
Design of LNS based Approximate Multiplier 
using Mitchell’s Algorithm and Modified 

Operand Decomposition Technique 

Shanmugapriya. A G. Balachandran
M,E.VLSI Design,     Assistant Professor,
Department of ECE,     Department of ECE,

Jeppiaar Engineering College,  Jeppiaar Engineering College, 
Chennai,India.          Chennai,India.  

Abstract-In signal processing, multiplication is an  important 
operation  but slow and complex leading to more time 
consumption. LNS provides a suitable alternative for 
implementing multiplication operation. The LNS approximate 
logarithmic multiplier converts multiplications to additions by 
taking approximate logarithm and achieves significant 
improvement in reducing complexity and delay .Mitchell’s 
algorithm(MA) offers a simplest way of determining the 
logarithm and antilogarithm  however it suffers from certain 
loss of accuracy. The experimental results indicate that the 
value obtained by MA algorithm has an error percentage of 
6.66%. Our proposed decomposition design shows a 

significant improvement in terms of accuracy over the 
previous work that has been applied to  logarithmic 
multiplication. 

Keywords- Signal processing, LNS, MA , operand 

decomposition. 

I. INTRODUCTION

Multiplication is a significant process in DSP 
applications,these algorithms involve repetitive 
multiplications which require more time. In DSP 
applications, time is a crucial factor than accuracy. The 
quality of images which is crucial in digital image 
processing applications like medical imaging, satellite 
imaging ,biometric trait images etc., can be improved by 
multipliers. Lot of research is going on to optimize the 
multipliers in terms of speed, area and power or a 
combination of these parameters. The traditional 
multipliers use large amount of hardware and are power 
hungry. One of the alternate solutions is the 
implementation of LNS in multipliers. 
In all arithmetic operations the most hardware consuming 
components is multiplication due to partial products 
generation .This partial product generation can be avoided 
by LNS based Multiplication [9]. In LNS, repeated 
addition is the basis for multiplication. So adders are the 
building blocks for LNS. Multiplication is realized by 
computing logarithms of numbers represented in binary 
notation and then adding those values. Antilog value of the 
obtained sum is computed. The logarithmic multiplication 
is performed in three steps: (1) conversion of binary 
numbers into the logarithmic numbers, (2) addition 
operation, and (3) the antilogarithmic conversion of 
logarithmic numbers [14]. 
LNS multipliers are mainly classified into two types. They 
are look up table (LUT) based approach and Mitchell 
Algorithm (MA) based approach. MA approach is more 

popular than LUT due to less complex hardware which 
conserves area. Piecewise linear approximation of the log 
curve introduces significant percentage of error into the 
system. This error percentage increases relatively with the 
increase of number of ‘1’ bits in mantissa 
Mitchells algorithm for multiplication of two operands is 
simple. The logarithm of the input values are added then 
the antilogarithm is taken for the sum which is the final 
product. The accuracy degrades in this method due to the 
technique used to determine the log and antilog . The error 
in logarithm of Mitchells algorithm is in the fractional part. 
When fraction part of log is zero MA log value is same as 
actual log value . The error due to MA lies in the range of 0 
to 0.086 and the error is maximum when fractional part is 
0.44 
  Several methods have  been proposed to reduce error in 
Mitchells algorithm.In this paper , a new design based on 
modified operand decomposition technique is proposed to 
improve accuracy . The operand decomposition technique 
reduces the number of 1 bits in the decomposed operands 
which reduces the carry bits from mantissa to the integer 
during addition of log values.  

II. EXISTING SYSTEM

A. LOGARTHMIC MULTIPLICATION BASED ON
MITCHELLS ALGORITHM :

Mitchell proposed a very low cost , simple method to 
determine logarithmand antilogarithm using piecewise 
straight line approximation of the log curve. The steps 
involved in Mitchell algorithm are i) calculation of log 
values by shifting and counting operations, ii)  adding of 
the two log values, iii)determining the antilog of the two 
summed values. A zero detector is placed initially to check 
if any input value is zero to avoid the further computations. 
The drawback of MA is that the maximum worst case error 
is around 11.12% and average error is around 3.79%[2]. 
However there are certain advantages of MA which are 
reduction in power and area. It also enhances speed when 
applied in high speed applications. 
         Approximation of the logarithm and anti -logarithm is 
important and essential in determining the final output 
using MA. It can be determined from final representation 
of numbers[3]. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS050218
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 05, May-2019

373

www.ijert.org
www.ijert.org
www.ijert.org


N= (1+ ) 

= (1+x) 

Where p=place of the most significant bit with the value of 

1, is the bit value at the j-th position, x is mantissa and n 

depends on numbers precision. 
By logarithm of the product computation, 

(N1 .N2 )=p1+p2+ (1+x1)+ (1+x2) 

(1+x1) is approximated with x1, and log of the 2 

numbers product is expressed as a sum of characteristic 
numbers and mantissas. 

(N1 .N2 )≈ p1+p2+x1+x2. 

Antilog also uses the similar approximation, The final MA 
approximation for multiplication depending on one carry 
bit from sum of mantissas is given  by: 

(N1.N2)MA =  

MSB of product is determined by the sum of characteristic 
&sum of mantissa completes the final result. 

B. MITCHELL ALGORITHM: 
A,B:n-bits,P:2n -bits approximate product 

1. KA =LOD(A),KB=LOD(B) 
2. XA=A<<(n- KA -1),XB=B<<(n- KB-1) 
3. L =(‘0’&KA& XA[n-2...0])+(‘0’&KB&XB[n-

2…..0]) 
4. Charac = L[n+log(n)-1…….n-1], mant = L[n-

2…0] , S = Charac [log(n)] 
5. If S==‘1’ THEN// Large characteristic 

                  D=(‘1’&mant)<< 
                  ((‘0’&Charac[log(n)-    1…..0])+1) 
              ELSE // Small characteristic 
                  D = (‘1’&mant)>>(~char[log(n)-1……0]) 
      6. If Is-Zero(A,B) THEN// A or B are zero 
                    P = 0 
           ELSE 
                    P=D  
An example for multiplication of two numbers using 
Mitchell algorithm is given below: 
Let us consider two values ten (1010) and six(0110) n=4 by 
following the above explained Mitchell algorithm 
multiplication is carried out. 
A=1010 ; B=0110 ;n=4 
1. KA=0011;KB=0010 
2. XA=1010<<(n-KA-1)   

      =1010<<(4-3-1)   
      =1010                                                                                                   
XB=0110<<(n-KB-1) 

                   =0110<<(4-2-1) 
                   =1100 
 3.L = (0&KA&XA[n-2….0])+(0&KB&XB[n-2….0]) 
      = (0&11&1010[2:0])+(0&10&1100[2:0]) 
      =(011010)+(010100) 
      =101110 
4.Charac = L[n+log(n)-1…n-1]   
               =101110[4+(2-1)….3]    
               =101110[2:0]                                                        
               =101  
      mant= L[n-2…..0] 
              =101110[2:0]                            
              =110  

          S = Charac[log(n)]    
             =101[2]    
             = 1 
5.    S==1;  
         D =(1&mant)<<((‘0’&Charac[log(n)-1…0])+1) 
                 =(1110)<<(0101[1:0]+1) 
                  =1110<<(01+1) 
                 =111000 (56) 
The example of Mitchells algorithm given above indicates 
the result is approximate , in order to improve the accuracy 
modified operand decomposition can be used. 
 

III. PROPOSED METHOD 
The existing  does not provide anacceptable a trade-off 
between the accuracy, speed, and complexity. The 
Improved Operand Decomposition (IOD) is proposed to 
quantify the trade-off. 

A.MODIFIED OPERAND DECOMPOSITION 
TECHNIQUE: 
Consider two n-bit numbers X and Y of the form: 
X=xn-1xn-2…………..x2 x1 x0  and 
Y=yn-1yn-2…………..y2y1y0. 

 

The operands X and Y are compared and the greater 
number is considered as X1and the other operand is 
considered as X2. 
 
The operands X1 and X2 are decomposed into A and B by 
the formula given by 
A=X1&X2 
B=~X1&X2 
The product is then computed from the decomposed 
operands by using the following equation: 
X*Y={(X1*A)+(X1*B)} 
By using the modified OD  the accuracy of  Mitchell’s 
algorithm can be improved with an improvement in the 
area, delay, Area Delay Product (ADP) and power 
consumption. 
 
B.ALGORITHM FOR LOGARTHMIC MULTIPLICATION 
USING MODIFIED OPERAND DECOMPOSITION 
TECHNIQUE: 
Let X and Y be the inputs of n-bits 
 
Step1: Compare X and Y and assign the greater number as 
X1and smaller number as Y1 
Step2: Calculate A and B 
           Where A=X1&Y1; B=~X1&Y1 
Step 3: Calculate Ox-leading 1 bit in input x. 
Step 4: Calculate Oa and Ob -leading 1 bit in decomposed 
operands A and B respectively. Ox,Oa,Ob determines the 
characteristic part of X,A,B. 
Step 5: Assign Mx-bit next to leading 1 bit in x 
Step 6: Assign Ma, Mb -bit next to leading 1 bit in A and 
B. Mx, Ma, Mb determines the mantissas of X, A and B. 
Step 7: Log X=Ox.Mx        Log A=Oa.Ma         Log 
B=Ob.Mb 
Step 8: Sum 1= Log X+ Log A 
            Sum 2= Log X+ Log B 
 Step 9:Assign Fxa=1 append mantissa of sum 1 after this 
bit, assign Fxb=1 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS050218
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 05, May-2019

374

www.ijert.org
www.ijert.org
www.ijert.org


  append mantissa of sum 2 after this bit. 
Step 10: If A or B is zero output is zero 
              Product of X and Y is Fxa+Fxb. 
 
An example for multiplication of two numbers using 
Mitchell algorithm is given below: 
Let us consider two values ten (1010) and six(0110) n=4 . 
Step1:X1=1010; Y1=0110 
Step 2: A=0010; B=0100 
char and mantissa: 
Ox=011 Oa=001   Ob=010 ; Mx= 010  Ma=000   Mb =000 
Log values: 
 
Log X=011.010   Log A=001.000   Log B=010.000 
 
Sum 1=100.010   Sum 2= 101.010 
 
Fxa=00010100    Fxb=00101000 
 
Product=00111100(60) 
 
 
C.ARCHITECHTURE FOR LOGARTHMIC MULTIPLIER 

USING MODIFIED OPERAND DECOMPOSITION: 
The fig.1 has major blocks such as comparator, multiplexer 
, operand decomposition  and Mitchell algorithm. 
The comparator is accurate and determines the greater 
input value . The comparator output is used as selection 
line of the multiplexer. Then the operands are decomposed 
which consists of basic AND , NOT  gates. Each MA block 
consists of leading one detector,  Encoder , Left barrel 
shifter ,Right barrel shifter and zero detector. The zero 
detector checks if any input to MA is zero , if so then the 
output value of MA block is zero. Finally a ripple carry 
adder adds the values of the MA blocks to give final 
product. 

 
Fig.1 Architecture of logarithmic multiplier using modified operand 

decomposition technique 

IV. RESULTS AND DISCUSSION: 
The accuracy of MA has been significantly improved by 
adopting modified decomposition technique.  
The proposed operand decomposition based Mitchell 
algorithm is implemented on FPGA spartan 6 and the 
algorithm is described by using verilog HDL language 
.xilinx ISE and model sim have been used for synthesis and 
simulation. The simulation result of Mitchell algorithm by 
adopting operand decomposition is shown in fig .2 and 
fig.3.  

 
Fig.2 Output for MA with A=1010(10) and B=0110(6) 

 

 
Fig.3 Output of modified operand decomposition with x=1010 and 

y=0110 

 
The error can be analysed by APE average error percentage 
AEP can be calculated by, 

AEP=  

where Epi is the error percent and N is the no of 
multiplications performed  
The AEP for N=8 in Existing MA is about 3.77 % and the 
AEP for N=8 in proposed decomposition technique is 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS050218
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 05, May-2019

375

www.ijert.org
www.ijert.org
www.ijert.org


about  1.6 % which clearly indicates the improvement in 
accuracy. The average error percentage for different 
multiplicand widths is given in table below which indicates 
the reduction of error in the proposed operand 
decomposition technique 

Table I    AEP for different multiplication widths. 

V. CONCLUSION: 
Thus a modified operand decomposition approach , 
algorithm for modified operand decomposition and an 
architecture for Mitchells algorithm based multiplier is 
proposed. The results indicate an improvement in  area , 
power , and delay. The advantage in terms of accuracy is 
also observed. Applying operand decomposition as pre-
processing step improves accuracy. Operand 
decomposition , does not require addition of correction 
term hence it can be easily combined with other methods to 
improve accuracy. 

VI. REFERENCES: 
 

[1] Siti Zarina Md Naziri, Rizalafande Che Ismail, Ali Yeon Md 
Shakaff, The Design Revolution of LogarithmicNumber System 
Architecture, IEEE international conference on Electrical, 
Electronics and System Engineering,(2014), pp. 5-10. 

[2] A. Klinefelter, J. Ryan, J.Tschanz , B.H. Calhoun, Error-Energy 
Analysis of Hardware Logarithmic Approximation Methods for 
Low Power Applications, IEEE International Symposium on 
Circuits and Systems,(May(24-27))(2015), pp.2361-2364. 

[3] L. K. Yu, D. M. Lewis, A 30-b Integrated Logarithmic Number 
System Processor, IEEE Journal of Solid StateCircuits, 
26(October)(1991), pp. 1433–1440. 

[4] F.J. Taylor, R. Gill, J. Joseph, A 20 Bit Logarithmic Number 
System Processor, IEEE Trans. Computers,37(February)(1988), pp. 
190-200. 

[5] I. Kouretas, C. Basetas, V. Paliouras , Low-power Logarithmic 
Number System Addition / Subtraction andThseir Impact on 
Digital Filters, IEEE Transactions on Computers, 62 
(November)(2013), pp. 2196–2209. 

[6] J.N. Mitchell, Computer Multiplication and Division using Binary 
Logarithms, IRE Trans. Electronic Computers, 11(August) (1962), 
pp. 512-517. 

[7] D. K. Kostopoulos, An Algorithm for the Computation of Binary 
Logarithms, IEEE Transaction on Computers,40(November) 
(1991), pp. 1267–1270. 

[8] H. Fu, O. Mencer, W. Luk, FPGA Designs with Optimized 
Logarithmic Arithmetic, IEEE Transactions onComputers, 59, 
7(July) (2010), pp. 1000–1006. 

[9] H. Fu, O. Mencer, and W. Luk, “FPGA Designs with Optimized 
Logarithmic Arithmetic.” IEEE Transactions on Computers, Vol. 
59, No. 7, pp. 1000–1006, July 2010. 

[10] Patricio Bulic, ZdenkaBabic , AleksejAvramovic. An Iterative 
Logarithmic Multiplier. Microprocessors and Microsystems 35 
(2011) 23 – 33 , Elsevier  

[11] JérémieDetrey, Florent de Dinechin, A VHDL Library of LNS 
Operators, The Thrity-Seventh AsilomarConference on Signals, 
Systems & Computers, 2(Nov. (9-12)) (2003), pp. 2227 – 2231. 

[12] K. Johansson, O. Gustafsson L. Wanhammar, Implementation of 
Elementary Functions for LogarithmicNumber Systems, IET 
Computer & Digital Techniques, 2, 4(April) (2008), pp. 295–30. 

[13] Julien Le Maire, Nicolas Brunie, Florent De Dinechin, Jean-Michel 
Muller, Computing floating-pointlogarithms with fixed-point 
operations, IEEE 23rd Symposium on Computer Arithmetic, Santa 
Clara, United States(July)( 2016). 

[14] V. Mahalingam, N. Rangantathan, Improving Accuracy 
inMitchell's Logarithmic Multiplication UsingOperand 
Decomposition, IEEE Trans. Computers, 55(December)(2006), pp. 
1523-1535. 

 
 

AEP Mitchells algorithm Modified OD 

4 - bit --- 1.627 

8 - bit 3.76 1.65 

16 - bit 3.91 2.10 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS050218
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 05, May-2019

376

www.ijert.org
www.ijert.org
www.ijert.org

