

Design of 16-bit RISC Processor
Supraj Gaonkar

1
, Anitha M.

2

1
 M.Tech student, Sir M Visvesvaraya Institute of Technology Bangalore. Karnataka, India

2
Associate Professor Department of Telecommunication Engineering,

Sir M Visvesvaraya Institute of Technology Bangalore. Karnataka, India

Abstract— The Reduced Instruction Set Computer or

RISC is a microprocessor design principle that favours a

smaller and simpler set of instructions that all take same

amount of time to execute. RISC architecture is used

across a wide range of platforms from cellular phones to

super-computers.

 In this paper the behavioural design and

functional characteristics of 16-bit RISC processor is

proposed, which utilizes minimum functional units without

compromising in performance. The design is based on

Harvard architecture having separate data memory and

instruction memory. The instruction word length is 24-bit

wide. The processor supports 16 instructions with three

addressing modes. It has 16 general purpose registers.

Each register can store 16-bit data. The processor has 16-

bit ALU capable of performing 11 arithmetical and logical

operations. The processor also incorporates a flag register

which indicates carry, zero and parity status of the result.

 All the modules in the design are coded in

Verilog. The individual modules are designed and tested at

each level of implementation and finally integrated in a top

level module by appropriate mapping. The design entry

and synthesis is done using Xilinx ISE 10.1 tool and

simulation results are verified using Modelsim 10.2.

Key words: RISC, 16-bit CPU

1. INTRODUCTION

When the controller design become more

complex in CISC and the performance was also not up

to expectations, people started looking on some other

alternatives. It had been found that when a processor

talks to the memory the speed gets killed. So the one

improvement on CPI was to keep the instruction set very

simple. Simple in not the way it works but the way it

looks. That‟s why there are very few instructions in any

typical RISC architecture where processor asks data

from memory probably not other than Load and Store.

At the end the pipelining added a new dimension in the

speed just with the help of some additional registers,

which increases throughput by reducing CPI. Hence the

instruction can be executed effectively in one clock

cycle.

A common misunderstanding of the phrase

"Reduced Instruction Set Computer" is the mistaken

idea that instructions are simply eliminated, resulting in

a smaller set of instructions. In fact, over the years,

RISC instruction sets have grown in size, and today

many of them have a larger set of instructions than many

CISC CPUs. The term "Reduced" in that phrase was

intended to describe the fact that the amount of work

any single instruction accomplishes is reduced at most a

single data memory cycle compared to the "complex

instructions" of CISC CPUs that may require number of

data memory cycles in order to execute a single

instruction. Most microprocessors in today‟s market are

based on either RISC or CISC architectures. Research

has shown that RISC architecture greatly boosts

computer speed by using simplified machine

instructions for frequently used functions. The following

features typically found in RISC based systems.

1) Pre-fetching: The process of fetching next

instruction or instructions into an event queue before

the current instruction is complete is called pre-fetching.

2) Pipelining: Pipelining allows issuing an instruction

prior to the completion of the currently executing one.

3) Superscalar operation: Superscalar operation refers

to a processor that can issue more than one instruction

simultaneously.

2. ARCHITECTURE

The objective of the project is to design a 16-

bit RISC processor based on Harvard architecture which

utilizes minimum functional units. The architecture of

proposed 16-bit Processor is shown in Fig.1. The

processor incorporates 16-bit ALU capable of

performing 11 arithmetical and logical operations, 16-

bit program counter, 24-bit Instruction register, Sixteen

16-bit general purpose registers, 3-bit flag register to

indicate carry, zero and parity.

The processor has four states idle, fetch,

decode and execute. The control unit provides necessary

signal interaction to perform expected function in all the

states. The 16-bit program counter indicates the address

of memory location from which the instruction is to be

fetched. After the execution of current instruction, the

program counter is incremented by one unless „JUMP‟

instruction is encountered. When the „JUMP‟ instruction

is executed the program counter is incremented or

decremented by the amount indicated by the offset

1927

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70828

 Fig. 1 Architecture

.

The instructions are written in instruction

memory. The output of the program counter is provided

to instruction memory as input. The instruction

corresponding to the address pointed by the output of

the program counter is fetched from instruction memory.

The fetched instruction is stored and decoded in

instruction register. In the decode process destination

register, source register, address of the memory location

or immediate value are assigned based on the opcode.

The opcode is used by ALU to perform requested

operation and also used by control unit to generate

necessary control signals.

There are sixteen 16-bit general purpose

registers names R0 through R15. The register array has

two read and one write ports. When „reg_wr‟ signal is

enabled, the data is written into a register indicated by

the write address. Otherwise two registers indicated by

the read addresses are read. The ALU performs 11

arithmetical and logical operations. Some of the

operations require two operands, while others need only

one. All the operands for ALU operations are provided

by registers and the result of operation is written back

into the specified destination register through the

multiplexer.

Fetch Unit

The function of fetch unit is to obtain an

instruction from the instruction memory using current

value of the program counter and increment the program

counter value for the next instruction. 16-bit program

counter and instruction memory together form fetch

unit.

Decode Unit

 The function of the instruction decode unit is to

use the 24-bit instruction provided from the previous

fetch unit to index the register file and obtain the register

data values. The instruction register, control unit and

registers together form decode unit.

Execution Unit

 The execution unit of the processor consists of

arithmetic logic unit (ALU) which performs the

operation specified by the opcode.

3 INSTRUCTION SET

The instruction word is 24-bit wide. The first

four bits [23-20] specify the opcode. The next 4-bits

[19-16] represent destination register. Remaining 16-bts

[15-0] represents either immediate value or source

registers Rx and Ry or address location depending upon

the type of instruction.

 Table 1 Instruction Set

1928

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70828

The instructions can be classified into the following five

functional categories: data transfer operations,

arithmetic operations, logical operations, branching

operations and control operations.

Data Transfer Operations

This group of instructions copies data from a location

called source to another location called destination

without modifying the contents of the source. MVI,

LOAD and STORE instructions come under this

category.

Arithmetic Operations
These instructions perform arithmetic operations such as

addition (ADD), subtraction (SUB), multiplication

(MUL), increment (INC) and decrement (DEC).

Logical Operations

These instructions perform various logical operations

such as AND, OR, XOR, NOT, SHL, SHR

Branching Operations

The instruction JUMP alters the sequence of program

execution

Control Operations
The instruction HLT does not produce any result but

stops the program execution.

4. FSM FOR PROCESSOR

Fig. 2 Finite State Machine

When the „reset‟ signal is high, the processor

will be in the idle state which is indicated by S0. In S0

state all the control signals „pc_en‟, „jmp‟, „reg_wr‟,

„mem_rd‟, and „mem_wr‟ are low. The program counter

points to the first address of instruction memory 0000H.

When the reset signal goes low, the first instruction

stored at 0000H is fetched. Now the processor enters S1

state. This state controls the decode operation.

If the decoded instruction is MVI, the processor enters

S2 state. The MVI instruction commands the processor

to store immediate value into the specified register.

Since in this case a register has to be written, the control

signal „reg_wr‟ is made high by the control unit.

If it is a LOAD instruction, it requires data to be loaded

from memory into a register. Hence in the first phase of

execution i.e. at state S3, „mem_rd‟ signal is made high.

This allows the processor to read the contents of

memory location. In the next phase of execution i.e. at

state S4, the data read from data memory is to be written

into a register. Hence „reg_wr‟ signal is enabled at state

S4.

If the instruction is one of the ALU instructions, the

processor enters state S5. Since ALU instruction

requires operands to be fetched from registers, „reg_wr‟

signal is made low. This allows the processor to read

register contents. In the next phase the result of

operation should be written back into the registers.

Hence „reg_wr‟ signal is made high at S6.

If it is a STORE instruction, in the first phase register

contents are read while „reg_wr‟ signal is low at S7. In

the next phase the data read from the register should be

written in a memory location. Hence „mem_wr‟ signal is

made high at state S8.

After execution of all the instructions except JUMP and

HLT, the processor goes to state S10 which provides

one cycle delay. This delay is necessary for proper

synchronization. In the next state S11, „pc_en‟ signal is

made high which enables the program counter to

generate next sequential address.

If the decoded instruction is JUMP, the processor enters

state S12. In this state control signal „jmp‟ is made high.

This stops the program counter from generating next

sequential address and updates program counter with the

target address.

When the HLT instruction is executed the processor

enters S9 state and does not come out of that state.

Further execution of instructions is stopped.

1929

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70828

5. SIMULATION RESULTS

MVI

The fig. 3 shows the simulation results for MVI

instruction. The instruction MVI R1 0005 is written at

address 0000h of instruction memory. In the decode

process destination register „Rz‟ is assigned with R1 and

„immediate_value‟ is assigned with 0005. At the next

positive edge of the clock cycle when „reg_wr‟ signal

goes high, the value 0005 indicated by „reg_wr_data‟ is

written into the register R1.

Fig. 3 MVI

 LOAD

The instruction LOAD R2 0004 is written at address

0001h of instruction memory. In the decode process

destination register „Rz‟ is assigned with R2 and

„address‟ is assigned with 0004. At the next positive

edge of the clock cycle when „mem_rd‟ signal goes

high, the contents of data memory at address 0004h is

read and found to be 0003. In the next clock cycle when

„reg_wr‟ signal goes high, the value 0003 indicated by

„reg_wr_data‟ is written into the register R2.

Fig. 4 LOAD

ADD, SUB, MUL

Fig. 5 ADD, SUB, MUL

When the instruction ADD R3 R1 R2 is executed, R1

and R2 values are retrieved, addition operation is

performed and the result 0008 is stored in register R3.

Similarly subtraction and multiplication operations

produce results 0002 and 000f which are stored in R4

and R5 respectively.

The result of multiplication operation produces the value

000f. Since the number of 1s in the result is even, parity

flag goes high.

 Control Signals

Fig. 6 Control Signals

1930

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70828

6. CONCLUSION

A 16-bit RISC processor has been designed that utilizes

minimum functional units. The design is based on

Harvard architecture. The design entry and synthesis is

done using Xilinx ISE 10.1 tool. From synthesis report it

is found that the minimum clock period that can be

achieved using the design is 14.95ns. Simulation is done

using Modelsim 10.2 simulator. The simulation output is

compared with the expected results and the functionality

is found correct.

The design can be improved in number of ways. To

achieve a more sophisticated design more features can

be added to the current design. The number of

instructions that the processor supports can be increased.

Pipelining can be added to improve the performance of

the proposed design.

 REFERENCES

[1]. Mamun B, Shabiul I. and Sulaiman S,“A

Single Clock Cycle MIPS RISC Processor

Design using VHDL”

[2]. Hamblen J.“ Synthesis, Simulation, and

Hardware Emulation to Prototype a

Pipelined RISC Computer System”

[3]. Zainalabedin N,“VHDL for Modeling and

Design of Processing Units”

[4]. Takanori M, Satoshi A and Masaaki I, “A

Multithread Processor Architecture Based on

the Continuation”

[5]. Kasuga-Koen, Kasuga, Fukuoka, “ The

Innovative Architecture for Future

Generation High-Performance Processors and

Systems”

[6]. Virendra S. and Michiko I,“Instruction-

Based SelfTesting of Delay Faults in

Pipelined Processors”, IEEE Transaction on

VLSI systems, vol. 14, no.11,pp.1203-1215.

[7]. Patterson A. and Hennessy J,“Computer

Organization & Design”, Morgan Kaufmann

Publishers, 1999

[8]. Peter J Ashenden,“Digital Design, An

embedded systems approach using Verilog”,

Morgan Kaufmann Publishers,2010

[9]. Ramesh Gaonkar,“Microprocessor architecture,

programming and applications with the 8085”,

Penram International Publishing,1989

1931

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70828

