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Abstract—the proposed effort is motivated by a number of issues 

brought about by the growing scale, independence, and alluring 

characteristics of IoT networks, which have drawn the interest of 

cybercriminals. The notable increase in crime rates inside the 

Internet of Things ecosystem encourages academics to develop 

smarter and more efficient ways to stop and identify these types 

of cybercrimes. Recognizing and stopping suspicious network 

activity is necessary to combat the growing danger and catch bad 

actors before they compromise a particular IoT network or 

device. Therefore, the idea of the base of an intrusion detection 

system is the desire to keep an eye on system and network 

resources for unforeseen activity. 

When a system is being attacked, an intrusion detection system 

is essential for sending out alarms. However, absence of datasets 

for Machine learning algorithms [1], heterogeneous IoT 

environments, and high velocity data, traditional investigative 

techniques have difficulty identifying new threats, which might 

be even more harmful than known ones. At the moment, the pace 

of attack is far quicker than the pace of threat detection. Since 

many internationally connected IoT devices don't show signs of 

an attack, users aren't aware that strange things are happening 

in their smart networks. Because of common weaknesses, IoT 

systems are vulnerable to exploitation. An intrusion detection 

system (IDS) [2] model carefully examines system operations to 

anticipate and identify attack patterns because it understands the 

significance of IDS in the cybercrime investigation process. 

Additionally, it keeps an eye on each user's actions to proactively 

stop security breaches, advancing cyber security procedures in 

the future. 

Keywords: Intrusion Detection System (IDS), IoT Security, 

Machine learning algorithms, Threat Detection 

I. INTRODUCTION

Smart homes have grown in popularity as the Internet of Things 

(IoT) [5] continues to change daily lives. Numerous networked 

devices that offer automation and convenience are installed in 

these homes. However, there are security dangers associated 

with these devices' interconnectedness. In order to protect IoT-

enabled smart homes from possible attacks, intrusion 

detection systems (IDS) are essential. The specific features 

and difficulties of this environment must be carefully 

considered when creating an intrusion detection model [8] for 

IoT-enabled smart homes. 

The model should be able to identify and stop many kinds of 

assaults, including device tampering, data breaches, and 

illegal access. Using machine learning techniques is one 

Method for creating an intrusion detection model for IoT- 

enabled smart homes. The enormous volume of data produced 

by IoT devices can be analyzed by these algorithms, which can 

then spot trends that might point to security lapses. The 

program may learn to precisely identify and categorize various 

attack types by being trained on a broad dataset that include 

both benign and malevolent actions. The choice of suitable 

sensors and data sources is another crucial component of the 

design. Numerous types of data are produced by IoT- enabled 

smart homes, such as sensor readings, device logs, and 

network traffic. By gathering and examining this information, 

the intrusion model can understand about the typical conduct 

of the ecosystem of smart homes possess the ability to 

recognize an incursion. Additionally, the model must be 

flexible enough to adjust to the ever-changing landscape o f   

smart  houses  with  IoT capabilities. In addition to their 

behavior changing over time, devices may join or depart the 

network. To efficiently identify fresh and evolving threats, the 

intrusion detection model should be capable of learn and 

update its knowledge on a constant basis. 

It is essential to ensure the security of smart IoT networks, 

which demands ongoing asset and network monitoring to stop 

unanticipated actions that can expose private information. The 

effectiveness of real-time IoT applications is enhanced by 

machine learning-based approaches, which are carefully 

investigated in the literature. These techniques entail model 

training using publicly available datasets. In order to detect 

intrusions in IoT networks, Prior research projects have mostly 

addressed various machine learning methodologies and 

training models using datasets. There is a significant gap, 

however, given that earlier research has mostly concentrated 

on homogeneous smart IoT networks, ignoring the complexity 

brought forth by layered IoT designs and heterogeneous IoT 

settings. There isn't a thorough analysis of how these elements 

affect the security dynamics of IoT ecosystems in the existing 

research environment. In order to get past the challenges 

caused by heterogeneity, it requires to expand on earlier 

research through considering the layered IoT architecture. The 

aim of this method is to improve and streamline real-time 

Internet of Things applications by offering a more 

comprehensive and flexible method for detecting intrusions in 

various IoT settings. 
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II. METHOD

The following factors ought to be addressed while adopting 

LightGBM with DART for IoT: 

1. Setup for Online Learning: Verify that your IoT data is

in a streaming format so it will be useful to update your model
as new data becomes available.

2. LightGBM and DART Integration: Set up LightGBM to

use the DART boosting type (Dropouts meet Multiple

Additive Regression Trees). When you create your LightGBM

[10] model, you can specify this in the parameters.

3. Concept Drift Adaptation: IoT data frequently exhibits

concept drift, in which the underlying patterns may evolve

over time. By adding diversity to the ensemble, DART's

dropout mechanism aids in managing these shifts. To adjust to

idea drift, retrain your model frequently using the most recent

data.

Adjusting Hyper parameters: Try a range of hyper parameter

parameters, like the dropout Rate (`drop rate`), to see which

setup ideal one for your IoT data. For hyper parameter

tweaking, grid search or Bayesian optimization can be

employed.

4. Feature Engineering: Take into account feature

engineering to extract pertinent information based on the type

of IoT data you have. Make sure to encode categorical

characteristics correctly because LightGBM can handle them

effectively.

5. Observation and Record-Keeping: To monitor the

model's performance over time, put in place a monitoring

mechanism. Keep track of important indicators and keep an

eye out for any decline in model performance, since this could

point to modifications in the underlying patterns of the IoT

data.

6. Resource Constraints: Despite LightGBM reputation

for efficiency, you may still want to take into account the

memory and processing demands in IoT scenarios with limited

resources. As necessary, modify the model's complexity and
other settings.

7. Security Considerations: Security is essential in Internet

of Things applications. Make sure your implementation

adheres to industry standard practices for protecting the model

and data exchange between devices and the model.

Model of Hardware: 

Choosing parts that allow for data processing, control, and 

communication is part of designing a hardware model for an 

Internet of Things smart home system [14]. Here is quick 

rundown of the primary elements commonly found in an 

Internet of Things (IoT) smart home system: 

Microprocessor or microcontroller: 

The IoT device's microprocessor is in control of handling data 

processing and managing other parts. 

Components: Arduino  

Modules for connectivity: 

Facilitates communication between the central control system 

and gadgets. Components: Bluetooth, Wi-Fi, 

Sensors Description: Gather environmental data for 

management and monitoring. 

Components: Temperature sensors, door/window sensors, 

etc. 

Actuators Description: Perform activities in response to 

commands received. 

Components: servos, motors, relays, or other actuators. 

Source of Power: 

Description: Gives the gadget 

power. Parts: power adapters, 

batteries, User Interface: 

Description: Facilitates user input and engagement. 

Components: LEDs and buttons 

Recollection: 

Description: Holds data and application code. 

Components: RAM for runtime data and flash memory for 

program storage. 
Connectivity via Cloud: 

Description: Uses cloud services to enable remote control and 

monitoring. Components: Local PC integration 

Communication and Protocols: 

Description: Specifies how gadgets can speak to one another. 

Elements: HTTP 

Edge Computing: In order to minimize latency and reliance on 

cloud services, data Processing is done locally. 

Additional processing power for local data processing is one 

of the components. The particular needs of the application, 

such as the kinds of devices, communication range, power 

consumption, and security issues, must be considered when 

creating an Internet of Things (IoT) system for the home. 

Cost, power limitations, and the required features of the smart 

home system will all influence the component choices. 

We describe and evaluate the outcomes of using the DART 

(Dropouts meet Multiple Additive Regression Trees) model in 

conjunction with the LightGBM (Light Gradient Boosting 

Machine) model for intrusion detection in Internet of Things 

(IoT) systems. We evaluate the model’s effectiveness on the 

Edge, Middleware, and Application layers of the Internet of 

Things. Additionally, we contrast the result of LightGBM with 

DART with a number of standard methodologies for machine 

learning such as K-Nearest Neighbors (KNN), Random 

Forests [6], Decision Trees, and Support Vector Machines 

(SVM)[7]. 

. 
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 Fig. 1: Intrusion detection system flow chart 

1. Description of the information set and Experimental

Configuration

Preparation of data, training of models, assessment, and

comparison were all steps in the experimental setup used to

evaluate the effectiveness of various machine learning

algorithms performed in the identification of intrusions across

the Edge, Middleware, and Application layers of an Internet of

Things system. The objective was to assess the efficacy of

several algorithms in identifying intrusions within the

framework of Internet of Things networks, with an emphasis

on accuracy, scalability, and efficiency.

The study's datasets were gathered from several IoT

infrastructure tiers. Different factors pertaining to device

activity, network traffic, and device statuses are involved in

each tier. Here is a description of these layers.

1.1 Dataset at the Edge Layer 

Data from Internet of Things devices, including smart plugs, 

motion sensors, temperature sensors, and other devices placed 

at the network's edge, is included into the Edge Layer. The 

data acquired from these gadgets include behavioral and 

network metrics Along with device-specific data: 

• Device-specific parameters include Firmware Version,

Device ID, Device Type, Device Location, and Device State.

• IP address, MAC address, traffic volume, packet size,

protocol, and connection frequency are examples of network
parameters.

Operation Type, Resource Utilization, and Authentication

Attempts are examples of behavioral parameters.

With the help of these factors, the model can keep an eye on 

network connections and device behaviors, spotting any 

irregularities that can point to security breaches. 

1.2 Dataset for the Middleware Layer Communications 
between the application and edge layers are handled by this 

layer. 

The dataset includes the following: 

• Connection Details: Protocol, Session Duration, Source ID,

Source Address, and Destination Address. Operational
Metrics: Data Consistency, Operation Logs, Authentication

Events, and Service

Access Frequency.

• Performance metrics include latency, load balancing

metrics, storage access, CPU and memory usage, and more.

Network interactions, session behaviors, and resource usage

patterns are the primary subjects of middleware layer data,

all of which are critical for spotting intrusions and unusual

activity.

1.3 Dataset at the Application Layer Higher-level activities
and analysis executed by apps are included in the Application

Layer dataset.

• Source and Destination Information: Source ID, Source

Address, Destination Service Address, and Destination

Location are important factors.

• Device and Operation Information: Value, Timestamp,
Source Type, and Operation Type.

Operational Status: Label of Normality indicating whether the

process was normal or out of the ordinary. Unusual or

unauthorized access patterns and operations can be detected

thanks to the application layer data, which depicts interactions

between devices and services

Algorithm 1 IoT Security with ML 

Require: Sensor Data S 

Ensure: Secure IoT communication and logging 

1: Step 1: Data Collection (Physical Layer) 

2: Collect raw sensor data S 

3: Apply preprocessing: noise removal, normalization 

4: Transmit P (S) to the Dew Layer 

5: Step 2: Initial Threat Detection (Dew Layer - 

Edge Processing) 

6: Extract key features F (S) (packet size, response 

time, device activity) 

7: Apply Decision Tree DT (F (S)) 

8: if DT (F (S)) = Normal then 9: 

Forward to Middleware 

10: else 

11: Log event BC (F (S)) 12: 

Flag for immediate action 13: 

end if 

14: Forward processed data to Middleware Layer 

15: Step 3: Advanced Threat Analysis 

(Middleware Layer - Gateway) 

16: Apply LightGBM with DART LGBM (F (S)) 17: 

Assign threat level T 

18: if T = Low Risk then 19: 

Allow normal operation 

20: else if T = Medium Risk then 
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21: Log event to BC (F (S)) 
22: else if T = High Risk then 

23: Alert admin Alert (F (S))  

24: Log event to BC (F (S))  

25: end if 

26: Forward high-risk data to Cloud Layer 27: 

Step 4: Final Decision (Cloud Layer) 

28: Apply LightGBM with DART for attack 

classification 

29: Identify attack type Attack Type = LGBM (F (S)) 

30: if Attack Type is confirmed then 

31: Block unauthorized node Block (F (S))  

32: Send security alert (F (S)) 

33: Log attack details to BC (F (S))  

34: end if 

35: Step 5: Continuous Learning and Model 

Updating 

36: Update ML models using real-time feedback 37: 

Optimize hyper parameters based on new attack patterns 

Algorithm 2 Decision Tree for Anomaly Detection 

Require: Extracted IoT Data F (S) 

Ensure: Anomaly Classification (Normal or 
Anomalous) 

1: Train Decision Tree DT (F (S)) using historical data 

2:  Define classification rules based on entropy and 
information gain 

3: for each incoming data sample x does 

4: Apply DT (x) 

5: if DT (x) = Normal then 
6: Forward to Middleware  

7: else 

8: Log event to BC(x)  
9: Flag for immediate 
action 

10: end if 

11:end for 

12: return Classification result 

Algorithm 3 LightGBM with DART for Threat 

Detection and Attack Classification 

Require: Preprocessed IoT Data P (S) 

Ensure: Threat Level (Low, Medium, High) and 

Attack Type Classification 

1: Train LightGBM with DART 

2: Use gradient boosting for improved accuracy 

3: Apply DART to handle missing values  

4: Predict anomaly levels 

5: if T = Low Risk then 

 6: Allow normal operation 

7: else if T = Medium Risk then 8: 

Log event BC(x) 

9: else if T = High Risk then 

10: Alert admin Alert(x) 

11: Log to BC(x)  

12: end if 

13: Forward high-risk data to Cloud Layer 

14: At Cloud Layer: 

15: Apply LightGBM with DART for final attack 
classification 

16: if Attack is confirmed then 17: 

Block unauthorized node Block(x) 

18: Send security alert Alert(x)  

19: end if 

20: return Final security decision 

Fig.2 LightGBM-DART Dataset Distribution 

Fig. 3 LightGBM Dataset Distribution 

Fig. 4 Dataset Distribution ML Models 

Modeling data the performance of many machines learning 
technique, including LightGBM with DART, is assessed for 
intrusion detection in this study tasks spanning the Edge, 
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Middleware, and Application layers of IoT systems. To 

identify the best model for detecting intrusions in IoT contexts, 

the methodology includes data pretreatment, model training, 

and thorough performance evaluation against a collection of 

conventional machine learning algorithms 

Below is a summary of the actions taken 

preprocessing the Dataset? 

Its quality and suitability for training prior to the use of any 

Machine learning models. The following steps were engaged 

in this process: 

Managing Missing Values: Model performance may suffer 

from missing data. We used imputation techniques to deal 

with missing information, imputed numerical features using 

the mean value and mode-based category characteristics. 

Rows that lacked information for important attributes were 

removed from the dataset. 

Normalization: The dataset was normalized to avoid 

characteristics with disparate scales unduly impacting model 

training. Every numerical characteristic was scaled to fall into 

0 and 1 using the Min-Max Scaling technique. For distance-

based models such as Support Vector Machines (SVM) and K-

Nearest Neighbors (KNN) this stage very crucial. Data 

Splitting: The dataset was used to construct training and 

testing sets. Eighty percent of the data was used as training 

set, remaining twenty percent was in the testing set. To ensure 

that the model's performance is generalized and not over-

fitted, this divide enables the evaluation of each model on 

unseen data 

III. FINDINGS AND DISCUSSION

Performance of LightGBM with DART 

Using key evaluation metrics, the performance of LightGBM 

with DART on the Edge, Middleware, and Application layers 

of the IoT architecture is compiled in the following table: 

Layer Accuracy Precision Recall F1- 
Score 

AUC 

Edge Layer 92.4% 91.8% 93.2% 92.5% 0.92 
4 

Middleware 

Layer 

93.1% 92.7 93.6% 93.2% 0.93 
1 

Application 

Layer 

94.5% 94.1% 94.9% 94.5% 0.94 
5 

This is a thorough comparison of LightGBM with DART and 

other well-known machine learning algorithms across all 

levels (Edge, Middleware, and Application), such as XGBoost 

[8], LightGBM, Cat Boost, Histogram-Based Gradient 

Boosting, and Random Forest: 

Algorithm 

Edge 

Accuracy 

Middleware 

Accuracy 

Application 

Accuracy 

LightGBM with 

DART 
92.4% 93.1% 94.5% 

XGBoost 90.99% 89.50% 89.9% 

LightGBM 90.4% 90.00% 90.91% 

Cat Boost 88.95% 89.60% 89.1% 

Histogram-Based 

Gradient 

Boosting 

89.75% 89.70% 89.72% 

Random Forest 89.3% 89.2% 90.8% 

Decision Tree 91.3% 90.00% 88.8% 

KNN 88.5% 88.8% 88.2% 

All IoT layers are adequately served by LightGBM with 

DART; however, LightGBM (without DART) somewhat 

exceeds it regarding precision and accuracy, and recall, 

particularly at the Edge and Application layers. While both Cat 

Boost and XGBoost generate competitive outcomes, XGBoost 

performs marginally better on the Middleware and 

Application layers. High accuracy is attained by Histogram- 

Based Gradient Boosting in the Edge and Middleware layers, 

but it lags behind in the Application layer. Random Forest is 

less successful for the intricate patterns in IoT intrusion 

detection than the boosted 

Impact of Dataset Size on Performance 

By evaluating the model on datasets ranging in size from 

10,000 to 100,000 records, the impact of dataset size on 

LightGBM with DART performance was examined. The 

findings demonstrated that the model's effectiveness increased 

as the quantity of the dataset increased, but it became less 

useful for identifying intricate patterns in IoT intrusion 

detection. 

Edge Layer: As the dataset size grew, accuracy rose from 

97.4% to 98.4%. 

Middleware Layer: Accuracy improved from 97.2% to 97.9%. 

Application Layer: 99.1% accuracy increased from 98.6%. 

This proved LightGBM with DART's great scalability and 

advantages with bigger datasets, allowing it to detect more 

intricate patterns and improve intrusion detection. Scalability 
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Was demonstrated by LightGBM using DART, and as the 

dataset expanded, so did its accuracy. However, as the dataset 

grew, Histogram-Based Gradient Boosting and XGBoost also 

demonstrated impressive performance, demonstrating their 

resilience for extensive IoT contexts. 

Performance of algorithms for machine learning w.r.t latency 

When assessing how well machine learning algorithms 

function in an intrusion detection system, latency is a crucial 

factor. It describes how long an algorithm takes to process 

incoming data and produce output. Because of their distinct 

operating needs, latency analysis is especially crucial in the 

edge, middleware, and application layers. For a small dataset 

size of 100 transactions, a thorough theoretical comparison of 

algorithm latency across different levels can be found below. 

Algorithm 

Edge Layer 

Latency 

(ms) 

Middleware 

Latency (ms) 

Application 

Latency 

(ms) 

LightGBM (DART) 10-15 8-12 5-10

XGBoost 20-30 15-25 10-20

Cat Boost 25-35 20-30 15-25

Histogram-Based 

Gradient Boosting 5-10 4-8 3-7 

Random Forest 15-25 12-20 10-15

Decision Tree 3-8 3-7 2-6 

SVM 30-50 20-40 15-30

KNN 50-80 40-70 30-60

Different levels have different latency considerations for IoT 

intrusion detection. Because of their low latency and 

efficiency, lightweight algorithms like Decision Tree and 

Histogram-Based Gradient Boosting are favored at the Edge 

Layer. Balanced models that provide a trade-off between 

accuracy and latency, such Random Forest and LightGBM 

(with DART) are advantageous for the Middleware Layer. 

Advanced algorithms like LightGBM, Histogram-Based 

Gradient Boosting, and Cat Boost perform exceptionally well 

at the Application Layer, where increased latency is tolerable 

because of superior processing 

Fig. 5 LightGBM-Dart Prediction Accuracy 

FIG. 6 LIGHT GBM PREDICTION ACCURACY 

According to the findings, LightGBM with DART is very 

good at identifying intrusions in IoT systems at the Edge, 

Middleware, and Application layers. Compared to traditional 

machine learning, the model performed better regarding recall, 

accuracy, precision, and robustness, achieving remarkable 

performance metrics. LightGBM effectiveness in managing 

high-dimensional, complicated data is advantageous for the 

Edge layer, which contains real-time data from IoT devices. 

Similar to this, the model maintained its excellent performance 

in the Middleware and Application levels, where data flows 

and service interactions are more dynamic. This makes the 

model perfect for identifying intrusions in actual IoT systems. 

SVM, KNN, Random Forests, and Decision Trees, However, 

performed worse, particularly when working with large 

datasets that had intricate linkages. Even though Random 

Forests did reasonably well, they were still not as good as 

LightGBM, especially when it came to accuracy and precision. 

The application of artificial data for training the model is one 

of the study's limitations. To further validate the results, real- 

world IoT data should be used in subsequent research. 

Furthermore, investigating deep learning models like 

Convolutional Neural Networks [11] (CNNs) may provide 

even more detecting power for IoT system anomaly detection. 
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