Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

Design of High Speed Low Power Viterbi Decoder
to Improve The Performance using Trace Back
Architecture

Unnimaya.A.P
Student(M.Tech)
Department of Electronics and Communication,
T.John Institute of Technology,
Bangalore, Karnataka, India,

Abstract—this paper deals with high speed, low power
viterbi encoder and decoder architecture designs. Convolution
(Viterbi) encoder uses the trellis diagram for the encoding and
the viterbi decoder is designed to decode the encoded data. The
main aim of this paper to understand the viterbi algorithm and
design the encoder and decoder with constraint length7 and
code rate .

Keywords—Covolution encoder, Trellis diagram, Viterbi
algorithm, Viterbi decoder, Verilog HDL

l. INTRODUCTION

The Viterbi algorithm, proposed in 1967 by Viterbi, is an
efficient decoding algorithm for decoding the convolution
codes and it is widely used in communication systems. The
reliability and efficiency of data transmission is one of the
concerning issue for communication channels. In
communication systems error correction technique plays an
important role. Viterbi decoding has a fixed decoding time
and it is well suited for the implementation of hardware
decoder. Viterbi algorithm can reduce the decoding speed and
also the overall area can be increased. By using this decoding
technique the overall power can be reduced and also the
number of computation should be reduced. Convolutional
codes are non blocking codes that can be designed to either
error detecting or correcting. Convolution coding has been
used in communication systems including wireless
communication and deep space communication. At the
receiver end using Viterbi decoder the original sequence is
obtained from the received data. It implements Viterbi
algorithm which is a dynamic programming algorithm, based
on the minimum cumulative hamming distance it decides the
optimal trellis path that is most likely followed at the encoder.

II. CONVOLUTION ENCODER

Convolutional codes encoding can be accomplished using
simple registers. The fundamental working principal of a
convolution encoder is that the encoder performs a
convolution of the input stream with encoder’s impulse
response. In convolutinal encoder, the message sequence
continuously runs through the encoder unlike in the block
coding schemes where the message is first divided into long
blocks and then encoded. Convolutional coding correlates

Narayana Swamy.R
Associate Professor
Departrment of Electronics and Communication,
T.John Institute of Technology,
Bangalore, India

information elements by means of exclusive-or(XOR)
resulting in the

operation, increases of transmission

redundancy.

First outpﬁ!

Second output

Figure 1. Convolution encoder for constraint length(K)=7, bit
rate(r)=1/2

The block diagram of a convolution encoder is
shown in Figure 1. To generate the output, the encoder
uses 7 values of the input signal. The set of values of
input data in the shift register is called the constraint
length. Each set of outputs is generated by XOR ing a
pattern of current and shifted values of input data. In this
paper for a convolutional encoder, the following notations
are used.

¢ = number of output bits.

X = number of input bits entering at a time.
m= number of stages of shift register.

L = number of bits in a message sequence.
Constraint Length: K =(m+1) digits.

Bit rate: r = x/c

Graphically there are three ways to understand
operation of the encoder. These are state diagram, tree
diagram and trellis diagram.

A. State Diagram

Operation of a convolution encoder can be described by a
state diagram. The state of the encoder is defined as the

Volume 3, | ssue 19

Published by, www.ijert.org 1

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

content of its shift register. Each ‘X’ new bit input results in a
new state. For one bit entering the encoder there are 21 = 2
possible branches for every state. If the Constraint length k=7,
then size of the shift register would be m=6 which results in
2m states. Therefore 26 = 64 states are named from S0 to S63.

(" ooooon

e 100000

010000 A 110000 =
001000 101000 5
011000 o

/"l "_"-,s*
At Catn o >
TN .)

b
. b N
P
SHC oo D8N
3 v
s

001100

g/
g

aooo10
010010

001010

NS
RN N

9% =\

gﬁgzﬁgo%* 20

o
9
_i.‘gj‘

000001
010001

001001

el

o

S oer)
V-

«

000101

" 1 - '\ \ B '
a ES b i i
e A , Y g
AN ¢ g

Figure 2. State diagram of K=7, r =1/2 convolution encoder

State diagram is shown in figure 2. Here all the 64 states
are represented and labeled as S0,S1....S63. Consider the state
SO (000000) with ‘0* input, the shift register remains at same
state SO and is shown as a dotted loop starting from SO and
ending at SO. With ‘1’ input, the shift register moves to state
S1 (100000) and is shown as a solid line starting from S0 and
ending at S1. To make easy for tracking the transition two
different types of lines are used. Solid line represents the
transition when the input bit is ‘1’ and dotted line represents
the transition when the input bit is ‘0’.

B. Tree Diagram

In the state diagram shown in Figure 2.1t is very difficult
to follow the paths because too many paths leads to confusion
hence for better understanding state diagram can be re-drawn
as ‘code-tree’. It is better than a state diagram but still no
preferred approach for representing convolutional code. If the
input is a ‘0’, then the upper path is followed and if the input
is a ‘1, then lower path is followed, the circles represent the
‘node’ and lines represent the ‘branch’. The output code [C (1)
C (2] for each input is shown on the branches.

/N
’I"‘::
f
25

Consider the input sequence 10110110 as the input to the
convolution encoder, and then the code tree for the above
input is as shown in Figure 3.

110000

000000

50

10

/ N :

s54
\ 101006
\ £ ~s
[> 522
\ Y v
00 oio100
010000

52

001000

Figure 3. Code Tree for the input 1011011

C. Trellis Diagram

Trellis diagrams are little complex than state and tree
diagram still they are more preferable for the higher constraint
length. When a sequence of date is received from the channel,
it is required to estimate the original sequence that has been
sent. The process of identifying original message sequence
from the received data can be done using the diagram called
“trellis’.

{

A trellis is a graph whose nodes are ordered into vertical
slices (time), and with each node at each time connected to at
least one node at an earlier and at least one node at a later
time. The earliest and latest times in the trellis have only one
node. Figure 4 shows the trellis diagram representation of

0
01

0(00) _@@

= -
- =

1
00

1
10

1
01

Input: 1
Output: 11

- U(u_u_w) @

KE!J

0
10

0
11

e’

@

Figure 4. Trellis Diagram representation of encoding process

Ill. VITERBI DECODER

There are two categories to decoding convolutional codes.
These are maximum likelihood decoding and sequential
decoding based on Viterbi algorithm and Fano algorithm
respectively. Viterbi decoder uses the Viterbi algorithm for
decoding a bit stream that has been encoded using Forward
error correction based on a convolutional code. Figure 5
shows the block diagram of Viterbi decoder.

Volume 3, | ssue 19

Published by, www.ijert.org

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

‘m

SURVIVOR PATH
METRIC

TRACEBACKAND
OUTPUT DECODE
BLOCK

Figure 5. Block diagram of Viterbi Decoder
The basic units of viterbi decoder are
a). Branch Metric Unit (BMU).
b). Add Compare and Select Unit (ACS).
¢).Survivor Memory Management Unit.
d).Trace Back Unit (TBU).

A. Branch Mertic Unit (BMU)

In this unit hamming distance computation is done. This
unit compares the received codes with expected codes of the
current state and calculates the hamming distance between
them.

The Branch Metric (BM) unit is used to calculate branch
metric for all trellis branches from the input data. It is
transition metric unit and its function is to generate
corresponding merit of skip branch according to the input
code sequence. The generated sequence merit is delivered to
Add Compare Select (ACS) unit, completing the process as bit
calculation. Then Branch Metric (BMs) are fed into the ACS
unit.

B. Add Compare Select Unit (ACS)

Add Compare Select Unit recursively computes path
metrics and outputs decision bits for each state transition. The
Add Compare Select module not only receives the code
sequence from the BM module, but needs the path merit of
last state and information related to state shift. It is necessary
to calculate the sum of branch merit and path merit firstly,
and then select the smallest path merit. For a given code with
rate 1/n and total memory (M), the number of Add Compare
Select (ACS) required to decode received sequence of length
L is Lx2wm.

An Add Compare Select (ACS) module is shown in
Figure 6. The two adders compute the partial path metric of
each branch, the comparator compares the two partial
metrics, and the selector selects an appropriate branch.

Patk
MatricC Surviving Bit-

To
——» ADDER
Branch } 1
Matric C
]
COMF, -l —
X Updated
let!'
etric
—= ADDER 4+
Branch
Metric - _—
Patk
T Metric

Figure 6. Add Compare Select Unit (ACM)

C. Survivor Memory Unit

Survivor Memory Unit is used for storing the survivor
path values of the Add Compare Select (ACS) modules. Each
stage there are 64 survivor paths and number of such stages
vary depending on the length of encoded bits received.
Another memory is reserved for trace back depth which
defines the maximum number of stages that is allowed during
the decoding process.

D. Trace Back Unit

Once the minimum path metrics (PM) of all the nodes at
each stage is calculated, the minimum path metric(PM) at the
last stage is found. The node having the minimum path
metrics at the last stage is given as input to Trace Back Unit
(TBU) and then it starts trace backing the survival paths from
that node and outputs the corresponding bit which has caused
the transition of that path. Figure 7 shows the Trace back
procedure of optimal path.

C

S .
by Vo rpa!}
1

Figure 7. Trace back procedure of optimal path.

E. Trellis Diagram

The original message sequence is encoded following a
path which has to be determined at the decoder part of the
receiver to get the original message sequence from the
encoded data. For the representation of this path a ‘trellis
diagram’ is used. Figure 8 shows the viterbi decoding
process.

Volume 3, | ssue 19

Published by, www.ijert.org 3

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
|ICESMART-2015 Conference Proceedings

Decision:11 10 11

Receive: 11 11 1
c B B 7]
D
BN

L
7
&

1) @ Output: 1011100

Figure 8. Viterbi Decoding Process

{10

F. Viterbi Algorithm

In 1967 A.J Viterbi proposed an algorithm as an
‘asymptotically optimum’ approach to the decoding of
covolutional codes. Viterbi decoding is based on the
maximum likelihood (ML) decoding algorithm. Maximum
likelihood decoding means finding the code branch in the code
trellis that was most likely to be transmitted. Maximum
likelihood decoding is based on calculating the hamming
distances for each forming encode word. Most likely path
through the trellis will maximize the metric. Viterbi algorithm
performs maximum likelihood decoding by reducing its
complexity. It eliminates at least likely trellis path at each
transmission stage and reduce the decoding complexity.
Viterbi algorithm gets its efficiency via concentrating on
survival paths of the trellis. VA is an optimum algorithm for
estimating the state sequence of a finite state process.

G. Results

The Convolution encoder Viterbi Decoder for constraint
length 7 and bit rate %2 has been developed. Figure 9 shows
the output of the encoder.

Input=1001010
Output=11011111010001

1101111101

1101111101

Figure 9. Output Waveform of the encoder

Considering the effects of noise suppose if the
encoded data is corrupted then also decoder should be able to

retrieve the original message sequence. Figure 10 shows the
output of decoder if the error has occurred in the sequence.
a) Input=11111111010001
Output=1001010
b) Input=11011011010001
Output=1001010
c) Input=11011111110001
Output=1001010

0lolo0l

b B paths:0] Jootoo

0101001

Figure 10. Output waveform the decoder

ACKNOWLEDGMENT

We take this opportunity to express our deepest gratitude
and appreciation to all those who have helped us directly or
indirectly towards the successful completion of this paper.

REFERENCES

[1] Wei Chen, “RTL Implementation of Viterbi Decoder,” Master’s thesis,
Linkoping Uni. Rep, pp.6-25, 2006.

[2] Samirkumar Ranpura and Dong Sam Ha, “Low- Power Viterbi
Decoder Design for Wireless Communications Applications,” Int.
ASIC conference, Sept. 1999, Washington, D.C.

[3] B. Sklar, Digital Communications: Fundamentals And Applications,
Prentice-Hall, 2nd Edition, 2002.

[4] Nirmal bhatt, ProfMilind Shah,Prof.Bhavesh Asodariya, “Fpga
Implementation of power efficiency low latency Viterbi decoder”,
IJERT May-2013.

[5] G.Feygin and P.G.Gulak, “Survivor Sequence memory management in
viterbi decoders,” CSRI Tech.Rep.262, Univ.of Toronto, Jan1991.

[6] Z. M. Patel, “VLSI implementation of IEEE802.11a Physical layer
baseband”, M.Tech Dissertation, IITB, Powai. 2009.

[71 R C S Morling and N Haron, “Novel Low-Latency Low-Power Viterbi
Decoder Traceback Memory Architecture,” |IEEE MELECON,
Dubrovnik, Croatia, May, 2004.

[8] S.W.Shaker, S.H.Elramly, K.A.Shehata, “FPGA Implementation of a
Viterbi Decoder for WiMAX Receiver,” International Conference on
Microelectronics(ICM), Marrakech, 2010.

[9] Sang-Ho Seo, and Sin-Chong Park, “Low latency and power efficient
VD using Register Exchanged state- mapping Algorithm,” Proceedings
of the 9th International Database Engineering & Application
Symposium (IDEAS’05).

[10] Viterbi A. J. “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm,” IEEE Transactions on
Information Theory13 (2): 260-269, April, 1967.

Volume 3, | ssue 19

Published by, www.ijert.org 4

