
Design of Fault Tolerant State Machine for a

Configurable RISC Processor

Anupama N G1

 VLSI Design & Embedded Systems,

Dept. of E&CE

Vemana Institute of Technology

Bangalore Karnataka India

Abstract—The efficient approach of exhibiting a system's

ability to tolerate failure is incorporating a fault tolerant

application consisting of limited resources in it. In this paper,

three new fault tolerant methodologies are designed for a

configurable RISC Processor on its control unit. The control

unit of the configurable RISC processor is a finite state machine

consisting of states fetch, decode, execute, write back and

memory access. The fault tolerant techniques are designed such

that even in the presence of faults in the finite state machine, the

faults are corrected and there will be no disturbance in the

execution of the state cycle in the RISC processor. A detailed

result analysis is performed among the three fault tolerant

methodologies to get the lowest area overhead and maximum

frequency of operation. The designed fault tolerant

methodologies uses standard libraries and the state errors are

corrected within N clock cycles where N is the number of the

state elements of the state machine.

Keywords—Decode; Execute; Fetch; Memory Access; State

Machine; Write Back

I. INTRODUCTION

 The fault tolerant and reliable computing deals with many
issues in different stages of system design. Computing
systems regularly encounter many failures such as software,
disk, bus faults etc. The parameters to measure capability of a
system concerning fault tolerance are its availability as well as
reliability. Reliability is the measure of number of chances
that a system will remain in operation despite failures for a
specific duration. Availability is the slice of time a system is
operational. It is significant to note that a system with high
availability would be vulnerable to failures. The ideal system
is said to be completely reliable and never fail which is not
possible to achieve in reality.

In applications where computers are needed, functional
outages and its repair are very costly. To get the desired
reliability and availability, fault tolerant systems are required.
They have the capacity to tolerate faults by spotting failures,
and separating the defective modules so that the rest of the
system can operate properly. Systems fail for many reasons
such as the system can be specified in such a way that can lead
to an incorrect design or the system might contain a fault that
occurs only under certain conditions that weren’t tested.

The background environment may also cause a system to
work in an undesired manner. For example the computers in
industries and factories operate in environment where there
are temperature variations, dust, moisture etc. Finally, aging
old components can also work incorrectly. Hence the Fault
Tolerant applications are very necessary in today's world. To
explore the problem of tolerating faults in a given set of Finite
State Machines, the classic approach involves replication and
using the reserve FSMs. For example, given two state
machines, say A and B, to tolerate faults among them, the
approach maintains two copies of each FSM's, thus resulting
in a total of six FSMs in the system. The first drawback to this
method is replication of the state machines is a major factor
which subjects to more cost and area overhead. The next and a
distinct downside of this approach is that an error caused by a
transient fault in the data flow path might get overlooked
resulting in an erroneous state of triplicated systems. Hence an
approach at the gate level is necessary rather than directly
triplicating the state machines.

In this paper, single bit transient errors in a state machine
of the configurable processor is corrected with three different
fault tolerant methodologies where the state machine is not
triplicated. Instead fault tolerant strategy is included at the
gate level by making little modifications to the state machine
of the configurable processor. Hence the fault tolerance is
achieved with the advantage of lowest area overhead in the
regular state machine of the configurable processor.

II. DESIGN METHODOLOGY

A. Fault Tolerant Finite State Machine

 Fault tolerance systems describes a logic designed in such

a way that in an incident that a component stalls, a strategy

that can instantly take its place for computation with no loss

of service. Fault tolerant finite state machines are same as

finite state machines but can work in the faulty conditions.

 Fundamentally failures begin from physical failure which

can be a result of radiation induced faults or any change in its

physical configuration from which logical faults arise and

then the system errors are the end results. Two general

approaches in increasing system reliability are fault avoidance

and fault tolerance. The goal of fault avoidance is to avoid the

faults occurring in the system but even after most cautious
implementations of fault avoidance methodologies, failures

will occur after a long period of time.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV5IS010129

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 5 Issue 01, January-2016

127

 In comparison, fault tolerance deals with the system

design with the assumption that defects might very much

likely occur in any way during system operational stage.

Hence the design is intended towards making the system keep

operating correctly even with the presence of defects and

errors. Hence fault tolerance strategies are much in demand.

B. The 8 bit Configurable RISC Processor

 When designing a new processor module, there are steps

that needs to be pursued to ensure that process flow is logical

and easy. The steps in involved are: i. Finalizing the features

the new processor must poses. ii. Ensuring that datapath are

inline with capabilities so desired.iii. Specifying the code

format. This has to be as Machine Instructions. iv. Building

the desired logic to control the flow of data.

 Before designing a new processor element, it is essential to

first find what is the purpose of the new design is. What new

thing should the new processor handle. Here the configurable

processor designed has the following capabilities. It is a

custom made processor using the Gumnut core for fault

tolerance strategy. It is self contained and can be interfaced

with external peripherals. It is designed using limited set of

instructions.

 The datapath is the route that the data follows in a

processor. During the journey to different segments of the

processor, the signals from the control unit cause the data to

be manipulated in specific desired aspects, as per to the

instruction. The datapath is made up of the logic for

manipulation of data to obtain the required result and for

holding interim data. It contains Arithmetic and Logic Units

and all the registers capable of handling data. In the processor

designed there are eight general purpose registers which are 8

bit and a 12 bit program counter. Once the processor reset

happens, the program counter is cleared and then the

instructions are executed accordingly. Once a basic datapath

is ready Instruction Set Architecture can be designed.

 The configurable RISC Processor designed uses a Gumnut

Instruction Set which is one of the most abundantly used

RISC architecture. It has an instruction memory of 4096 bytes

and data memory of 256 bytes. It starts executing the

instructions when the processor is reset low i.e to zero. It has

eight general purpose registers i.e r0 to r7. The registers hold

data operated by user instructions. Each instruction in the

RISC processor designed is coded in binary form. Therefore

add is coded as 000, addc which is add with carry is coded as

001, sub as 010, subc as 011. The logical instructions such as

and is coded as 100, or as 101, xor as 110, mask as 111. The

shift instructions i.e shift left and shift right are coded as 00

and 01 respectively. The rotate instructions such as rotate left

and rotate right are coded as 10 and 11 respectively. In this

way every instruction in the configurable RISC processor

designed is coded according to the Gumnut Instruction Set

Architecture. These instructions include memory, I/O

instructions, jump instructions etc. Determining the length of

the instruction word in a RISC is a very important matter, and

one that is worth a considerable amount of thought. Here the

word size of 8 bit is used for this configurable processor. On

an embedded system however, with limited program ROM,

the length of the instruction word will have a direct effect on

the size of potential programs, and the usefulness of the

chips. The length of the opcode field will directly impact the

number of distinct instructions implemented. If the opcode

field is very small, there is no space to all the instructions. If

its large, valuable bits in the instructions are wasted. Some

instructions are larger than other instructions. An example to

prove this statement is instructions with memory locations

being operated, or jump instructions used are larger than

instructions which operates on registers only. Hence an

optimal desired extra space is left in the opcode field.

 The control logic units are implemented as state machine

having the states as fetch, decode, execute , memory and

write back states. The state Fetch is binary coded as 000,

Decode as 001, Execute as 010, Memory as 011 and Write

Back as 100.Depending on the value of the transition

function, the states change accordingly. When the transition

function is 0, it remains in the same state. When the transition

function is 1, it goes to the next state. The state transition

table of the finite state machine for the configurable

processor is as shown in the Table 1 below .

Present

State

Name Binary

Coded
Form

Transition

Function

Next

State

s1 Fetch 000 0

1

s1

s2

s2 Decode 001 0

1

s2

s3

s3 Execute 010 0

1

s3

s4

s4 Memory
Access

011 0

1

s4

s5

s5 Write

Back

100 0

1

s5

s1

Table 1: State transition table of the finite state machine

 The states Fetch, Decode, Execute, Memory Access and
Write Back are designed using a state machine of the control
unit in the configurable processor. Each state is explained as
follows.

 The instruction is fetched from physical memory, i.e.
RAM.(Block Memory in Xilinx). The address of the
instruction must be fetched in a register called PC (program
counter). The instruction is copied from memory to the
instruction register, which is also another register. When the
given instruction is copied to the instruction register, the
operation of this state ends and the value of the transition
function becomes one. The Fig 1 shows the schematic of the
State Fetch for the state machine of the Configurable
Processor.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV5IS010129

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 5 Issue 01, January-2016

128

Fig 1: Schematic Representation of the State Fetch

To find out the operation which the instruction is meant to
do, the instruction has to be decoded. The bits used for the
opcode are used to determine how the instruction should be
executed. This is meant by "decoding" the instruction. The
opcode bits for the specific instructions are explained in detail
in Instruction Set Architecture. When the fetched instruction is
completely decoded, the state operation is over. Fig 2 shows
the schematic for the State Decode of the state machine of the
Configurable Processor.

Fig 2: Schematic Representation of the State Decode

The part of the cycle where the data processing actually
takes place is in the state Execute. The desired instruction is
carried out upon the data. This is known as execution. This is
usually done by the ALU on the processor core. Fig 3 shows
the schematic for the State Execute of the state machine of the
Configurable Processor.

Fig 3: Schematic Representation of the State Execute

In the configurable processor, if data memory needs to be
accessed, it is done so in the state Memory Access. The
accessing of the memory happens only while load and store
instructions are being executed. This step is simply forwarded
and will not do anything when any other instructions are
encountered. Fig 4 shows the schematic of the State Memory
Access for the state machine of the Configurable Processor.

Fig 4: Schematic Representation of the State Memory Access

Once the desired operation is performed, the result is

stored in the register in the register file. This is the operation

of the state Write Back. It writes back the result to the

appropriate file as instructed. Fig 5 shows the schematic for

the State Write Back for the state machine of the Configurable

Processor.

Fig 5: Schematic Representation of the State Write Back

III. FAULT TOLERANT METHODOLOGIES

 The three methods of fault tolerance discussed in this

section are triple modular redundancy, LUT based approach

and fault tolerance using error correcting codes

A. Triple Modular Redundancy

Triple Modular Redundancy (TMR) is one of the
frequently used fault masking technique. TMR technique is
based on implementation of the redundancy of function. The
outputs of these modules are given to a voter. In the standard
approach of Triple Modular Redundancy a system is
triplicated into three functionally identical systems and the
outputs of these three triplicated systems are connected to a
three input voter. The voter determines the output of the fault-
tolerant systems which is the majority of the outputs of the
triplicated systems. The TMR flip flop concept is applied to
simplify the implementation in the control unit of the
configurable processor. Data paths in digital systems are
treated as redundant modules. Each TMR flip flop has three
redundant data paths. These are based on majority voting
algorithm. Fig 6 demonstrates the application of Triple
Modular Redundancy applied to digital systems.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV5IS010129

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 5 Issue 01, January-2016

129

Fig 6: TMR Concept applied to data paths of digital system

The one or more TMR flip flops when jointly used
comprises a network on digital logic structure. A TMR
hierarchy can be formed. This is possible when multiple
modules of TMR flip flops consists of other TMR flip flops.
The TMR network is created when one TMR flip flop
supports the other TMR flip flops. The TMR network when
implemented in a state machine of the configurable processor
becomes fault tolerant.

B. LUT Based Approach of Fault Tolerance

A lookup table is an array structure that can enhance the
effectiveness of execution. This is achieved by using a an
array and using an index for reading the array. There is
significant speed up of processing time. This is because
fetching a value from memory is always faster compared
to time consuming I/O operations. The values are
calculated in prior and loaded in static program storage.
Lookup tables can be also used for accepting input values
by comparing with a list of valid/invalid data in an array. It
can include pointer functions, offsets ,labels or can define
macros to process the matching input.

 However, the LUT is not regular logic but a different
method of implementation of combinational logic. SRAM
based LUT and MUX along with Flip Flops forms the
basic building blocks of fault tolerance technique used
here. The states of the state machine of the processor are
conFigd as combinational logic in a LUT and stored. Any
access of the control unit of the processor is through this
conFigd LUT. Therefore, it’s a wise choice to implement
the state machines combinational logic part using
memories which are LUTs. The combinational logic part
is stored in a SRAM based LUT. Hence state lines and the
state variables are accessed from the memory.

 The contents of the memory is tabulated in the Table 2
and the address lines of the memory are treated as inputs
of the combinational logic and the look-up values stored in
the memory are corresponding output values. The Current
State and IR_decode_mem(Instruction Register for
decode) are inputs and depending upon the values the next
state is decided. The Table 2 is the state table that defines
the state machine conFigd in a LUT.

Table 2: State table conFigd in the LUT

C. Fault Tolerance Using Error Correcting Codes

This method is an experimental method of error correction
with in a chip. In this method, the input state values are
encoded with values greater than the number of bits. These
bits can be ordinary values or error correction values. The
encoded bits after comparison with the stored actual values are
decoded with an appropriate decoder. The state value is
encoded using a ECC check bits. The check bit is calculated
as follows and shown in the Fig7. Numbering of the bits in 8
bit is done. This is from d1 till d8. The error correcting bits are
from e1 to e12. The error correcting bits are the ones which
have the indices as powers of 2. The rest are data bits.

Fig 7: Formation of error correction bit from a data bit

If the bits are written in binary, then the index where 1
occurs is noted. All the other bits in the array which have one
in the same index as the check bit are considered and an XOR
is performed on them. The value which is an output of this
operation is the Error Correction bit. Example: check bit
e2(index=0010) is the XOR of e3, e6,e7,e10 and e11.

Upon data in an address being read, the whole ECC is
considered. The 12 bit ecc word is computed from the 8 bit
data word. The transmitted ecc and received ecc are computed
by applying XOR operation. If the output is 0000, then there is
no error. Else, the position of the bit flipped is known. This
can be used for correction The encoded code words for the
each state is stored in a Block memory of Xilinx. Every time
the encoded state appears it is compared with the stored value.

If there is no error the encoded value matches with the
stored value and the bits are decoded back to regain the state
value. Else the error is corrected and the state is regained. For
example: (001)2 encoded as (000000111)2 Let’s insert an
error (001000111)2. (001000111)2 can still be decoded as
(001)2.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV5IS010129

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 5 Issue 01, January-2016

130

IV. SIMULATION RESULTS

The simulations are done using the Xilinx ISE Design
simulation tool. The states of the configurable processor are
being coded in binary as 000 for Fetch, 001 for Decode, 010
for Execute, 011 for Memory Access and 0100 for Write
Back. When there is no fault with the processor's state
machine the control unit goes with the regular cycles of fetch
decode execute etc according to the instruction. When the
present state is Fetch the next state Decode will be ready at the
clock edge thus proving the correctness in the working of the
finite state machine by showing the updated value of the led
status register of the led GPIO peripheral.

A. Without fault tolerance

The Fig 8 shows the simulation of the processor core with
errors introduced. It is clearly seen that that the state machines
state is stuck at 0. From the design we know that the state
machine should go through all the states for every instruction.
But due to the error in the state machine logic, state variable is
not changing. This will lead to not executing the appropriate
logic.

Fig 8: Simulation Result of Processor with faults

In the design of the processor, the processor wants to print
value (00001111)2 on the LED GPIO peripheral. Though the
instruction is fetched for printing a value on LED, it's not
updated. Hence the led status register is not updated with the
desired value as shown in the Fig 9 because of the errors
encountered during its operation.

Fig 9: The LED status Register not updated due to incorrect operation

B. With Fault Tolerance

After applying each three different fault tolerant
methodologies, the processor works fine even in the presence
of faults. The processor's state machine which is the control
unit goes with the regular cycles of fetch decode execute etc
according to the instruction written for it. When the present
state is Fetch the next state Decode will be ready at the clock

edge thus proving the working of the finite state machine. Fig
10 shows the correct working of the configurable processor
even in the presence of faults due to fault tolerant
methodologies.

Fig 10: Simulation result of Processor operating correctly in the presence of
faults

The errors are corrected by the fault tolerant
methodologies and the next state is rectified in every clock
cycle and the led status register is updated with the desired
value of (00001111)2 which is as shown in the Fig 11.

Fig 11: The LED status Register updated after subjected to fault tolerant
methodologies

V RESULT SUMMARY

 The simulation results of various parameters of a

configurable processor without state error correction logic

and with different state error correction methodologies are

tabulated in the Table 3.

Table 3: Result summary of configurable processor without state error

correction logic and with different state error correction
methodologies

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV5IS010129

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 5 Issue 01, January-2016

131

 From the Table 3 it can be seen that there is definitely an

area overhead in processor with state error correction

methodologies than compared to regular configurable

processor with no state error correction strategies. But TMR

methodology gives the lowest area overhead and highest

maximum frequency of operation. So the TMR is correcting

the state errors at a higher rate at a given clock cycle

compared to the other two methodologies where the

maximum frequency of operation is reduced and also there is

a larger area overhead compared to the TMR technique.

Hence because of higher maximum frequency of operation in

TMR the speed is increased though it is having a little higher

propagation delay which can be overlooked when compared

to the other two methods of fault tolerance in state machine

of configurable processor. Thus TMR technique can be used

readily for fault tolerance in state machines of processor.

VI CONCLUSION

 In this paper, three methodologies of fault tolerance are

discussed for a state machine of configurable RISC

processor. A detailed result analysis is performed to show

which of the three methods best suites the given system in

terms of lowest area overhead and maximum frequency of

operation. Simulations are done using Xilinx ISE design tool

and verified by implementing on Spartan 3A FPGA. It is

proved that TMR technique gives the lowest area overhead

and maximum frequency of operation. It suites the

configurable processor by only including fault tolerance

strategy and not altering its other properties like clock cycle

etc. The fault tolerant methodologies use no specific error

models and transient errors in the state elements are easily

corrected within N clock cycles by use of the corrected output

states where N is the no of the state elements. The simple

design libraries are used and thus fault tolerant

methodologies discussed in this thesis proves to be efficient

one by increasing the reliability of the system.

ACKNOWLEDGMENT

I would like to thank Mr.Purushotham Sannakariyappa,
Chief Consultant at Mindful Learning Ltd. for his helpful
suggestions for the synthesis and implementation of the
design.

REFERENCES

[1] Stefan Weidling and Michael Goessel, "Fault Tolerant Linear State
Machines", in Proceedings of the IEEE Int. Conf. on Electronics,
Circuits and Systems,2014, pp.4799 - 4711

[2] Jiang,G,"Reconfiguring Three-dimensional Processor Arrays for Fault
tolerance Hardness and Heuristic Algorithms"in Proceedings of IEEE
Conf. on Computer Systems,2015, pp. 345-349

[3] Psarakis, M., Vavousis, A, Bolchini, C " Design and implementation of
a self healing processor onSRAM-based FPGAs"in Proceedings of the
IEEE Conf on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems, 2014, pp. 165 - 170

[4] Safarulla, I.M and Manilal, K, " Design of Soft error tolerance
technique for FPGA based soft core processors" in Proceedings of
the IEEE Conf. on Advanced Communication Control and Computing
Technologies, 2014,pp. 1036 - 1040

[5] Peng Wang, Kaiyuan Zhang and Rong Chen,"Replication-Based Fault-
Tolerance for Large-Scale Graph Processing" in Proceedings of the
IEEE Conf. on Dependable Systems and Networks, 2014, pp. 562 - 573

[6] N.Ramkumar, and Boopathy.S, "Analysis of berger code based Fault
tolerant techniques for embedded system" in Proceedings of IEEE
Conf. on Advanced Communication Control and Computing
Technologies, 2013,pp 145- 149

[7] Gowtham Raj, G. and Kannan, B. and Aravind, T, " Fault scanning

 and repairingin processor based systemusing dynamic reconfiguration"

in Proceedings of the IEEE Conf. on Smart Structures and Systems,

2013, pp.120 - 124

[8] Ferlini, Frederico , " Non- intrusive fault tolerance in soft processors

through circuit duplication" in Proceedings of IEEE Test Workshop

(LATW), 2012 , pp.1-6
[9] Augustin, M., Gossel, M. and Kraemer, R , " Selective fault tolerance

 for finite state machines"in Proceedings of the IEEE Conf. on On-
Line Testing and applications, 2011, pp. 43 - 48

[10] Ju-Yueh Lee, Yu Hu, Rupak Majumdar and Minming Li "Fault
Tolerant Resynthesis with dual output LUT's"in Proceedings of IEEE
Int. Conf on Design Automation ,2010 ,pp. 325 - 330

[11] Hadjicostis, C.N. and Verghese, George C,"Coding Approaches to
Fault Tolerance in Linear Dynamic Systems", in Proceedings of the
IEEE Int. Conf. on Information Theory,2005,pp.210-228

[12] Samudrala, P.K, Ramos, J. and Katkoori, S, " Selective triple Modular
 redundancy (STMR) based single event upset (SEU) tolerant
synthesis for FPGAs"in Proceedings of the IEEE Conf. on Nuclear
Science Systems,2004, pp. 2957- 2969

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV5IS010129

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 5 Issue 01, January-2016

132

