Design of Efficient Virtual Channel Router for Network-On-Chip

Omprakash Ghorse
M. Tech Scholar, Electronics and Communication
Department, IES College of Technology, Bhopal

Nitin Meena
Asst. Prof. Electronics and Communication
Department, IES College of Technology, Bhopal

Shweta Singh
Associate Prof. Electronics and Communication
Department, IES College of Technology, Bhopal

Abstract

As the technology’s increased capability, the SoC (System-On-Chip) is comprised of more and more heterogeneous IP (intellectual property) cores such as processors, DSPs, memory blocks, etc... The requirement of high-performance, flexible, scalable interconnections in such SoC are becoming a major design challenge. A new chip design paradigm called NoC (Network-on-Chip) offers a promising architectural choice for future systems on chips. Network-On-Chip overcomes main constraints of traditional bus-based system on chip by using point to point link connection and packet switching. The design and characteristics of the router directly impacts on the total NoC performance. In a virtual channel router, a head flit has to insure first it has reserved an output virtual channel for the packet before it can request for its own passage through the crossbar and leave for the next hop. There hence exists a dependency between virtual channel allocation and switch allocation. Efficient virtual channel router removes this dependency by using speculation, performing these two operations in parallel. In this assumes a flit will succeed in its virtual channel allocation and switch allocation. Efficient virtual channel router removes this dependency by using speculation, performing these two operations in parallel. In this paper we had worked on network parameter and compare the performance analysis of efficient virtual channel router with that of other existing routers for network on chip.

Keywords-- network on chip, virtual channel, speculation.

1. Introduction

According to the Moore’s Law, the capacity and complexity of a chip has been boosted significantly in recent decades. The function of a board level system in the last decade can be integrated into a single chip by using system-on-chip (SoC) designs. With the advent of multiprocessors, there arises the need for communication among the processes running in parallel on the multiple processors. The performance of interconnection networks is critical, as they significantly impact the performance of the overall system. As a replacement for traditional hierarchical bus systems and a point to point connections, the on-chip network infrastructure called Network On Chip (NoC) provides a unified interface for new IP(Intellectual Property) blocks to be easily plugged into a system. A modern MPSoC (Multi Processor SoC) is a communication-centric system lying on an on-chip network communication fabric. The NoC has compromise the three main component are links which are communication medium between router to router and router to IP block, NI (Network Interface) it is responsible for packetization and de packetization of data traffic, and routers the data communication using packets and the path of the traversing from source to destination is determined by the routers according to the routing algorithms. The router used communication between PE by using packets, and packets are also divided in to the flit (flow control digit). When flits are arrive at a router there are Multiple complex operation are performs such as routing computation for finding the destination rout, virtual channel allocation for determining the output channel, switch allocation for allocating the time slot in to the crossbar switch, and switch traversal for transferring the flit through the crossbar. These operation causes increases the communication latency.
The outline of this paper is as follows after the introduction part we discuss about the virtual channel router in section 2 and then we discuss about the proposed router architecture in section 3, after that we observe the simulation result and conclude on that in section 4 & 5 respectively.

2. Background

2.1. Virtual Channel

When a physical channel is divided into multiple numbers of logical channels these logical channels are called virtual channel. The goal of virtual channel is reducing congestion when different flows compete for the same path in to the network.

2.2. Channel Multiplexing

Physical channel can be multiplexed allowing the use of a same channel by different flows in the same direction to improve the performance of network on chip. Time division multiplexing (TDM) is the sharing of physical channel in time, dividing these in to logical channels. Time is usually partitioned into equally sized period called time-slots. During a time slot, the available bandwidth is exclusively dedicated to a given logical channel. A given packet may need several time slots to be transmitted through a logical channel, and these time slots may be interspaced with time slots used by another packets flowing in another logical channel. TDM reduces overall network congestion separate buffer are required for each virtual channel and time slot is require to store virtual channel allocation.

First there are two terms which are define the system performance are: network throughput and latency.

Network Throughput: It is define at the rate at which the network can successfully accept and deliver the injected packets.

Latency: Delay experienced by message as they traverse from source to destination from the instant when the first bit is injected to the network at the source till when the last bit of the message is received at the destination.

To well understand the operation of efficient virtual channel router by using speculation first we should explain the virtual channel router architecture and its operation.

The virtual channel router as shown in figure 1 consists of five input ports and five output ports, connected together by using the intermediate crossbar switch. The topology used is mesh, in each input and output port is connected with a specific direction: East (E), West (W), North (N), South (S), and Local (L). The local input and output ports are connected to the network interface which is connected to the processing element (PE).
In this architecture there is the dependency of each stage to their next stage.

Fig. 2 Pipeline stage of virtual channel router architecture

3. Proposed Router Design
3.1. Speculation
The speculation is define, when Virtual-channel and switch allocation are performed in parallel. Packets that are awaiting VC allocation are permitted to make speculative requests for switch allocation. This enables flits to be received and forwarded on desired output in a single cycle. This removes the dependency of virtual channel allocation and switch allocation, so that the pipeline stage goes to shorten and hence increase the network performance.

Fig. 3 architecture of efficient virtual channel router using speculation

3.2. Crossbar switch
The crossbar switch is used to connect input paths to the output paths, enabling the routing of flits through the network. In this crossbar we used 5x5 crossbar connection. It has five input and five output ports. An arbiter is an important part of the crossbar switch, which selects one of the input depending upon the control logic which we apply. At the input of the crossbar we examine three quantities data, destination address, and request. The data is the information which we send outside, destination is the address of the output port that the data is forwarded, when 16 bit message is appear at the input of crossbar the least three bits of this message we used it to define the output port through which the message will be forwarded. If the last three bits of message are “001” it define that the message is routed to the first port of the router which. If the last three bits of message are “010” it define that the message is routed through the second port of the router and so on… The last one is request when it is high it means that the data is routed forward at that input port. Here we used the arbiter which has the fixed priority.

3.3. Fixed priority arbiter
In our arbiter scheme we used a fixed priority arbiter. Each input port has its own fixed priority level and an arbiter grants an active request signal with the highest priority depending on this priority level. For instance (1) has the highest priority among N requests, and request (1) is active it will be granted regardless other request signals. If request (1) is not active, the request signal with the next higher priority will be granted. In other words, the current request (lower priority) only will be served if the previous request (higher priority) has not appear or been served already. We have design fixed priority arbiter using the finite state machine. The grant signal will be activated upon the below condition.

Grant1 = 1 When State = G1;
Grant2 = 1 When State = G2;
Grant3 = 1 When State = G3;
Grant4 = 1 When State = G4;
Grant5 = 1 When State = G5.
4. Simulation result and discussion

4.1. Simulation for input port

We have presented input port design with the help of “Xilinx ISE-9.1” design suit for device xc3s200-5ft256 and the simulation result for the same is shown below. From the simulation result we can see that the every data required three clock cycles to travel data across the input port. This shows the latency of the network.

4.2. Simulation for fixed priority arbiter

We have presented the fixed priority arbiter design with the help of “Xilinx ISE-9.1” design suit for device xc3s200-5ft256 and the simulation result for the same is shown below. As we see that the highest priority is given to the req1 and the lowest is to req5.

4.3. Simulation result for proposed router

We have presented the proposed router design with the help of “Xilinx ISE-9.1” design suit for device xc3s200-5ft256 and the simulation result for the same is shown below. As we see that the output port is define by the three least significant bits of the message.

5. Conclusion

This paper proposed method to improve the performance of NoC routers. This is approach to significantly reducing the clock cycle of on-chip routers. Simulation results shown that the critical path is reduced significantly without compromising router efficiency by performing these two operations (VC allocation and SA) in parallel. Flip-flop is used in this router are 1074 which are large in numbers as compare to the other routers architecture, but the frequency is maximum so that the network latency is reduced, and performance is increases.
Table 1: Device utilization Summary

<table>
<thead>
<tr>
<th>Device Utilization Summary</th>
<th>Used</th>
<th>Available</th>
<th>Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of slice registers</td>
<td>1,074</td>
<td>44,800</td>
<td>2%</td>
</tr>
<tr>
<td>Number used as flip-flop</td>
<td>1,074</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Number of occupied slices</td>
<td>404</td>
<td>11,200</td>
<td>3%</td>
</tr>
<tr>
<td>Number of flip-flop pairs used</td>
<td>1,362</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Future Work: Here we saw that the flip-flops are used so much so that area is more utilize. Our future plan for this is to find the best solution for buffer architecture, so that we reduce the number of flip-flops and also improvement in the crossbar switch for fast arbitration.

6. References

[18] Aline Mello, Leonel Tedesco, Ney Calazans, Fernando Moraes, Virtual Channels in Networks on Chip: implementation and evaluation on hermes noc sbcci’05, september 4-7, 2005.