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Abstract— The Reduced Instruction Set Computer or 

RISC is a microprocessor design principle that favours a 

smaller and simpler set of instructions that all take same 

amount of time to execute. RISC architecture is used 

across a wide range of platforms from cellular phones to 

super-computers.  

 In this paper the behavioural design and 

functional characteristics of 16-bit RISC processor is 

proposed, which utilizes minimum functional units without 

compromising in performance. The design is based on 

Harvard architecture having separate data memory and 

instruction memory. The instruction word length is 24-bit 

wide. The processor supports 16 instructions with three 

addressing modes. It has 16 general purpose registers. 

Each register can store 16-bit data. The processor has 16-

bit ALU capable of performing 11 arithmetical and logical 

operations. The processor also incorporates a flag register 

which indicates carry, zero and parity status of the result. 

 All the modules in the design are coded in 

Verilog. The individual modules are designed and tested at 

each level of implementation and finally integrated in a top 

level module by appropriate mapping. The design entry 

and synthesis is done using Xilinx ISE 10.1 tool and 

simulation results are verified using Modelsim 10.2. 
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1. INTRODUCTION 
 

When the controller design become more 

complex in CISC and the performance was also not up 

to expectations, people started looking on some other 

alternatives. It had been found that when a processor 

talks to the memory the speed gets killed. So the one 

improvement on CPI was to keep the instruction set very 

simple. Simple in not the way it works but the way it 

looks.  That‟s why there are very few instructions in any 

typical   RISC architecture  where  processor  asks data  

from memory probably not other than Load and Store. 

At the end the pipelining added a new dimension in the  

speed just with the help of some additional registers, 

which increases throughput by reducing CPI. Hence the  

instruction  can  be  executed  effectively  in  one  clock  

cycle.  

A common misunderstanding of the phrase 

"Reduced Instruction Set Computer" is the mistaken 

idea that instructions are simply eliminated, resulting in 

a smaller set of instructions. In fact, over the years, 

RISC instruction sets have grown in size, and today  

 

 

 

 

 

many of them have a larger set of instructions than many 

CISC CPUs. The term "Reduced" in that phrase was 

intended to describe the fact that the amount of work 

any single instruction accomplishes is reduced at most a 

single data memory cycle compared to the "complex 

instructions" of CISC CPUs that may require number of 

data memory cycles in order to execute a single 

instruction. Most microprocessors in today‟s market are 

based on either RISC or CISC architectures. Research 

has shown that RISC architecture greatly boosts 

computer speed by using simplified machine 

instructions for frequently used functions. The following 

features typically found in RISC based systems. 

 

1) Pre-fetching: The process  of  fetching  next  

instruction  or  instructions  into  an event queue before 

the current instruction is complete is called pre-fetching.  

 

2) Pipelining: Pipelining allows issuing an instruction 

prior to the completion of the currently executing one.   

 

3) Superscalar operation: Superscalar operation refers 

to a processor that can issue more than one instruction 

simultaneously. 

 

 

2. ARCHITECTURE 

 

The objective of the project is to design a 16-

bit RISC processor based on Harvard architecture which 

utilizes minimum functional units. The architecture of 

proposed 16-bit Processor is shown in Fig.1. The 

processor incorporates 16-bit ALU capable of 

performing 11 arithmetical and logical operations, 16-

bit program counter, 24-bit Instruction register, Sixteen 

16-bit general purpose registers, 3-bit flag register to 

indicate carry, zero and parity. 

 

The processor has four states idle, fetch, 

decode and execute. The control unit provides necessary 

signal interaction to perform expected function in all the 

states. The 16-bit program counter indicates the address 

of memory location from which the instruction is to be 

fetched. After the execution of current instruction, the 

program counter is incremented by one unless „JUMP‟ 

instruction is encountered. When the „JUMP‟ instruction 

is executed the program counter is incremented or 

decremented by the amount indicated by the offset 
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  Fig. 1 Architecture 

 

. 

The instructions are written in instruction 

memory. The output of the program counter is provided 

to instruction memory as input. The instruction 

corresponding to the address pointed by the output of 

the program counter is fetched from instruction memory. 

The fetched instruction is stored and decoded in 

instruction register. In the decode process destination 

register, source register, address of the memory location 

or immediate value are assigned based on the opcode. 

The opcode is used by ALU to perform requested 

operation and also used by control unit to generate 

necessary control signals. 

There are sixteen 16-bit general purpose 

registers names R0 through R15. The register array has 

two read and one write ports. When „reg_wr‟ signal is 

enabled, the data is written into a register indicated by 

the write address. Otherwise two registers indicated by 

the read addresses are read. The ALU performs 11 

arithmetical and logical operations. Some of the 

operations require two operands, while others need only 

one. All the operands for ALU operations are provided 

by registers and the result of operation is written back 

into the specified destination register through the 

multiplexer. 

 

Fetch Unit 

The function of fetch unit is to obtain an 

instruction from the instruction memory using current 

value of the program counter and increment the program 

counter value for the next instruction. 16-bit program  

 

 

 

 

 

 

 

counter and instruction memory together form fetch 

unit. 

Decode Unit 

           The function of the instruction decode unit is to 

use the 24-bit instruction provided from the previous 

fetch unit to index the register file and obtain the register 

data values. The instruction register, control unit and 

registers together form decode unit. 

Execution Unit 

 The execution unit of the processor consists of 

arithmetic logic unit (ALU) which performs the 

operation specified by the opcode. 

 

 

 

3 INSTRUCTION SET 

 

The instruction word is 24-bit wide. The first 

four bits [23-20] specify the opcode. The next 4-bits 

[19-16] represent destination register. Remaining 16-bts 

[15-0] represents either immediate value or source 

registers Rx and Ry or address location depending upon 

the type of instruction. 

 

 

 
  Table 1 Instruction Set 
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The instructions can be classified into the following five 

functional categories: data transfer operations, 

arithmetic operations, logical operations, branching 

operations and control operations. 

Data Transfer Operations 

This group of instructions copies data from a location 

called source to another location called destination 

without modifying the contents of the source. MVI, 

LOAD and STORE instructions come under this 

category. 

Arithmetic Operations 
These instructions perform arithmetic operations such as 

addition (ADD), subtraction (SUB), multiplication 

(MUL), increment (INC) and decrement (DEC). 

Logical Operations 

These instructions perform various logical operations 

such as AND, OR, XOR, NOT, SHL, SHR 

Branching Operations 

The instruction JUMP alters the sequence of program 

execution 

Control Operations 
The instruction HLT does not produce any result but 

stops the program execution.  

 

 

4. FSM FOR PROCESSOR 

 

 
Fig. 2 Finite State Machine 

 

 

When the „reset‟ signal is high, the processor 

will be in the idle state which is indicated by S0. In S0 

state all the control signals „pc_en‟, „jmp‟, „reg_wr‟,  

 

 

 

„mem_rd‟, and „mem_wr‟ are low. The program counter 

points to the first address of instruction memory 0000H. 

When the reset signal goes low, the first instruction 

stored at 0000H is fetched. Now the processor enters S1 

state. This state controls the decode operation.  

If the decoded instruction is MVI, the processor enters 

S2 state. The MVI instruction commands the processor 

to store immediate value into the specified register. 

Since in this case a register has to be written, the control 

signal „reg_wr‟ is made high by the control unit. 

If it is a LOAD instruction, it requires data to be loaded 

from memory into a register. Hence in the first phase of 

execution i.e. at state S3, „mem_rd‟ signal is made high. 

This allows the processor to read the contents of 

memory location. In the next phase of execution i.e. at 

state S4, the data read from data memory is to be written 

into a register. Hence „reg_wr‟ signal is enabled at state 

S4.  

If the instruction is one of the ALU instructions, the 

processor enters state S5. Since ALU instruction 

requires operands to be fetched from registers, „reg_wr‟ 

signal is made low. This allows the processor to read 

register contents. In the next phase the result of 

operation should be written back into the registers. 

Hence „reg_wr‟ signal is made high at S6. 

If it is a STORE instruction, in the first phase register 

contents are read while „reg_wr‟ signal is low at S7. In 

the next phase the data read from the register should be 

written in a memory location. Hence „mem_wr‟ signal is 

made high at state S8. 

After execution of all the instructions except JUMP and 

HLT, the processor goes to state S10 which provides 

one cycle delay. This delay is necessary for proper 

synchronization. In the next state S11, „pc_en‟ signal is 

made high which enables the program counter to 

generate next sequential address. 

If the decoded instruction is JUMP, the processor enters 

state S12. In this state control signal „jmp‟ is made high. 

This stops the program counter from generating next 

sequential address and updates program counter with the 

target address. 

When the HLT instruction is executed the processor 

enters S9 state and does not come out of that state. 

Further execution of instructions is stopped. 
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5. SIMULATION RESULTS 

 

MVI 

The fig. 3 shows the simulation results for MVI 

instruction. The instruction MVI R1 0005 is written at 

address 0000h of instruction memory. In the decode 

process destination register „Rz‟ is assigned with R1 and 

„immediate_value‟ is assigned with 0005. At the next 

positive edge of the clock cycle when „reg_wr‟ signal 

goes high, the value 0005 indicated by „reg_wr_data‟ is 

written into the register R1. 

 

Fig. 3 MVI 

 LOAD 

The instruction LOAD R2 0004 is written at address 

0001h of instruction memory. In the decode process 

destination register „Rz‟ is assigned with R2 and 

„address‟ is assigned with 0004. At the next positive 

edge of the clock cycle when „mem_rd‟ signal goes 

high, the contents of data memory at address 0004h is 

read and found to be 0003. In the next clock cycle when 

„reg_wr‟ signal goes high, the value 0003 indicated by 

„reg_wr_data‟ is written into the register R2. 

 

Fig. 4 LOAD 

 

 

 

ADD, SUB, MUL 

 

Fig. 5 ADD, SUB, MUL 

When the instruction ADD R3 R1 R2 is executed, R1 

and R2 values are retrieved, addition operation is 

performed and the result 0008 is stored in register R3. 

Similarly subtraction and multiplication operations 

produce results 0002 and 000f which are stored in R4 

and R5 respectively. 

The result of multiplication operation produces the value 

000f. Since the number of 1s in the result is even, parity 

flag goes high. 

 Control Signals 

 

Fig. 6 Control Signals 
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6. CONCLUSION 

A 16-bit RISC processor has been designed that utilizes 

minimum functional units. The design is based on 

Harvard architecture. The design entry and synthesis is 

done using Xilinx ISE 10.1 tool. From synthesis report it 

is found that the minimum clock period that can be 

achieved using the design is 14.95ns. Simulation is done 

using Modelsim 10.2 simulator. The simulation output is 

compared with the expected results and the functionality 

is found correct. 

The design can be improved in number of ways. To 

achieve a more sophisticated design more features can 

be added to the current design.  The number of 

instructions that the processor supports can be increased. 

Pipelining can be added to improve the performance of 

the proposed design. 
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