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Abstract—Compliant mechanisms realize mechanism 

functions by utilizing the elastic deformations of flexible 

components rather than the relative motions of rigid joints. The 

advantages of compliant mechanisms stem from the removal or 

replacement of rigid joints, which include the elimination of 

backlash, friction, wear and lubrication, the reduction of 

vibration and noise, the decreased manufacturing and assembly 

cost, and the increased precision. Because of the integrated 

motion and force behavior and the nonlinearities of large 

deformations, designing compliant mechanisms is much more 

challenging than rigid mechanisms. Constant force compliant 

mechanisms produce an output force that does not change for a 

large range of input motion and have many different 

applications. A method is introduced in this paper for designing 

constant force compliant mechanisms. A designed constant force 

compliant mechanism is modelled as a network of variable 

width spline curves which are defined by their interpolation 

circles. The design of constant force compliant mechanisms is 

systematized as optimizing the independent parameters of the 

variable width spline curves. The presented method is 

demonstrated by the design of a constant force compliant 

mechanism in the paper.  

Keywords—compliant mechanism; constant force; 

design; spline interpolation; interpolation circle. 

I.  INTRODUCTION 

 
Mechanisms are mechanical devices utilized for 

transferring or transforming motion, force or energy [1]. 
Conventional mechanisms are rigid mechanisms that consist 
of rigid links connected by kinematic joints. A desired output 
motion in the output link of a rigid mechanism is generated by 
an input motion in the input link through the relative motions 
of connected rigid links. Conventional rigid mechanisms rely 
on kinematic joints to generate desired output motions. A 
kinematic joint (also called kinematic pair) is a connection 
between two or more links, which allows some relative 
motion between the connected links [2]. Kinematic joints can 
be classified in different ways such as contact, degree of 
freedom, the number of links joined, and physical closure. The 
type of contact between the connected links can be point, line 
or surface. Joints with surface contact are called lower pairs. 
The term higher pair is for joints with point or line contact 
because of the zero area of point or line and the high contact 
stress. The number of degrees of freedom allowed by a joint 
can be one, two, three, four or five. The number of links 
joined by a joint can be two or more. Joint order is defined as 

the number of links joined minus one. The type of physical 
closure of a joint can be either form or force [2]. 

A form-closed joint keeps all joined links together by its 
geometry. For example, a pin in a slot is a form-closed joint. 
The pin can translate along the slot and rotate in the slot, and 
there are two degrees of freedom allowed by the joint. A slider 
in a two-sided slot is also a form-closed joint. In this case, the 
slider can only translate along the slot, but cannot rotate in the 
slot. Thus, the joint has one degree of freedom. In a form-
closed joint, there must be a clearance to allow the relative 
motion between the joined links. The clearance can only be 
reasonably small, but cannot be eliminated. The clearance is a 
potential source for backlash, noise and vibration. 

Force-closed joints have no clearance issue, but extra 
power is necessarily needed to overcome the external force 
that is used to maintain the closure. In both form-closed and 
force-closed joints, friction and wear is inevitable and can 
only be reduced by high surface finish and lubrication. High 
finish of contact surface in kinematic joints results in high 
manufacturing cost. Besides inevitable friction and wear, the 
connected links in kinematic joints have to be assembled 
together. Assembly time and cost cannot be eliminated. 

Inspired by nature, compliant mechanisms take advantage 
of elastic deformations to realize mechanism functions instead 
of utilizing kinematic joints. The configuration of a compliant 
mechanism is usually a piece of elastic material without any 
kinematic joint. The jointless configurations of compliant 
mechanisms provide them with merits that include the 
elimination of backlash, friction, wear and lubrication, the 
reduction of vibration and noise, the decreased manufacturing 
and assembly cost, and the increased precision. Compared 
with traditional rigid mechanisms, compliant mechanisms 
have advantages of light weight and easy miniaturization that 
are very helpful in many applications and environments such 
as aerospace and microelectromechanical systems (MEMS) 
[3]. 

Although compliant mechanisms have amazing 
advantages, they also face tough challenges that have to be 
surmounted in their designs. Because of the integrated motion 
and force behaviour in a jointless elastic material and the 
nonlinearities of large deformations,  designing compliant 
mechanisms is much more difficult than rigid mechanisms. 
Besides, the motion of compliant mechanisms is often more 
limited than traditional rigid mechanisms since the 
deformation of a flexible component is constrained by what it 
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can undergo before failure. In addition, fatigue life needs to be 
considered for many compliant mechanisms. When the 
deformation in a compliant mechanism is repeated during its 
life, fatigue loads are present and the fatigue life must exceed 
the expected life of the compliant mechanism. All the 
challenges facing compliant mechanisms have to be 
considered in the designs of compliant mechanisms [4].  

A constant force mechanism provides an output force that 
does not change for a large range of input motion. There are a 
wide variety of applications for constant force mechanisms 
that include gripping devices to hold delicate or fragile parts 
of different sizes, electronic connectors to sustain connection 
despite disturbances and part tolerances, and coupling devices 
to apply a constant force between a machine and its end 
effector [3-4]. Compliant mechanisms have been developed 
for generating constant force purposes [5-6].  

The performance of a constant force mechanism is 
characterized by the force (F) applied to it and the deflection 
(D) which the applied force results in. The slope of the F-D 
curve is its stiffness of the mechanism denoted by k. If the 
relationship between force and deflection is represented by a 
general function )(DFF  , mechanism stiffness can then be 

defined as DdFdDk )( . For an ideal constant force 

mechanism, the force does not change in the entire range of 
the deflection, i.e., its stiffness is zero from zero deflection 
(D0) to maximum deflection (Dm) as shown in Fig. 1. Fd is the 
desired output force for the mechanism. 

The resistance force from an elastic component is zero 
when there is no deflection in it. Then, the ideal F-D curve 
shown in Fig. 1 is impossible for a constant force mechanism 
that is based on elastic components since the output force is 
required to be nonzero for zero deflection. When the starting 
section of the horizontal line in Fig. 1 is replaced by a steep 
slope, the F-D curve becomes that shown in Fig. 2. The F-D 
curve is now possible for constant force mechanisms that are 
composed of elastic components to generate. The output force 
is increased from zero to Fd when deflection changes from 
naught to D1. The desired constant force is produced in the 
deflection range of D1 to Dm. 

There is a sharp corner in the F-D curve shown in Fig. 2, 
which appears at deflection of D1. It is difficult for an elastic 
component to have a F-D curve with a sharp corner since its 
force deflection relationship does not change suddenly and is 
usually a smooth curve. Additionally, the F-D curve in Fig. 2 
is absolutely horizontal after D1 and has no fluctuation. It is 
also difficult that the resistance force from an elastic 
component does not have any change in the deflection range 
of D1 to Dm. The realistic F-D curve for a constant force 
mechanism based on elastic components is that there is no 
sharp corner in the entire curve and there is only small 
fluctuation in the deflection range of D1 to Dm, which is shown 
in Fig. 3. Although the output force fluctuation from a 
constant force mechanism cannot be eliminated, it can be 
reduced or minimized through the optimal design of the 
mechanism. The desired constant output force is generated by 
a compliant mechanism in this paper. A design method is 
presented and discussed in the paper to minimize the output 
force fluctuation in the required deflection range. 

 

 

Fig. 1 The ideal F-D curve of a constant force mechanism. 

 

Fig. 2 The desired F-D curve of a constant force mechanism. 

 

 

Fig. 3 The realistic F-D curve of a constant force mechanism. 

 

The remainder of the paper is organized as follows. The 
design formulation on constant force compliant mechanisms is 
provided in section II. The optimization approach of design 
parameters is presented in section III. Section IV is on the 
optimal design of a constant force compliant mechanism using 
the design method introduced in this paper. Conclusions are 
finally drawn in section V. 

II. DESIGN FORMULATION FOR CONSTANT 

FORCE COMPLIANT MECHANISMS  

A constant force compliant mechanism is composed of 
elastic components. If elastic components are considered as 
building blocks, a constant force compliant mechanism is then 
made up of a network of building blocks [7-8]. The 
configuration of an elastic component is described by its 
topology, shape and size. The topology of the building blocks 
used in this paper for constant force compliant mechanisms is 
curved beams that have variable perpendicular widths, but 
have no internal holes [9]. The shape of a curved beam is 
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decided by its center curve while its size depends on its 
perpendicular width. Both its shape and size of a curved beam 
can be defined by a variable width spline curve [10]. The 
center curve of a variable width spline curve is a spline curve 
that interpolates a set of interpolation points. 

Besides spline interpolation, Lagrange interpolation is also 
a popular interpolation approach, but it has a serious intrinsic 
drawback. The degree of a Lagrange polynomial is the total 
number of interpolation points minus one, which is 
undesirably high when the number of interpolation points is 
not low. High degree polynomials have a strong tendency to 
oscillate [11]. The Agnesi's cubic (also called versiera or 
resonance) curve is used here as an example to show the 
drawback of Lagrange interpolation. The parametric equations 
of the Agnesi's cubic curve are as follows. 

)tan()(  ax    (1) 

)(cos)( 2  ay    (2) 

In (1) and (2), a is the diameter of a circle that is tangent to 
the x-axis and has its center along the y-axis. The Agnesi's 
cubic curve is tangent to the peak of the circle and symmetric 

to the y-axis. θ is in the range of 2/2/   . The 

asymptote of the curve is the x-axis. The solid red curve in 
Fig. 4 shows an versiera curve. Eleven points along the curve 
are chosen as interpolation points, which are filled small 
circles in Fig. 4. When Lagrange interpolation is used to 
interpolate the 11 points, the result is the dotted curve in Fig. 
4. Although the dotted curve passes through the 11 
interpolation points, it is not close to the solid curve, 
especially at the left and right ends where the dotted curve 
vibrates a lot and is far away from the solid curve. 

Piecewise polynomials are used in spline interpolation, 
which leads to the independence between the number of 
interpolation points and the degree of polynomials. A cubic 
spline interpolation curve consists of a set of polynomials of 
degree 3 that are smoothly connected at the interpolation 
points. Any two adjacent polynomials have continuous slope 
and curvature at their shared internal interpolation point. The 
two end points of a spline curve can have different conditions, 
which include natural end conditions (two end curvatures are 
set as zero), not-a-knot end conditions (the third derivative is 
continuous at both the first and last internal points) or clamped 
end conditions (two end slopes are specified). When spline 
interpolation is used to interpolate the 11 points in Fig. 4, the 
result is shown in Fig. 5. The interpolation curve (the dotted 
curve in Fig. 5) is very close to the target curve (the solid 
curve). It is difficult to separate them in Fig. 5. 

 

 

 

Fig. 4 A versiera curve and its Lagrange interpolation. 

 

 

Fig. 5 The versiera curve and its spline interpolation. 

 

A variable width spline curve has a center spline curve and 
variable perpendicular width along the spline curve. The 
center spline curve is determined by its interpolation points. If 
an interpolation width parameter is added to each interpolation 
point, width can then be interpolated using the same piecewise 
polynomials like the center spline curve. An interpolation 
point and its corresponding interpolation width can form an 
interpolation circle. The center of the interpolation circle is the 
interpolation point while the diameter of the circle comes from 
the interpolation width. 

Fig. 6 shows five interpolation circles denoted by P0 to P4. 
The variable width spline curve from the five interpolation 
circles is shown in Fig. 7. There is a chord between the centers 
of two neighboring interpolation circles in Fig. 6. The 
cumulative chord length is used as the interpolation parameter 
(t) in Fig. 7. Both the center spline curve and its variable width 
are smooth. However, the width can become unsmooth and 
the variable width spline curve can have an undesirable cusp 
when half of the width at a point along the center spline curve 
is greater than the curvature radius of the center spline curve 
at that point. To avoid any unsmoothness, the following 
constraint has to be satisfied along the entire center spline 
curve [10]. 

)t(w.)t(R 50     (3) 

 
yxyx

)t(y)t(x
)t(R

/










2322

    (4) 

In (3), w(t) is the perpendicular width at point t along the 
center spline curve, and R(t) is the curvature radius of the 
center spline curve at that point. 

 

 

 

Fig. 6 The five interpolation circles of a variable width spline curve. 
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Fig. 7 The variable width spline curve defined from the five interpolation 
circles of Fig. 6. 

 

 

III. DESIGN VARIABLE OPTIMIZATION FOR 

CONSTANT FORCE COMPLIANT MECHANISMS 

 
A constant force compliant mechanism is composed of 

elastic components. Each elastic component is modeled as a 
variable width spline curve in this paper. A set of interpolation 
circles define a variable width spline curve that has a center 
spline curve and variable perpendicular width along the center 
curve. Three parameters are needed to decide the location and 
diameter of an interpolation circle. The design variables for a 
constant force compliant mechanism are then the parameters 
used for deciding all interpolation circles. The design of a 
constant force compliant mechanism is thus to optimize the 
design variables for the desired constant force generation. 

The values of the independent design variables of a 
constant force compliant mechanism are optimized by using 
the Global Optimization Toolbox of MATLAB [12-13] in this 
paper. The Global Optimization Toolbox provides approaches 
that find the optimal solutions to design problems with 
multiple local optima. The Global Search Solver in 
MATLAB’s Global Optimization Toolbox is adopted in the 
paper to search for the optimal design parameters. 

The performance of a design candidate has to be evaluated 
in the optimization process. In this paper, finite element 
analysis software ANSYS is used for the evaluation of a 
designed constant force compliant mechanism [14-15]. With 
the provided parameters for the interpolation circles, the force, 
deflection and stress of the related constant force compliant 
mechanism are analyzed by ANSYS. An ANSYS batch file is 
first created in MATLAB on nodes, elements, material 
properties, boundary conditions and input information. The 
batch file is then called from MATLAB and executed in 
ANSYS. An output file on the performance of the designed 
constant force compliant mechanism is generated in ANSYS 
after executing the batch file. MATLAB inputs the ANSYS 
output file and calculates the objective and constraint 
functions for optimization. The data exchange between 
MATLAB optimization and ANSYS finite element analysis is 
based on ANSYS Parametric Design Language in the paper. 

IV. DESIGN OF A CONSTANT FORCE COMPLIANT 

MECHANISM 

A constant force compliant mechanism is to produce an 
output force that does not change as the mechanism deflection 
progresses. The desired constant force (F) is 20 N in this 
design example. The range of deflection (D) of the designed 
constant force compliant mechanism is from 0 (D0) to 20 mm 

(Dm). The output force is required to be almost constant from 
the deflection of 5 mm (D1) to 20 mm (Dm). 

Fig. 8 shows the design domain, which is 100 mm x 100 
mm. The constant force compliant mechanism is composed of 
two elastic components that are symmetric to the middle 
horizontal line of the design domain. Each elastic component 
is modelled by a variable width spline curve and defined by 
five interpolation circles (P0 to P4) as shown in Fig. 8. The 
right ends of the elastic components are fixed at the right edge 
of the design domain (the solid vertical line in Fig. 8) and 
marked by filled circles in Fig. 8, which are either at the 
middle of the solid line (the two filled circles coincide in this 
case) or at the ends of the solid line (the two filled circles are 
separated in this case). There is a horizontal T-shaped bar at 
the left end of the design domain. The bar is rigid and has a 
height of 50 mm, and can translate along the middle horizontal 
line of the design domain. The force and deflection are 
transferred from the rigid bar to the two elastic components. 
The left ends of the elastic components are fixed at the rigid 
bar, which are either at the middle of the rigid bar (the two 
interpolation circles coincide in this case) or at the ends of the 
rigid bar (the two interpolation circles are separated in this 
case). 

The material for the constant force compliant mechanism 
is engineering plastic with yield strength of 71 MPa and 
modulus of elasticity of 2200 MPa. The out-of-plane thickness 
is set at 4 mm. The in-place width is varied from 1.0 mm to 
3.0 mm. The two variable width spline curves are symmetric, 
so only the top variable width spline curve is lettered in Fig. 8. 
Each of the internal interpolation circles (P1, P2 and P3) has 
three independent design variables (two location variables and 
one diameter variable). Any of the two end interpolation 
circles (P0 and P4) has only one independent design variable 
(diameter variable) since its location has been set. Thus, there 
are totally 11 parameters to be optimized, which are 
represented as a design variable vector X. 


433322

21110

wwPPwP

pwppwX

yxx

xyx
    (5) 

In (5), w's are the diameters of the corresponding 
interpolation circles. The compliant mechanism is designed to 
generated a constant output force. As shown in Fig. 8, force F 
is desired to be 20 N when deflection D is from D1 (5 mm) to 
Dm (20 mm). The design objective is to minimize the error 
between the actual force from the compliant mechanism and 
the desired force when deflection D is from D1 to Dm. This 
error is measured by the average deviation at four deflections 
(D1, D2, D3, D4, which are 5, 10, 15 and 20 mm, respectively) 
as follows. 





4

1
,,

4

1

j
jdja FFFE     (6) 

FE is the average force error. Fa, j is the actual force 
generated by the compliant mechanism when deflection Dj is 
input to the compliant mechanism while Fd, j is the desired 
constant force (20 N). The maximum stress in the compliant 
mechanism is constrained to be below its allowable value.  
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Fig. 8 The design domain of the constant force compliant mechanism. 

 

When both the left and the right ends of the variable width 
spline curve are located at the middle, the synthesis result is 
shown in Fig. 9. The design variable vector X for this solution 
is 


66.214.183.1309.7426.105.10

74.4506.171.1498.3278.2X
    (7) 

In this solution, the desired and actual forces at D0, D1, 

D2, D3 and D4 are: (0, 0), (20, 17.30), (20, 19.02), (20, 19.46) 

and (20, 20.00). The spline curve that interpolates the actual 

forces is shown in Fig. 10 as the red curve. The maximum 

stress in the compliant mechanism is 68.96 MPa, which 

happens when the compliant mechanism has deflection of 20 

mm. Fig. 11 shows the undeformed and deformed beam 

elements of the compliant mechanism, which is from ANSYS 

with deflection of 20 mm. 

When the force, deflection and stress of the compliant 
mechanism are analyzed in ANSYS, the input deflection of 20 
mm is divided into 4 even load steps and geometric 
nonlinearity command “NLGEOM” is turned on. The 
compliant mechanism is discretized into beam elements and 
modeled by BEAM188 that allows tapered beam cross-
sections. 

When the left end of the variable width spline curve is 
located at the end of the rigid bar and the right end is at the 
middle, the synthesis result is shown in Fig. 12. The design 
variable vector X for this solution is 


96.258.173.2374.8434.100.26

37.5140.192.3638.2452.2X
    (8) 

 

 

 

Fig. 9 Design 1 of the constant force compliant mechanism. 

 

 

Fig. 10 The desired and actual F-D curves of Design 1. 

 

 

Fig. 11 The deformed compliant mechanism of design 1. 

 

In this solution, the desired and actual forces at D0, D1, D2, 
D3 and D4 are: (0, 0), (20, 17.08), (20, 19.80), (20, 20.04) and 
(20, 20.35). The actual F-D curve of this solution is shown in 
Fig. 13. The maximum stress is 67.97 MPa when the 
compliant mechanism has the maximum deflection of 20 mm. 
The deformed compliant mechanism of this solution is shown 
in Fig. 14. 

The two designs of the constant force compliant 
mechanism shown in this paper produce close F-D functions, 
but have different locations of the left end of the elastic 
component in the design domain. One design can be chosen 
based on the application. 

 

 

 

Fig. 12 Design 2 of the constant force compliant mechanism. 
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Fig. 13 The desired and actual F-D curves of Design 2. 

 

Fig. 14 The deformed compliant mechanism of design 2. 

 

V. CONCLUSIONS 

 
A design method of constant force compliant mechanisms 

is presented in the paper. A compliant mechanism is 
composed of elastic components. Each elastic component is 
modeled as a variable width spline curve. A designed constant 
force compliant mechanism is represented by a network of 
variable width spline curves in this paper. A variable width 
spline curve includes a center spline curve and variable 
perpendicular width, and is defined by its corresponding 
interpolation circles. Three parameters are needed to fully 
decide an interpolation circle (its location and diameter). The 
design variables for a constant force compliant mechanism is 
the independent parameters for all related interpolation circles. 
The design objective is to minimize the deviation between the 
desired constant force and the actual output from the designed 
compliant mechanism. 

The Global Optimization Toolbox of MATLAB is 
employed by the authors of the paper for the optimization of 
the design variables. The design objective or force deviation is 
measured by the average difference between the desired 
constant force and the actual output force from the compliant 

mechanism under certain deflections. The maximum stress in 
the compliant mechanism is constrained below the yield 
strength of the material. The force, deflection and stress of a 
designed compliant mechanism are analyzed using ANSYS. 
The data exchange between MATLAB and ANSYS is based 
on ANSYS Parametric Design Language. A constant force 
compliant mechanism is designed in the paper to verify the 
effectiveness and demonstrate the procedure of the presented 
method. 
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