = {C2, C1, C3, C0} C’ = {C6, C5, C7, C4} 
D = {D3, D0, D2, D1} D’ = {D7, D4, D6, D5} 
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The mapping of nodes to different butterfly 
structures can be different in the case of  4-parallel 
architecture. The nodes {B4,..., B7} can be implemented 
with only a complex multiplier instead of BFIV structure, as 
these nodes consists of only complex multiplication 
operation.  

Three different butterfly structures are necessary to  
handle the real and complex data paths. Similar to radix-23 
architectures, complex multipliers need to operate on 
samples computed at different time instances. 

 
V. COMPARISON AND ANALYSIS 

 
A.) Complex FFT: 

 
A comparison is made between the previous 

pipelined architectures and the proposed ones for the case of 
computing an N-point complex FFT in Table 1. The 
comparison is made in terms of required number of complex 
multipliers, adders, delay elements, twiddle factors and 

throughput.  The proposed architectures can process 4 
samples in parallel, thus achieving a higher performance 
than previous designs. When compared to some previous 
architecture, the proposed design doubles the throughput 
and halves the latency. 

 
B.) Real FFT: 

 
The Table 2 shows the hardware complexity and 

the throughput of the previous architectures and the 
proposed ones for computing an N-point Real FFT. The 
hardware complexity of the architectures depends on the 
required number of multipliers, adders and delay elements. 
The performance is represented by throughput. The number 
of multiplier required in the radix-24 architecture is less 
compared to the previous designs. The proposed RFFT 
architecture leads to low hardware complexity.  

 
 

 
 
Fig.9 Proposed 128-point RFFT architecture based on radix-24 algorithm 
 
 
 
 

 
 

Table : 1 Comparison of Pipelined Hardware Architectures for the Computation of  N -Point CFFT 
  

ARCHITECTURE # MULTIPLIERS # ADDERS # DELAYS THROUGHPUT 

R2MDC 2(log4N-1) 4log4N 3N/2-2 1 

R2SDF 2(log4N-1) 4log4N N-1 1 

R22SDF (log4N-1) 4log4N N-1 1 

R23SDF (log8N-1) 4log4N N-1 1 

Radix-2   (4-parallel) 4(log4N-1) 8log4N 2N-4 4 

Radix-22  (4-parallel) 3(log4N-1) 8log4N 2N-4 4 

Radix-23  (4-parallel) log8N-1 4log4N 3N/2-2 2 

Radix-24  (4-parallel) 2(log16N-1) 4log2N N-4 4 
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Table : 2 Comparison of Pipelined Hardware Architectures 
for the Computation of  N -Point RFFT 

 
 
 

VI. CONCLUSION 
 

A novel four parallel 128-point radix-24 FFT architecture 
has been developed using proposed method. The hardware 
costs of delay elements and complex adders and the number  
of complex multipliers is reduced using higher radix FFT 
algorithm by using proposed approach. The throughput can 
be further increased by adding more pipeline stages which is 
possible due to the feed-forward nature of the design. The 
power consumption can also be reduced and leads to low  
hardware complexity in proposed architectures compared to 
previous architectures. The simulation can be done by using 
Modelsim software. A generalized approach to design 
efficient architectures for the computation of RFFT is also 
proposed. The approach can be extended to radix-25 and 
higher radix algorithms. Further higher parallel architectures 
can be developed using the proposed approach. 
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ARCHITE
CTURE 

#MULTIP
LIERS 

#ADD
ERS 

#DEL
AYS 

THROUG
HPUT 

R2MDC 2(log4N-1) 4log2N 2(3N/2-
2) 

1 

R2SDF 2(log4N-1) 4log2N 2(N-1) 1 

R22SDF (log4N-1) 4log2N 2(N-1) 1 

R23SDF (log8N-1) 4log2N 2(N-1) 1 

Radix-23(4-
parallel) 

2(log8N-1) 4log2N
-2 

< 2N 4 

Radix-24(4-
parallel) 

2(log16N-1) 4log2N
-2 

< 2N 4 
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