
Design of an Intrusion Detection Model for

Smart Homes Enabled by IOT

Arjun Kadam
Computer Department,

Pillai College of engineering, new Panvel, Mumbai,

Maharashtra - 410206, India

Dr.P.S.Lokhande
Professor, Dept. of Information Technology Pillai

College of engineering, new Panvel, Mumbai

Maharashtra - 410206, India

Abstract—the proposed effort is motivated by a number of issues

brought about by the growing scale, independence, and alluring

characteristics of IoT networks, which have drawn the interest of

cybercriminals. The notable increase in crime rates inside the

Internet of Things ecosystem encourages academics to develop

smarter and more efficient ways to stop and identify these types

of cybercrimes. Recognizing and stopping suspicious network

activity is necessary to combat the growing danger and catch bad

actors before they compromise a particular IoT network or

device. Therefore, the idea of the base of an intrusion detection

system is the desire to keep an eye on system and network

resources for unforeseen activity.

When a system is being attacked, an intrusion detection system

is essential for sending out alarms. However, absence of datasets

for Machine learning algorithms [1], heterogeneous IoT

environments, and high velocity data, traditional investigative

techniques have difficulty identifying new threats, which might

be even more harmful than known ones. At the moment, the pace

of attack is far quicker than the pace of threat detection. Since

many internationally connected IoT devices don't show signs of

an attack, users aren't aware that strange things are happening

in their smart networks. Because of common weaknesses, IoT

systems are vulnerable to exploitation. An intrusion detection

system (IDS) [2] model carefully examines system operations to

anticipate and identify attack patterns because it understands the

significance of IDS in the cybercrime investigation process.

Additionally, it keeps an eye on each user's actions to proactively

stop security breaches, advancing cyber security procedures in

the future.

Keywords: Intrusion Detection System (IDS), IoT Security,

Machine learning algorithms, Threat Detection

I. INTRODUCTION

Smart homes have grown in popularity as the Internet of Things

(IoT) [5] continues to change daily lives. Numerous networked

devices that offer automation and convenience are installed in

these homes. However, there are security dangers associated

with these devices' interconnectedness. In order to protect IoT-

enabled smart homes from possible attacks, intrusion

detection systems (IDS) are essential. The specific features

and difficulties of this environment must be carefully

considered when creating an intrusion detection model [8] for

IoT-enabled smart homes.

The model should be able to identify and stop many kinds of

assaults, including device tampering, data breaches, and

illegal access. Using machine learning techniques is one

Method for creating an intrusion detection model for IoT-

enabled smart homes. The enormous volume of data produced

by IoT devices can be analyzed by these algorithms, which can

then spot trends that might point to security lapses. The

program may learn to precisely identify and categorize various

attack types by being trained on a broad dataset that include

both benign and malevolent actions. The choice of suitable

sensors and data sources is another crucial component of the

design. Numerous types of data are produced by IoT- enabled

smart homes, such as sensor readings, device logs, and

network traffic. By gathering and examining this information,

the intrusion model can understand about the typical conduct

of the ecosystem of smart homes possess the ability to

recognize an incursion. Additionally, the model must be

flexible enough to adjust to the ever-changing landscape o f

smart houses with IoT capabilities. In addition to their

behavior changing over time, devices may join or depart the

network. To efficiently identify fresh and evolving threats, the

intrusion detection model should be capable of learn and

update its knowledge on a constant basis.

It is essential to ensure the security of smart IoT networks,

which demands ongoing asset and network monitoring to stop

unanticipated actions that can expose private information. The

effectiveness of real-time IoT applications is enhanced by

machine learning-based approaches, which are carefully

investigated in the literature. These techniques entail model

training using publicly available datasets. In order to detect

intrusions in IoT networks, Prior research projects have mostly

addressed various machine learning methodologies and

training models using datasets. There is a significant gap,

however, given that earlier research has mostly concentrated

on homogeneous smart IoT networks, ignoring the complexity

brought forth by layered IoT designs and heterogeneous IoT

settings. There isn't a thorough analysis of how these elements

affect the security dynamics of IoT ecosystems in the existing

research environment. In order to get past the challenges

caused by heterogeneity, it requires to expand on earlier

research through considering the layered IoT architecture. The

aim of this method is to improve and streamline real-time

Internet of Things applications by offering a more

comprehensive and flexible method for detecting intrusions in

various IoT settings.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV14IS020086
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 14 Issue 02, February-2025

www.ijert.org
www.ijert.org

II. METHOD

The following factors ought to be addressed while adopting

LightGBM with DART for IoT:

1. Setup for Online Learning: Verify that your IoT data is

in a streaming format so it will be useful to update your model
as new data becomes available.

2. LightGBM and DART Integration: Set up LightGBM to

use the DART boosting type (Dropouts meet Multiple

Additive Regression Trees). When you create your LightGBM

[10] model, you can specify this in the parameters.

3. Concept Drift Adaptation: IoT data frequently exhibits

concept drift, in which the underlying patterns may evolve

over time. By adding diversity to the ensemble, DART's

dropout mechanism aids in managing these shifts. To adjust to

idea drift, retrain your model frequently using the most recent

data.

Adjusting Hyper parameters: Try a range of hyper parameter

parameters, like the dropout Rate (`drop rate`), to see which

setup ideal one for your IoT data. For hyper parameter

tweaking, grid search or Bayesian optimization can be

employed.

4. Feature Engineering: Take into account feature

engineering to extract pertinent information based on the type

of IoT data you have. Make sure to encode categorical

characteristics correctly because LightGBM can handle them

effectively.

5. Observation and Record-Keeping: To monitor the

model's performance over time, put in place a monitoring

mechanism. Keep track of important indicators and keep an

eye out for any decline in model performance, since this could

point to modifications in the underlying patterns of the IoT

data.

6. Resource Constraints: Despite LightGBM reputation

for efficiency, you may still want to take into account the

memory and processing demands in IoT scenarios with limited

resources. As necessary, modify the model's complexity and
other settings.

7. Security Considerations: Security is essential in Internet

of Things applications. Make sure your implementation

adheres to industry standard practices for protecting the model

and data exchange between devices and the model.

Model of Hardware:

Choosing parts that allow for data processing, control, and

communication is part of designing a hardware model for an

Internet of Things smart home system [14]. Here is quick

rundown of the primary elements commonly found in an

Internet of Things (IoT) smart home system:

Microprocessor or microcontroller:

The IoT device's microprocessor is in control of handling data

processing and managing other parts.

Components: Arduino

Modules for connectivity:

Facilitates communication between the central control system

and gadgets. Components: Bluetooth, Wi-Fi,

Sensors Description: Gather environmental data for

management and monitoring.

Components: Temperature sensors, door/window sensors,

etc.

Actuators Description: Perform activities in response to

commands received.

Components: servos, motors, relays, or other actuators.

Source of Power:

Description: Gives the gadget

power. Parts: power adapters,

batteries, User Interface:

Description: Facilitates user input and engagement.

Components: LEDs and buttons

Recollection:

Description: Holds data and application code.

Components: RAM for runtime data and flash memory for

program storage.
Connectivity via Cloud:

Description: Uses cloud services to enable remote control and

monitoring. Components: Local PC integration

Communication and Protocols:

Description: Specifies how gadgets can speak to one another.

Elements: HTTP

Edge Computing: In order to minimize latency and reliance on

cloud services, data Processing is done locally.

Additional processing power for local data processing is one

of the components. The particular needs of the application,

such as the kinds of devices, communication range, power

consumption, and security issues, must be considered when

creating an Internet of Things (IoT) system for the home.

Cost, power limitations, and the required features of the smart

home system will all influence the component choices.

We describe and evaluate the outcomes of using the DART

(Dropouts meet Multiple Additive Regression Trees) model in

conjunction with the LightGBM (Light Gradient Boosting

Machine) model for intrusion detection in Internet of Things

(IoT) systems. We evaluate the model’s effectiveness on the

Edge, Middleware, and Application layers of the Internet of

Things. Additionally, we contrast the result of LightGBM with

DART with a number of standard methodologies for machine

learning such as K-Nearest Neighbors (KNN), Random

Forests [6], Decision Trees, and Support Vector Machines

(SVM)[7].

.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV14IS020086

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 14 Issue 02, February-2025

www.ijert.org
www.ijert.org

 Fig. 1: Intrusion detection system flow chart

1. Description of the information set and Experimental

Configuration

Preparation of data, training of models, assessment, and

comparison were all steps in the experimental setup used to

evaluate the effectiveness of various machine learning

algorithms performed in the identification of intrusions across

the Edge, Middleware, and Application layers of an Internet of

Things system. The objective was to assess the efficacy of

several algorithms in identifying intrusions within the

framework of Internet of Things networks, with an emphasis

on accuracy, scalability, and efficiency.

The study's datasets were gathered from several IoT

infrastructure tiers. Different factors pertaining to device

activity, network traffic, and device statuses are involved in

each tier. Here is a description of these layers.

1.1 Dataset at the Edge Layer

Data from Internet of Things devices, including smart plugs,

motion sensors, temperature sensors, and other devices placed

at the network's edge, is included into the Edge Layer. The

data acquired from these gadgets include behavioral and

network metrics Along with device-specific data:

• Device-specific parameters include Firmware Version,

Device ID, Device Type, Device Location, and Device State.

• IP address, MAC address, traffic volume, packet size,

protocol, and connection frequency are examples of network
parameters.

Operation Type, Resource Utilization, and Authentication

Attempts are examples of behavioral parameters.

With the help of these factors, the model can keep an eye on

network connections and device behaviors, spotting any

irregularities that can point to security breaches.

1.2 Dataset for the Middleware Layer Communications
between the application and edge layers are handled by this

layer.

The dataset includes the following:

• Connection Details: Protocol, Session Duration, Source ID,

Source Address, and Destination Address. Operational
Metrics: Data Consistency, Operation Logs, Authentication

Events, and Service

Access Frequency.

• Performance metrics include latency, load balancing

metrics, storage access, CPU and memory usage, and more.

Network interactions, session behaviors, and resource usage

patterns are the primary subjects of middleware layer data,

all of which are critical for spotting intrusions and unusual

activity.

1.3 Dataset at the Application Layer Higher-level activities
and analysis executed by apps are included in the Application

Layer dataset.

• Source and Destination Information: Source ID, Source

Address, Destination Service Address, and Destination

Location are important factors.

• Device and Operation Information: Value, Timestamp,
Source Type, and Operation Type.

Operational Status: Label of Normality indicating whether the

process was normal or out of the ordinary. Unusual or

unauthorized access patterns and operations can be detected

thanks to the application layer data, which depicts interactions

between devices and services

Algorithm 1 IoT Security with ML

Require: Sensor Data S

Ensure: Secure IoT communication and logging

1: Step 1: Data Collection (Physical Layer)

2: Collect raw sensor data S

3: Apply preprocessing: noise removal, normalization

4: Transmit P (S) to the Dew Layer

5: Step 2: Initial Threat Detection (Dew Layer -

Edge Processing)

6: Extract key features F (S) (packet size, response

time, device activity)

7: Apply Decision Tree DT (F (S))

8: if DT (F (S)) = Normal then 9:

Forward to Middleware

10: else

11: Log event BC (F (S)) 12:

Flag for immediate action 13:

end if

14: Forward processed data to Middleware Layer

15: Step 3: Advanced Threat Analysis

(Middleware Layer - Gateway)

16: Apply LightGBM with DART LGBM (F (S)) 17:

Assign threat level T

18: if T = Low Risk then 19:

Allow normal operation

20: else if T = Medium Risk then

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV14IS020086
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 14 Issue 02, February-2025

www.ijert.org
www.ijert.org

21: Log event to BC (F (S))
22: else if T = High Risk then

23: Alert admin Alert (F (S))

24: Log event to BC (F (S))

25: end if

26: Forward high-risk data to Cloud Layer 27:

Step 4: Final Decision (Cloud Layer)

28: Apply LightGBM with DART for attack

classification

29: Identify attack type Attack Type = LGBM (F (S))

30: if Attack Type is confirmed then

31: Block unauthorized node Block (F (S))

32: Send security alert (F (S))

33: Log attack details to BC (F (S))

34: end if

35: Step 5: Continuous Learning and Model

Updating

36: Update ML models using real-time feedback 37:

Optimize hyper parameters based on new attack patterns

Algorithm 2 Decision Tree for Anomaly Detection

Require: Extracted IoT Data F (S)

Ensure: Anomaly Classification (Normal or
Anomalous)

1: Train Decision Tree DT (F (S)) using historical data

2: Define classification rules based on entropy and
information gain

3: for each incoming data sample x does

4: Apply DT (x)

5: if DT (x) = Normal then
6: Forward to Middleware

7: else

8: Log event to BC(x)
9: Flag for immediate
action

10: end if

11:end for

12: return Classification result

Algorithm 3 LightGBM with DART for Threat

Detection and Attack Classification

Require: Preprocessed IoT Data P (S)

Ensure: Threat Level (Low, Medium, High) and

Attack Type Classification

1: Train LightGBM with DART

2: Use gradient boosting for improved accuracy

3: Apply DART to handle missing values

4: Predict anomaly levels

5: if T = Low Risk then

 6: Allow normal operation

7: else if T = Medium Risk then 8:

Log event BC(x)

9: else if T = High Risk then

10: Alert admin Alert(x)

11: Log to BC(x)

12: end if

13: Forward high-risk data to Cloud Layer

14: At Cloud Layer:

15: Apply LightGBM with DART for final attack
classification

16: if Attack is confirmed then 17:

Block unauthorized node Block(x)

18: Send security alert Alert(x)

19: end if

20: return Final security decision

Fig.2 LightGBM-DART Dataset Distribution

Fig. 3 LightGBM Dataset Distribution

Fig. 4 Dataset Distribution ML Models

Modeling data the performance of many machines learning
technique, including LightGBM with DART, is assessed for
intrusion detection in this study tasks spanning the Edge,

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV14IS020086
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 14 Issue 02, February-2025

www.ijert.org
www.ijert.org

Middleware, and Application layers of IoT systems. To

identify the best model for detecting intrusions in IoT contexts,

the methodology includes data pretreatment, model training,

and thorough performance evaluation against a collection of

conventional machine learning algorithms

Below is a summary of the actions taken

preprocessing the Dataset?

Its quality and suitability for training prior to the use of any

Machine learning models. The following steps were engaged

in this process:

Managing Missing Values: Model performance may suffer

from missing data. We used imputation techniques to deal

with missing information, imputed numerical features using

the mean value and mode-based category characteristics.

Rows that lacked information for important attributes were

removed from the dataset.

Normalization: The dataset was normalized to avoid

characteristics with disparate scales unduly impacting model

training. Every numerical characteristic was scaled to fall into

0 and 1 using the Min-Max Scaling technique. For distance-

based models such as Support Vector Machines (SVM) and K-

Nearest Neighbors (KNN) this stage very crucial. Data

Splitting: The dataset was used to construct training and

testing sets. Eighty percent of the data was used as training

set, remaining twenty percent was in the testing set. To ensure

that the model's performance is generalized and not over-

fitted, this divide enables the evaluation of each model on

unseen data

III. FINDINGS AND DISCUSSION

Performance of LightGBM with DART

Using key evaluation metrics, the performance of LightGBM

with DART on the Edge, Middleware, and Application layers

of the IoT architecture is compiled in the following table:

Layer Accuracy Precision Recall F1-
Score

AUC

Edge Layer 92.4% 91.8% 93.2% 92.5% 0.92
4

Middleware

Layer

93.1% 92.7 93.6% 93.2% 0.93
1

Application

Layer

94.5% 94.1% 94.9% 94.5% 0.94
5

This is a thorough comparison of LightGBM with DART and

other well-known machine learning algorithms across all

levels (Edge, Middleware, and Application), such as XGBoost

[8], LightGBM, Cat Boost, Histogram-Based Gradient

Boosting, and Random Forest:

Algorithm

Edge

Accuracy

Middleware

Accuracy

Application

Accuracy

LightGBM with

DART
92.4% 93.1% 94.5%

XGBoost 90.99% 89.50% 89.9%

LightGBM 90.4% 90.00% 90.91%

Cat Boost 88.95% 89.60% 89.1%

Histogram-Based

Gradient

Boosting

89.75% 89.70% 89.72%

Random Forest 89.3% 89.2% 90.8%

Decision Tree 91.3% 90.00% 88.8%

KNN 88.5% 88.8% 88.2%

All IoT layers are adequately served by LightGBM with

DART; however, LightGBM (without DART) somewhat

exceeds it regarding precision and accuracy, and recall,

particularly at the Edge and Application layers. While both Cat

Boost and XGBoost generate competitive outcomes, XGBoost

performs marginally better on the Middleware and

Application layers. High accuracy is attained by Histogram-

Based Gradient Boosting in the Edge and Middleware layers,

but it lags behind in the Application layer. Random Forest is

less successful for the intricate patterns in IoT intrusion

detection than the boosted

Impact of Dataset Size on Performance

By evaluating the model on datasets ranging in size from

10,000 to 100,000 records, the impact of dataset size on

LightGBM with DART performance was examined. The

findings demonstrated that the model's effectiveness increased

as the quantity of the dataset increased, but it became less

useful for identifying intricate patterns in IoT intrusion

detection.

Edge Layer: As the dataset size grew, accuracy rose from

97.4% to 98.4%.

Middleware Layer: Accuracy improved from 97.2% to 97.9%.

Application Layer: 99.1% accuracy increased from 98.6%.

This proved LightGBM with DART's great scalability and

advantages with bigger datasets, allowing it to detect more

intricate patterns and improve intrusion detection. Scalability

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV14IS020086
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 14 Issue 02, February-2025

www.ijert.org
www.ijert.org

Was demonstrated by LightGBM using DART, and as the

dataset expanded, so did its accuracy. However, as the dataset

grew, Histogram-Based Gradient Boosting and XGBoost also

demonstrated impressive performance, demonstrating their

resilience for extensive IoT contexts.

Performance of algorithms for machine learning w.r.t latency

When assessing how well machine learning algorithms

function in an intrusion detection system, latency is a crucial

factor. It describes how long an algorithm takes to process

incoming data and produce output. Because of their distinct

operating needs, latency analysis is especially crucial in the

edge, middleware, and application layers. For a small dataset

size of 100 transactions, a thorough theoretical comparison of

algorithm latency across different levels can be found below.

Algorithm

Edge Layer

Latency

(ms)

Middleware

Latency (ms)

Application

Latency

(ms)

LightGBM (DART) 10-15 8-12 5-10

XGBoost 20-30 15-25 10-20

Cat Boost 25-35 20-30 15-25

Histogram-Based

Gradient Boosting 5-10 4-8 3-7

Random Forest 15-25 12-20 10-15

Decision Tree 3-8 3-7 2-6

SVM 30-50 20-40 15-30

KNN 50-80 40-70 30-60

Different levels have different latency considerations for IoT

intrusion detection. Because of their low latency and

efficiency, lightweight algorithms like Decision Tree and

Histogram-Based Gradient Boosting are favored at the Edge

Layer. Balanced models that provide a trade-off between

accuracy and latency, such Random Forest and LightGBM

(with DART) are advantageous for the Middleware Layer.

Advanced algorithms like LightGBM, Histogram-Based

Gradient Boosting, and Cat Boost perform exceptionally well

at the Application Layer, where increased latency is tolerable

because of superior processing

Fig. 5 LightGBM-Dart Prediction Accuracy

FIG. 6 LIGHT GBM PREDICTION ACCURACY

According to the findings, LightGBM with DART is very

good at identifying intrusions in IoT systems at the Edge,

Middleware, and Application layers. Compared to traditional

machine learning, the model performed better regarding recall,

accuracy, precision, and robustness, achieving remarkable

performance metrics. LightGBM effectiveness in managing

high-dimensional, complicated data is advantageous for the

Edge layer, which contains real-time data from IoT devices.

Similar to this, the model maintained its excellent performance

in the Middleware and Application levels, where data flows

and service interactions are more dynamic. This makes the

model perfect for identifying intrusions in actual IoT systems.

SVM, KNN, Random Forests, and Decision Trees, However,

performed worse, particularly when working with large

datasets that had intricate linkages. Even though Random

Forests did reasonably well, they were still not as good as

LightGBM, especially when it came to accuracy and precision.

The application of artificial data for training the model is one

of the study's limitations. To further validate the results, real-

world IoT data should be used in subsequent research.

Furthermore, investigating deep learning models like

Convolutional Neural Networks [11] (CNNs) may provide

even more detecting power for IoT system anomaly detection.

IV. REFERENCES

[1] Huč, J. šalej, and M. Trebar, Analysis of machine learning algorithms
for anomaly detection on edge devices, Sensors, vol. 21, no. 14, pp. 1–
22,2021.

[2] W. Xu and Y. Fan, Intrusion detection systems based on logarithmic
auto encoder and XGBoost, Secur. Commun. Netw., vol. 2022, pp. 1–
8,Apr. 2022.

[3] B.Sharma, L. Sharma, C. Lal, and S. Roy, Anomaly based network
intrusion detection for IoT attacks using deep learning technique,

Computer Electr. Eng., vol. 107, Apr. 2023, Art. No. 108626.
[4] N. Amraoui and B. Zouari, Anomalous behavior detection-based

approach for authenticating smart home system users, Int. J. Inf.
Securer., Vol. 21, no. 3, pp. 611– 636, Jun. 2022.

[5] S. Khare and M. Totaro, Ensemble learning for detecting attacks and

anomalies in IoT smart home, in Proc. 3rd Int. Conf. Data Intel.

secure.(ICDIS), Padre Island, TX, USA, Jun. 2020, pp. 56–63.
[6] M. Ajdani and H. Ghaffary, Introduced a new method for enhancement

of intrusion detection with random forest and PSO algorithm, secure.
Privacy, vol. 4, no. 2, pp. 1–10, Jan. 2021

[7] K. M. M. R. Mazumder, N. M. Kamruzzaman, N. Akter,

N. Arbe, and M. M. Rahman, Network intrusion detection using hybrid
machine learning model,in Proc. Int. Conf. Adv. 55 Electr., Comput.,

Commun. Sustain. Technol. (ICAECT), Bhilai, India, Feb. 2021, pp. 1–

8.

[8] S. Bhati, G. Chugh, F. Al-Turjman, and N. S. Bhati, An improved
ensemble- based intrusion detection technique using XGBoost, Trans.
Emerg. Telecommun. Technol., vol. 32, no. 6, pp. 1– 15, Aug. 2020.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV14IS020086
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 14 Issue 02, February-2025

www.ijert.org
www.ijert.org

[9] Md. K. Islam, P. Hridi, Md. S. Hossain, and H. S. Narma Network
anomaly detection using LightGBM: A gradient boosting classifier, in
Proc. 30th Int. Telecommun. Netw. Appl.Conf. (ITNAC), Melbourne,
VIC, Australia, Nov. 2020

[10] Tang, N. Luktarhan, and Y. Zhao an efficient intrusion detection

method based on LightGBM and autoencoder, Symmetry, vol. 12, no.
9, pp. 1–16, 2020.

[11] S. Ullah, J. Ahmad, M. A. Khan, E. H. AL Khammash,

M. Hadjouni, Y. Y. Ghadi, F. Saeed, and N. Pitropakis, A new intrusion

detection system for the Internet of Things via deep convolutional
neural network and feature engineering, Sensors, vol. 22, no. 10, p.

3607, May 2022.

[12] Wang, M.; Yang, N.; Weng, N. Securing a Smart Home with a
Transformer-Based IoT Intrusion Detection System. Electronics 2023,
12, 2100.

[13] Haider w. Oleiwi, doaa n. Mhawi , and hamed al- raweshidy “ MLTs-
ADCNs: Machine Communication Network” IEEE

AccessVolume1010.1109/ACCESS.2022.3201869September 2022
[14] Shivanjali Khare; Michael Totaro “Ensemble Learning for Detecting

Attacks and Anomalies in IoT Smart Home”
10.1109/ICDIS50059.2020.00014 June2020

[15] Abebe Abeshu and Naveen Chilamkurti. Deep Learning: The Frontier

for Distributed Attack Detection in Fog-To-Things Computing. IEEE
Communications Magazine, 56(2):169– 175, feb 2018.

[16] Sai Jiao and Ren Ping Liu. A survey on physical authentication methods
for smart objects in IoT ecosystem. Internet of Things, 6:100043, Jun
2019.

[17] Alaa Al-Kadi. Anomaly detection in rfid networks 2017.

[18] X. D. Hoang and J. Hu. An efficient hidden markov model training
scheme for anomaly intrusion detection of

Server applications based on system calls. In Proceedings - IEEE

International Conference on Networks, ICON, volume 2, pages 470–

474, 2004.

[19] Alistair Mani Nallasamy S ̧ eker ciglu Y. Ahmet Kaplantzis, Sophia

Shilton. Detecting selective forwarding attacks in wireless sensor

networks using support vector machines. In Proceedings of the 2007
International Conference on Intelligent Sensors, Sensor Networks and

Information Processing, ISSNIP, pages 335–340, 2007.

[20] Heba Ezzat Ibrahim, Sherif M. Badr, and Mohamed A Shaheen.
Adaptive layered approach using machine learning techniques with

gain ratio for intrusion detection systems. CoRR, abs/1210.7650, 2012.
[21] Lingjuan Lyu, Jiong Jin, Sutharshan Rajasegarar, Xuanli He and

Marimuthu Palaniswami. Fog empowered anomaly detection in IoT
using hyper ellipsoidal clustering. IEEE Internet of Things Journal,
4(5):1174–1184, oct 2017.

[22] Ting Chen, Lu a Tang, Yizhou Sun, Zhengzhang Chen, and Kai Zhang.

Entity embedding based anomaly detection for heterogeneous

categorical events. In IJCAI International Joint Conference on Artificial
Intelligence, volume 2016- January, pages 1396– 1403. International

Joint Conferences on Artificial Intelligence, 2016.
[23] Generic and scalable framework for automated time- series anomaly

detection. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, volume 2015-
August, pages 1939–1947. Association for Computing Machinery,
Aug. 2015

[24] Philip K. Chan and Matthew V. Mahoney. Modeling multiple time
series for anomaly detection. In Proceedings - IEEE International
Conference on Data Mining, ICDM, pages 90– 97, 2005.

[25] Federico Giannoni, Marco Mancini, and Federico Marinelli. Anomaly
Detection Models for IoT Time Series Data. Nov 2018.

[26] Arif Sari. A Review of Anomaly Detection Systems in Cloud Networks

and Survey of Cloud Security Measures in Cloud Storage Applications.

Journal of Information Security, 06(02):142– 154, 2015.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV14IS020086
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 14 Issue 02, February-2025

www.ijert.org
www.ijert.org

