

Design Of Cryptographic Processor For Security Algorithm

Operations

1 M. Praveen Kumar 2 R. Ashwitha 3 N. Jyosna 4 M. Pavani

#1
Assistant Professor, Department of Electronics and Communication Engineering, Vignana Bharathi Institute of

Technology, Aushapur, Ghatkesar, RangaReddy, (A.P.), India.

#2#3#4
UG Students(ECE), Department of Electronics and Communication Engineering, Vignana Bharathi Institute of

Technology, Aushapur, Ghatkesar, RangaReddy, (A.P.), India.

Abstract

In this paper we are performing various arithmetic

and logical operations such as addition,

multiplication, shift operations, matrix

multiplications, fixed coefficient multiplier, mix

column transformation, multiplier X (2X+1), circular

shift operations for arbitery irreducible polynomial.

We are performing these operations in a

cryptographic processor. The main aim of our project

is to reduce the power consumption, increase the

speed of operation and reduce the programming

length.

1. INTRODUCTION

As data hacking is more prominent during the data

transmission because of increase in the technology

here comes the necessity of the secure data

transmission. Cryptography is the science of

protecting the data, which provides means and

methods of converting data into unreadable form.

Cryptography refers to encryption and decryption of

data. It’s used to maintain confidentiality, data

integrity, non-repudiation, authentication of data.

Cryptography is broadly classified into two types.

a. Symmetric Key Cryptography.

b. Asymmetric Key Cryptography.

Symmetric Key Cryptography uses a single key

for both the encryption and decryption of data. These

may use either stream ciphers or block ciphers. In

stream ciphers a single bit data is encrypted where as

in a block a group of bits are encrypted as a single

unit.

Asymmetric Key Cryptography uses different

keys for both encryption and decryption of data in

which one is a public key and the other private key. If

the data is encrypted by a public key only the

corresponding secret private key is used to decrypt

the data.

We can implement the above mentioned instruction

in a normal processor also but it has more number of

addressing modes, lower throughput and more power

consumption. So we have designed our own

cryptographic processor.

In the processor designed by us we don’t have

addressing modes we just use load and store

instructions for performing the calculations. We are

using 32 bit registers for performing the operations

and storing the results. Hardware is simplified and

the machine cycles time is reduced.

The rest of the paper states about the instructions

from algorithms, operations performed,

cryptographic processor, description about the

modules and final our conclusion about the theme of

the project with the references which have helped for

successful completion of the project.

2. CRYPTOGRAPHIC ALGORITHMS
 In our paper we have used the different instructions

and we have taken those instructions from AES, RC6

algorithms.

AES uses block cipher symmetric key cryptography.

It has fixed block size of 128 bits and the key size of

128,192,256 bits. Key size refers to number of

repetitions required to convert plain text into cipher

text. We have taken addition, multiplication, fixed

coefficient multiplier, mix column transformation,

circular shift operation, matrix multiplication, Shift

operations. RC6 also has a block size of 128 bits but

it can be parameterized to support a wide variety of

key lengths, key sizes. We have taken multiplier X

(2X+1) instruction for performing this operation.

108

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

3. OPERATIONS

Modulo addition

 The addition operation is performed by

adding the coefficients of corresponding powers of

polynomials. The addition is performed by doing

XOR (denoted by ⊕) between the numbers i.e.

0⊕0=0, 1⊕0=1, 1⊕1=0.

Modular multiplication 2^8

 In this normal multiplication is performed

and the resultant is done modulo with an irreducible

polynomial. For the AES algorithm the irreducible

polynomial is

M(x) =x^8.

Mix column transformation

 In this the 32 bit data is divided into

groups(say 4) then for each column one bit is shifted

and then xor operation is done with it again.

For example

input[31:0]A

mixcolumn={C3,C2,C1,C0};

a0=A [7:0];

a1=A [15:8];

Fig.1 Mix column Transform

a2=A [23:16];

a3=A [31:24];

C0 = (a0<<1) ^ ((a1<<1) ^a1) ^ (a2) ^ (a3);

C1 = (a0) ^ (a1<<1) ^ ((a2<<1) ^a2) ^ (a3);

C2 = (a0) ^ (a1) ^ (a2<<1) ^(a3<<1)^ (a3);

C3 = (a0<<1) ^a0) ^ (a1) ^ (a2) ^ (a3<<1);

Matrix Multiplication

 In this we take 2 different matrices and the

corresponding multiplication is done just by shifting

it.

For example consider a matrix

Input [31:0] A

Input [31:0] B;

Matrix multiplication= {d3, d2, d1, d0};

 a0=A [7:0];

 a1=A [15:8];

 a2=A [23:16];

 a3=A [31:24];

 b0=B [7:0];

 b1=B [15:8];

 b2=B [23:16];

 b3=B [31:24];

 d0= (a0*b0) ^ (a3*b1) ^ (a2*b2) ^ (a1*b3);

 d1= (a1*b0) ^ (a0*b1) ^ (a3*b2) ^ (a2*b3);

 d2= (a2*b0) ^ (a1*b1) ^ (a0*b2) ^ (a3);

 d3= (a3*b0) ^ (a2*b1) ^ (a1*b2) ^ (a0*b3);

4. CRYPTOGRAPHIC PROCESSOR

Fig.2 Cryptographic processor

This is the architecture of the cryptographic

processor; this is a 32 bit pipelined processor.

Here there is a separate memory for load/store

instructions.

 This Harvard style of architecture can either be

used with two completely different memory

spaces, a single dual port memory space with

separate data and instruction. Three stages of

pipelining have been incorporated in the design

which increases the speed of operation.

The processor presented instruction set and uses

a single instruction – single data (SISD)

execution order.

Its main Blocks are

1. Sixteen 32-bit general purpose registers.

2. Multiplexers.

3. Instruction Register.

4. Program Counter.

5. Memory.

6. Buffer.

7. Control and Decoder.

8. ALU with basic arithmetic and logical

operations.

General purpose registers:

 General purpose registers (GPR’s) store and save

operands and result during program execution. ALU

and memories must be able to write/read those

registers, so a set of sixteen 32 bit registers are used.

The values in the any two registers are the operands

for the ALU which perform the operations and other

registers store the results of each operation after the

execution. Fig.3 indicates how the registers are filled

with the ALU output based on the selection line from

the control and decoder.

109

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Fig.3 General Purpose registers output waveform

Fig.4 shows how the data flows in the General

Purpose Registers. It receives the data from control

and decoder and gives its output to MUXA and

MUXD which performs further operations.

Fig.4 General Purpose registers Data flow

Multiplexers:

Here we use 3 multiplexers namely MUXA,

MUXD, MUX. MUXA and MUXD are used to select

one register from the 16 registers. The selected

registers are used as operands to perform operations

in the ALU. MUX is used to select one of the outputs

from instruction register or program counter. The

selected output is given as input to the memory.Fig.5

represents the MUXA output waveform through

which we can see how the Registers are selected

based on the selection lines.

Fig.5 MUXA output waveform

Fig.6. indicates the data flow of MUXA where it

receives the input from the Register block and gives

its output to the ALU.

Fig.6 MUXA dataflow

Fig.7 indicates the output waveform of MUXD. The

purpose of using MUXD is to fetch the operands as

we require at least two operands to perform the

operations.

Fig.7 MUXD Output Waveform

Fig.8 indicates the dataflow of MUXD where it

receives input from Register block and gives output

to ALU.

110

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Fig.8 MUXD Dataflow

Fig.9 indicates the output waveform of MUX. Here

based on the Fetch input the operational address or

program counter output is selected.

Fig.9 MUX Output waveform.

Fig.10 indicates the dataflow of MUX where the data

flows from instruction register to the memory

module.

Fig.10 MUX dataflow

Instruction Register:

 Instruction register store the

instruction read from the program memory and give

it as an input to control and decoder. It separates the

Operation Code, Source register Address, Operand

address and operands. These values are given to the

general purpose registers, Multiplexers and ALU to

execute the command. Fig.11 indicates the output of

Instruction register.

Fig.11 Instruction Register Output Waveform

Fig.12 indicates how the data flows from the data bus

to the program counter and also the MUX based on

the selection lines from the control and decoder. It

also indicates how the source and destination address

is moved into the control and decoder.

Fig.12 Instruction Register Dataflow

Program counter:

 In most processors, PC is

incremented after fetching an instruction, and holds

the memory address of the next instruction that

would be executed. Instructions are usually fetched

sequentially from memory, but control

transfer instructions change the sequence by placing a

new value in PC. It takes input from instruction

register and control and decoder and produces the

output and gives it to MUX.Fig.13 indicates the

Program counter Output.

Fig.13 Program Counter Output Waveform

111

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Fig.14 indicates the dataflow of program counter

where PC output is loaded with operational address

or else it is incremented based on the Reset and Load

PC value.

Fig.14 Program Counter Dataflow

CONTROL AND DECODER:

 This works on the principle of finite state

machines (FSM). The main operations performed by

it are reset, instruction fetch, decode& load, address

setup, operand fetch and store the result. It will be in

ideal state when no operations are performed.Fig.15

indicates the output of the Control and decoder.

Fig.15 Control and decoder output waveform

Fig.16 indicates the how the selection lines are emerged

from the Control and decoder to different modules such as

SelA for MUXA, Sel B for MUXD, SelC for ALU and

SelD for Register block, Fetch for MUX.

Fig.16 Control and decoder dataflow

Memory:

 In this Architecture Separate memory for

instructions (program) and data is used. Simultaneous

Accesses to memory can be performed by using

different stages of Pipelining.Fig17 indicates the

output of the memory block.

Fig.17 Memory output waveform

Fig.18 indicates how the data is read from a Text file

and it stores the operands in the register block.

The Obtained outputs are again store back to the

memory through data bus from Register block.

Fig.18 Memory data flow

ALU:

 ALU fetches the data from memory and

performs the operations according to control and

decoder input, performs the operations as mentioned

results are stored in the register block.Fig.19

indicates the output waveform of ALU

Fig.19 ALU output waveform

112

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

TOP MODULE: This links all the modules and

produces the output.Fig.20 indicates the output of the

Top module. Here we can see that various operations

are performed taking operands from the Register

Block and outputs are stored in the Registers.

5. CONCLUSION:
Thus we have designed a 32 bit cryptographic

processor where different arithmetic and logical

operations are performed using different symmetric

key cryptographic algorithms. We have done the

simulations using Model Sim, Active HDL and

verified through Xilinx. By this we have reduced the

power consumption and it is achieved in a lower area

with less propagation delay by reducing the number

of instruction cycles.

6. FUTURE SCOPE:

In order to perform differential and integration

operations we need to use Advanced pipelining

techniques to this processor which is the future scope

of the project.

7. REFERENCES:
[1] Antonio H. Zavala “RISC Based Architecture for

Computer Hardware Introduction Edición,, 2011

IEEE.

[2] NIST, "Advanced Encryption Standard (AES),

(FIPPUB 197)", November 26, 2001,

http://csrc.nist.gov/publications/.

[3] A. Rudra et. al., "Efficient Implementation of

Rijndael Encryption with Composite Field

Arithmetic", Proc.CHES2001, LNCS Vol. 2162,

pp.175-188, 2001.

[4] Rohit Sharma, Vivek Kumar Sehgal, Nitin Nitin1,

Pranav Bhasker, Ishita Verma, 2009, “Design And

Implementation Of 64-Bit RISC Processor Using

Computer Modeling And Simulation, pp. 568 – 573.

[5] R. Uma / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-

9622 www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012,

pp.053-058 Design and Performance Analysis of 8-

bit RISC Processor using Xilinx Tool

[6] IEEE TRANSACTIONS on very large scale

integration (VLSI) systems, vol. 18, No 8, August

2010 1145 A High-Performance Unified-Field

Reconfigurable Cryptographic Processor Jun-Hong

Chen, Ming-Der Shieh, Member, IEEE, and Wen-

Ching Lin.

[7] FPGA Implementations of the RC6 Block Cipher

Jean-Luc Beuchat Laboratoire de l’Informatique du

arall´elisme, Ecole Normale Sup´erieure de Lyon,46,

All´ee d’Italie, F–69364 Lyon Cedex 07,Jean-

Luc.Beuchat@ens-lyon.fr.

[8] Some Guidelines for Implementing Symmetric-

Key Cryptosystems on Reconfigurable-Hardware

Arturo ³az-P¶erez, Nazar A. Saqib, and Francisco

Rodrguez-Henriquez Computer Science Section,

Electrical Engineering Department Centro de

Investigacion y de Estudios Avanzados del IPN Av.

Instituto Politecnico Nacional No. 2508, Mexico

D.F.fnabbas@ computacion.cs.cinvestav.mx, adiaz,

Francisco @cs. cinvestav.mxg.

[9] Imyong lee, Dongwook Lee, Kiyoung choi

“ODALRISC: A Small, Low power and Configurable

32-bit RISC processor” International SOC design

conference 2008.

[10]. Wayne Wolf, FPGA Based System Design ,

Prentice Hall, 2005.

[11] R. Razdan and M.D. Smith, “A High-

Performance Micro architecture with Hardware-

Programmable Functional Units,”Proc. Micro-27,

IEEE Computer Society, 1994, pp. 172-180.

[12]. Vincen t P. Heuring, and Ha rry F. Jordan,

“Computer Systems Design and Architecture”, 2n d E

dition, 2003.

113

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

