
“ Design Of High Speed Floating Point Mac Using Vedic Multiplier And
Parallel Prefix Adder”

Dhananjaya A 1 Dr. Deepali Koppad
2

Student IETE Member,Associate Professor
Mtech VLSI Design and Embedded SystemRVCE-Bangalore

ABSTRACT

Signal processing is a very hardware sensitive

application hence to create high speed data processing

systems like 3D rendering, 4G mobile internet, etc., we

need better chips with high performance data path units and

there is a growing need for research on alternative methods

for signal processing hardware implementation. In most of

DSP systems Multiply-Accumulate(MAC)is one of the

main functions. The performance of the systems depends

on the performance of the MAC units in place. More over

these days real time signal processing systems require high

through put and high performance MAC unit. In this work,

an attempt is made to enhance the performance of the MAC

unit using Urdhvatiryegbhyam sutra of the ancient Indian

multiplication techniques and parallel prefix adder. In

ancient times, this technique was used for decimal

multiplication. There is not much clarity on.if this

multiplier is best suited for high speed multiplication

purpose in MAC units and in general, for VLSI

implementation. Properties of the multiplication in concern,

is studied, implemented, characterized and compared with

convention multiplication techniques on the FPGA

platform. Thus, a floating point MAC unit is designed and

implemented using this technique and tested using different

FPGAs like Spartan – 3E, Spartan-3A and vertex-2pro

using Xilinx 13.2 ISE tool

Key Words:Vedic Multiplier, Single Precision

Floating point, MAC,Kogge‟s stone adder

I. INTRODUCTION

Because of the high-precision, great dynamic

range and easy operating rules, floating-point operations

have found intensive applications in various fields that

require high precision. In modern day computers, floating-

point arithmetic operations are mainly performed by the co-

processors. In systems without floating-point hardware, the

CPU emulates it with a series of simpler fixed-point

arithmetic operations that run on the integer arithmetic and

logical unit [1,2].This saves the added cost of a floating-

point unit (FPU) but is significantly slower. Coprocessors

cannot fetch instructions from the main-memory, perform

I/O, manage-memory and so on. These processors require

the host main processor to fetch the coprocessor

instructions from the memory and handle all operations

aside from the coprocessor functions. High processor

speeds demand high coprocessor operation speed.

High-Level Synthesis (HLS) is an emerging

technology that synthesizes algorithms represented in high

level languages (ANSI-C, Matlabetc) into an effective

hardware (RTL). This is achieved by HLS compiler that

analyses high level language features such as arithmetic

resources, loops, branches and maps them into optimized

hardware for data path and control elements. Arithmetic

resources operate on both integer and real data. Most of the

communication/DSP algorithms commonly use either real

or integer operations. These algorithms can be easily

represented in high level languages as they contain rich set

of data types. Conversion of these algorithms (with real

and integer arithmetic) into optimum hardware requires

mapping of each operator to an effective hardware

resource. As arithmetic operation on real operands is

complex over integer operands, design and implementation

of optimum hardware resources for real arithmetic is a

challenging task. Integer arithmetic resources in-general,

consume negligible hardware and can be freely used in the

HLS synthesis process. Real arithmetic can be done either

by fixed or floating-point methods. Fixed-point method is

better in hardware performance than floating-point method,

but the precision of operations and range of numbers that

can be handled are limited. On the other hand, floating-

point method offers high-precision and a great dynamic

range at the expense of hardware-requirement and latency.

Floating-point arithmetic resources alone consume 50 to 70

percent of the total hardware.

The hardware requirement in case of floating-

point arithmetic or logical operation is high because of high

complexity. The reason for high complexity is that, that

every floating-point operation is divided into three stages

namely; pre-normalization, arithmetic-operation and post-

normalization; each of these stages in turn include a

number of arithmetic and logical operations. Also, each

floating-point operand is first divided into three parts

namely sign, exponent and the fraction; which are then

separately operated in each of the above mentioned stages.

On the other hand, the operations on integer operands do

not require grouping or normalization hence, are relatively

less complex.

There are lots of similarities with respect to the

resources being used in the architectures of floating-point

addition, subtraction and multiplication. For example,

concatenation of hidden-bits to the fraction-bits, addition or

subtraction of exponents in the pre-normalization stage,

shifting in the post-normalization stage are some of the

common operations.

In this thesis, the similarities of different floating-

point arithmetic operations are explored to implement a

High Speed Floating Point Multiply Accumulate Hardware

architecture based on Vedic multiplier and Kogge‟s stone

adder , resulting in a decrease in the amount of hardware

(number of LUTs) and logical delay. In other words, the

amount of hardware used in the MAC architecture is found

3359

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS61007

to be less than the hardware required in floating-point units

based Wallace, Braun , Serial Parallel and array multiplier.

A large number of arithmetic and logical components are

required in the design of any floating-point unit, the same

holds good for the design of unified floating-point

hardware architecture. To make sure that the most

optimized architectures of individual components are used;

architectures of all individual arithmetic and logic units are

explored and the performance with respect to area and

speed is found. The architectural explorations include:

Kogge-Stone Adder, Carry-ripple adder, Carry-look-ahead

adder, Wallace-Tree multiplier, Serial -Parallel Multiplier,

Braun multiplier, Array Multiplier, and Barrel shifter.

It is found that the Floating-Point MAC

Architecture results in an improvement in latency by a

factor of 3 and an improvement in area (number of LUTs)

by a factor of 1.5 as compared to the Wallace and array

based floating-point MAC units.

II RELATED WORK:
Similar work was presented [1][2] for mac in

which they used, array multiplier and modified booth

multiplier which is not so fast method and in the base work

they have not considering floating point number . In a

MAC unit multiplier are the essential block that determine

the combinational path delay and area required to

implement the hardware, so in this project we used high

speed and area optimized multiplier i.e Vedic multiplier are

being used . Mainobjective of this work is to design a unit

at RTL level that is capable of handling floating-point

addition, subtraction and multiplication of single-precision

by replacing it with a new type of multiplier based on

Urdhva tiryakbhyamand the adders are replaced by the

Kogge-Stone adders in the sparse mode. Using SPFP-unit

new floating point MAC is build and characterizes on

FPGA and further, investigates the new MACs feasibility

for handling signed numbers and floating point values. It

should also be able to handle various exceptions like not-a-

number, infinity and overflow. The new MAC is

implemented on an FPGA for hardware proof and

characterization and evaluate MAC performance on FPGA.

III.DESIGN METHODOLOGY

Multiplication is an important fundamental

function in arithmetic operations. Multiplication-based

operations such as Multiply and Accumulate(MAC) and

inner product are among some of the frequently used

Computation- Intensive Arithmetic Functions(CIAF)

currently implemented in many Digital Signal Processing

(DSP) applications such as convolution, Fast Fourier

Transform(FFT), filtering and in microprocessors in its

arithmetic and logic unit . Since multiplication dominates

the execution time of most DSP algorithms, so there is a

need of high speed multiplier and in many DSP algorithms,

the multiplier lies in the critical delay path and ultimately

determines the performance of algorithm. Currently,

multiplication time is still the dominant factor in

determining the instruction cycle time of a DSP chip. So in

this project we try to minimize the critical path delay of

multiplier using vedic mathematics concept and finally

MAC is implemented to evaluate the performance.

III. aVedic Multiplier (Urdhav-Triyak method)
The multiplier A[n] is of size „n‟ words and the

multiplicand B[m] is of size „m‟ words, where A and B are

given by equation 1 and 2.[4]

A n = Ai ∗ Xi

n−1

i=0

……… . . 1

B m = Bi ∗ Xi

m−1

i=0

……… . (2)

Product of A and B is given by equation 3.

P[n+m]=A[n]* B[m]……… . . 3

 CP[0,0, i] ∗ Xi−1
n

i=1
+

 CP[0, j, n] ∗ Xj+n−1
n−1

j=1
+ CP[k, k +

n−1

k=1

m − n, n − k] ∗ Xm+k+1 +……..

Where

CP[n, m, q] = Ai ∗ Bj

q+n−1

i=n

……… . . 4

Equation 4 gives the cross-product of two

numbers. Where j = (m+ n + q - i -1).Figure 1 shows

the N XN Vedic Multiplier with Parallel prefix

adder.The NxN bit multiplier is structured using

N/2XN/2 bit blocks as shown in Figure 1. In this

figure the N bit multiplicand A can be decomposed

into pair of N/2 bits AH-AL. Similarly multiplicand B

can be decomposed into BH-BL. The 2Nbit product

can be written as: P= A x B= (AH-AL) x (BH-BL)

III b. Floating Point Adder Architecture
 In FP adder Architecture shown in Figure 2and the

inputs go through the several stages that is discussed

below

1. Pre-processor:This component will take the floating point

input. Detect whether the number is Nan (Not a number),

„0‟, infinity and denormalized.
2. Floating Point Alignment:This component aligns the mantissa

of the inputs according to their exponents and prepends leading 1
3. Mantissa Adder: which adds (subtracts) the aligned mantissa,

determines presticky bit (or of discarded mantissa)

4. Normalizer: Finds the leading one and shifts it to the front
producing a normalized sum. Determines if result is de-normal and

does proper de-norm shifting. Also calculates round, and sticky

bits as well as whether the sum is 0 or inexact.
5.Rounder: This component rounds normalized mantissa

according to selected rounding mode and calculates the final

exponent.

6. Finalizer: This component finally assembles all the pieces and

uses special case information to determine correct final result. Also

determines all exception flags.

3360

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS61007

Figure1 :N X N Vedic multiplier

:

Figure 2: Floating Point Adder Architecture

III c. Floating Point Multiplier Architecture
Multiplication is one of the operations which

require more number of steps in computation [9]. However,

floating point multiplication is somewhat simpler than

addition to implement because the significands are

represented in sign- magnitude format, which is similar to

the integer format. In FP Multiplier Architecture shown in

Figure 3 and the operation of multiplication discussed

below:

1.Preprocessor: This component will take the floating

point input. Detect whether the number is Nan (Not a

number), „0‟, infinity and denormalized.

2. Pre-normalizer: A normalized number is passed as it is

by appending a 1 in the MSB.In case, any number is

detected to be denormalized in the previous stage, then they

are normalized here.

3. Multiplier: Here the product is calculated. If the product

is having its MSB (or 48th bit) as a 1, then overflow is said

to have occurred & this is indicated in a variable.

4. Exponenter:In this stage, the exponent of the result is

calculated using the following formula:

Exponent_result = exponent_of_a +

exponent_of_b – 127.

5. Shifter:From the exponent obtained above, see if the

shifting needs to be done in this stage.If yes, then look at

how much amount of shifting is to be done for the obtained

product. Also indicate whether there is any loss in the

precision because of the shifting.If no shifting is needed,

then transfer the product as it is.

6. Rounder: Firstly the MSB of the product obtained from

the above component is taken. Here we check the rounding

modes as given in the last 2 bits of the control input & then

round off the product according to the following:

00 = RN; 01 = RZ; 10 = RP; 11 = RM

7. Flagger:This component is used to indicate whether

there is an overflow, underflow or inexact result after

rounding.

Figure 3: Floating Point Multiplier

Architecture

III d. Floating Point MAC Architecture

A basic MAC architecture consists of

multiplier and an accumulate adder organized as in

figure. The MAC unit computes the product of two

numbers and addsthe product to an accumulator

register. The output of the register is fed back to one

input of the adder as shown in figure. On each clock,

the output of the multiplier is added to the register. It

is known that combinational multiplier require a large

amount logic, but can compute a product much

quickly than the conventional method of shifting and

add.

Overflow occurs when the number of Mac operations

large. It is noteworthy to mention here that overflow

in a signed adder occurs when two operands with

same signal produce a results with a different signal

from them. In this situation, the largest value (+ve or

-ve) should be assigned to the result obtained. To be

more specific, if eight bits are used to encode the

values the addition of two numbers must fall in the

interval from 0 to 127. On other hand, the addition of

3361

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS61007

two negative numbers must fall between -128 and -1.

This is considered in our design approach.Floating

Point MAC Architecture is shown in Figure 4

IV. Simulation Results and Discussion

The resultis grouped in Table 1 and Table 2

show the difference in combinatonal delay between

various flaoting point adder and multiplier scheme.

Table 3 show the performance of SPFP MAC units in

term of delay, device utilization (number LUT‟s

used) and maximum operating frequency. the highest

performancefor all FP adder and multiplierare seen

on the device spartan 3A with a speed grade of -

4.The results suggest that the MAC design using

Vedic matchematics is an exterem faster MAC and

well ahead than other conventinal multiplier.

Simulation results and graphs show below in

Figure(5),(6)(7),8(a),8(b)respectively

Figure 4: Floating Point MAC Architecture

Figure 5: Simulation results Single precision

floating point Adder/Subtractor

Figure 6: Simulation results Single precision

floating point Multiplier

Figure7: Simulation results Single precision

floating point MAC

Table 1: Synthesis result of Single Precision

Floating Point Adder/Subtractor on Spartan 3A-

XC3S500E

Table 2: Synthesis result of Single Precision

Floating Point

 Multiplier on Spartan 3A-

XC3S500E

3362

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS61007

Table 3: Synthesis result of Single Precision

Floating Point MAC on Spartan 3A-XC3S500E

Figure 8(a): Delay Comparison of Various SPFP-

MAC

Figure 8(b): Device utilization of Various SPFP-

MAC
V.CONCLUSION AND FUTURE WORK

The proposed floating point MAC based on

Vedic mathematics based kogges stone adder proves to be

highly efficient in term speed. Due to its regular and

parallel structure , it can be realized on silicon as well. The

benefit of using kogges stone adder is its high operational

speed with higher number of bits. Pipelining the structure

will improvise the performance by greater extent, can be

enhanced to double precision and adjustable precisions

also. Accumulator can be improvised to hold larger and

more precise values, extra logic would be necessary to cope

with increasing accumulator size.Precise power estimation

can be done

REFERENCE

[1] John L. Hennessy and David A. Patterson. Computer

Architecture A Quantitative Approach, Second Edition.

Morgan Kaufmann, 1996.

[2] Deschamps, Jean-Pierrie and Sutter, D. Gustavo,

Synthesis of Arithmetic Circuits, FPGA, ASIC and

Embedded Systems, John Wiley & sons Inc. Publication

(2006).

[3]Perry, Douglas, VHDL Programming by Example,

McGraw Hill Publication (2002).
[4]Dinesh Kumar and Girish Chander Lall “Simulation and

synthesis of 32-bit multiplier using configurable devices”

IJAET Jan. 2013.

 ISSN: 2231-1963

[5]Jagadguru Swami Sri Bharati Krishna Tirthaji Maharaja,

“Vedic Mathematics: Sixteen simple Mathematical

Formulae from the Veda”, Delhi(1965).

 [6]Anitha R, Alekhya Nelapati,Bagyaveereswaran4

Comparative Study of High performance Braun‟s

Multiplier using FPGAs, IOSR Journal of Electronics and

Communication Engineering ,Vol.1, PP 33-37,2012

[7]C. S. Wallace, "A suggestion for a fast multiplier," IEEE

Trans.Electronic Computers, vol. EC13.

[8] P.D, Chidgupkar, and M.T. Karad , “ The

Implementaion of Vedic Algorithm in DSp “, Global

Journal of Engg Edu., vol.8 pp.153-158,2004.

[9]VHDL Programming by example by Douglas Perri

second edition, 1997.

[9]Gong Renxi, Zhang Shangjun,Zhang Hainan,

MengXiaobi, Gong Wenying, XieLingling, Huang Yang

“Hardware Implementation of High-Speed Floating-Point

Multiplier Based on FPGA” Proceedings of 2009 4th

International Conference on Computer Science &

Education, IEEE, 1902-1906.

[10]O. L. MacSorley, “High-speed arithmetic in binary

computers,” Proc. OfIRE, vol. 49, January 1961.

3363

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS61007

