

DESIGN & FPGA IMPLEMENTATION OF RECONFIGURABLE FIR

FILTER ARCHITECTURE FOR DSP APPLICATIONS

MAHESH BABU KETHA*, CH.VENKATESWARLU ** KANTIPUDI RAGHURAM**
ECE Department Pragati Engineering

College, Surampalem, India

Abstract

Multi standard wireless communication systems

require the reconfigurable FIR filters with low

complexity architectures. The complexity of FIR filters

is dominated by the coefficient multipliers. A new

hardware efficient reconfigurable FIR filter

architecture is proposed in this paper based on the

proposed binary signed sub coefficient method. Using

the proposed coefficient representation method, the

hardware requirements for multiplexer units are

reduced dramatically with respect to typical methods.
ALTERA QUARTUS II synthesis results of the designed

filter architecture show 39% area reduction in the

resources usage and 15% power reduction over

previously reported two state of the art reconfigurable

architectures.

Keywords: Finite-impulse response digital filters,
Reconfigurability

I. Introduction
Finite impulse response (FIR) filters are the

most popular type of filters implemented in software.

This introduction will help you understand them both

on a theoretical and a practical level. Filters are signal

conditioners. Each one functions by accepting an input

signal, blocking pre-specified frequency components,

and passing the original signal minus those components

to the output. In a typical digital filtering application,

software running on a digital signal processor (DSP)

reads input samples from an A/D converter, performs

the mathematical manipulations dictated by theory for

the required filter type, and outputs the result via a D/A

converter.
An analog filter, by contrast, operates directly on the

analog inputs and is built entirely with analog

components, such as resistors, capacitors, and

inductors. There are many filter types, but the most

common are low pass, high pass, band pass, and band

stop. A low pass filter allows only low frequency

signals (below some specified cut-off) through to its

output, so it can be used to eliminate high frequencies.

A low pass filter is handy, in that regard, for limiting

the uppermost range of frequencies in an audio signal;

it's the type of filter that a phone line resembles. A high

pass filter does just the opposite, by rejecting only

frequency components below some threshold.

II. Finite Impulse Response
A finite impulse response (FIR) filter is a filter

structure that can be used to implement almost any sort

of frequency response digitally. An FIR filter is usually

implemented by using a series of delays, multipliers,

and adders to create the filter's output. Figure 1 shows

the basic block diagram for an FIR filter of length N.

The hk values are the coefficients used for

multiplication, so that the output at time n is the

summation of all the delayed samples multiplied by the

appropriate coefficients.

Figure1. The logical structure of an FIR filter

 The process of selecting the filter's length and

coefficients is called filter design. The goal is to set

those parameters such that certain desired stop band

and pass band parameters will result from running the

filter. Most engineers utilize a program such as

MATLAB to do their filter design. But whatever tool is

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

1www.ijert.org

used, the results of the design effort should be the

same:

 A frequency response plot, like the one shown in

Figure 1, which verifies that the filter meets the desired

specifications, including ripple and transition

bandwidth. The longer the filter (more taps), the more

finely the response can be tuned With the length, N,

and coefficients, float h[N] = { ... }, decided upon, the

implementation of the FIR filter is fairly

straightforward. Listing 1 show how it could be done in

C. Running this code on a processor with a multiply-

and-accumulate instruction (and a compiler that knows

how to use it) is essential to achieving a large number

of taps.

A. Low pass Filter Design Specifications

Typical design parameters for a low pass filter are

shown in Fig.2

The pass-band ripple is typically larger than the

stop-band ripple because it is a deviation about 1

instead of 0. In summary, the pass-band ripple is an

allowed gain deviation, while the stop-band ripple is an

allowed ``leakage'' level.

Figure 2. Illustrations of typical low pass

filter specification in the frequency domain.

In terms of these specifications, we may define

an optimal FIR low pass filter of a given length to be

one which minimizes the stop-band and pass-band

ripple (weighted relatively as desired) for given stop-

band and pass-band edge frequencies. Such optimal

filters are often designed in practice

by Chebyshev methods, as we encountered already in

the study of windows for spectrum

analysis (§3.10,§3.13). Optimal Chebyshev FIR

filters will be discussed further below (in §4.5.2), but

first we look at simpler FIR design methods and

compare to optimal Chebyshev designs for reference.

An advantage of the simpler methods is that they are

more suitable for interactive, real-time, and/or signal-

adaptive FIR filter design.

III. Window Method for FIR Filter Design

The window method for digital filter design is fast,

convenient, and robust, but generally suboptimal. It is

easily understood in terms of the convolution

theorem for Fourier transforms, making it instructive to

study after the Fourier theorems and windows

for spectrum analysis. It can be effectively combined

with the frequency sampling method, as we will see in

§4.6below. This would be an example of using the

window method with the rectangular window. We saw

in §4.3 that such a choice is optimal in the least-

squares sense, but it designs relatively poor audio

filters. Choosing other windows corresponds to

tapering the ideal impulse response to zero instead of

truncating it. Tapering better preserves the shape of the

desired frequency response. By choosing the window

carefully, we can manage various trade-offs so as to

maximize the filter-design quality in a given

application. Window functions are always time limited.

This means there is always a finite integer is thus

always time-limited, as needed for practical

implementation. The window method always designs

a finite-impulse-response (FIR) digital filter (as

opposed to an infinite-impulse-response (IIR) digital

filter). By the dual of the convolution theorem, point

wise multiplication in the time domain corresponds

to convolution in the frequency domain.

IV. PROPOSED SYSTEM
The proposed coefficient representation

technique uses pipelining technique in order to increase

the performance and we also focus on increase the filter

order i.e filter order to save more area as compared to

existing methods. This is accomplished by searching

the common sub expressions in coefficients terms

before filter implementation and sharing them to

eliminate extra computational complexity. In

programmable and reconfigurable filter, the

coefficients are not fixed and it is not easy to find the

common sub expressions for newly applied

coefficients. The conventional FIR filter

implementation approaches (CSD, CSE …) cannot be

usable and the dedicated multipliers are required for

each coefficient multiplication.

A. FIR and IIR Digital Filter Design

Based on combining ever increasing computer

processing speed with higher sample rate processors,

Digital Signal Processors (DSP’s) continue to receive a

great deal of attention in technical literature and new

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

2www.ijert.org

product design. The following section on digital filter

design reflects the importance of understanding and

utilizing this technology to provide precision stand

alone digital or integrated analog/digital product

solutions. By utilizing DSP’s capable of sequencing

and reproducing hundreds to thousands of discrete

elements, design models can simulate large hardware

structures at relatively low cost. DSP techniques can

perform functions such as Fast-Fourier Transforms

(FFT), delay equalization, programmable gain,

modulation, encoding/decoding, and filtering.

• Filter weighting functions (coefficients) can be

calculated on the fly, reducing memory requirements

• Algorithms can be dynamically modified as a function

of signal input.

DSP represents a subset of signal-processing

activities that utilize A/D converters to turn analog

signals into streams of digital data. A stand-alone

digital filter requires an A/D converter (with associated

anti-alias filter), a DSP chip and a PROM or software

driver. An extensive sequence of multiplication’s and

additions can then be performed on the digital data. In

some applications, the designer may also want to place

a D/A converter, accompanied by a reconstruction

filter, on the output of the DSP to create an analog

equivalent signal. A digital filter solution offering a 90

dB attenuation floor and a 20 kHz bandwidth can

consist of up to 10 circuits occupying several square

inches of circuit-board space and costing hundreds of

dollars.

Figure3: A typical digital filter configuration.

Digital filters process digitized or sampled

signals. A digital filter computes a quantized time-

domain representation of the convolution of the

sampled input time function and a representation of the

weighting function of the filter. They are realized by

an extended sequence of multiplications and additions

carried out at a uniformly spaced sample interval.

Simply said, the digitized input signal is

mathematically influenced by the DSP program. These

signals are passed through structures that shift the

clocked data into summers (adders), delay blocks and

multipliers. These structures change the mathematical

values in a predetermined way; the resulting data

represents the filtered or transformed signal. It is

important to note that distortion and noise can be

introduced into digital filters simply by the conversion

of analog signals into digital data, also by the digital

filtering process itself and lastly by conversion of

processed data back into analog.

 When fixed-point processing is used, additional

noise and distortion may be added during the filtering

process because the filter consists of large numbers of

multiplications and additions, which produce errors,

creating truncation noise. Increasing the bit resolution

beyond 16-bits will reduce this filter noise.

Instead of using a commercial DSP with software

algorithms, a digital hardware filter can also be

constructed from logic elements such as registers and

gates, or an integrated hardware block such as an

FPGA (Field Programmable Gate Array). Digital

hardware filters are desirable for high bandwidth

applications; the trade-offs are limited design flexibility

and higher cost.

(1) Fixed-Point DSP and FIR (Finite Impulse

Response) Implementations: Fixed-Point DSP

processors account for a majority of the DSP

applications because of their smaller size and

lower cost. The Fixed-Point math requires

programmers to pay significant attention to

the number of coefficients utilized in each

algorithm when multiplying and accumulating

digital data to prevent distortion .The

structure of these algorithms uses a repetitive

delay-and-add format that can be represented

as “DIRECT

FORM-I STRUCTURE”,

Figure 4 Transposed direct forms I FIR Filter

FIR (Finite Impulse Response) filters are

implemented using a finite number “n“ delay taps on a

delay line and “n“ computation coefficients to compute

the algorithm (filter) function. The above structure is

non-recursive, a repetitive delay-and-add format, and is

most often used to produce FIR filters. This structure

depends upon each sample of new and present value

data. FIR filters can create transfer functions that have

no equivalent in linear circuit technology.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

3www.ijert.org

 In applications where linear phase is critical

and long phase delay cannot be tolerated, a linear active

Bessel or a constant delay filter may be a better

selection. Two very different design techniques are

commonly used to develop digital FIR filters:

1. The Window Technique

2. The Equiripple Technique.

i. Window Technique:

The simplest technique is known as

“Windowed” filters. This technique is based on

designing a filter using well-known frequency domain

transition functions called “windows”. The use of

windows often involves a choice of the lesser of two

evils. Some windows, such as the Rectangular, yield

fast roll-off in the frequency domain, but have limited

attenuation in the stop-band along with poor group

delay characteristics. Other windows like the

Blackman, have better stop-band attenuation and group

delay, but have a wide transition-band (the band-width

between the corner frequency and the frequency

attenuation floor). Windowed filters are easy to use,

are scalable (give the same results no matter what the

corner frequency is) and can be computed on-the-fly by

the DSP.

ii. The Equiripple Technique

An Equiripple or Remez Exchange (Parks-

McClellan) design technique provides an alternative to

windowing by allowing the designer to achieve the

desired frequency response with the fewest number of

coefficients. This is achieved by an iterative process of

comparing a selected coefficient set to the actual

frequency response specified until the solution is

obtained that requires the fewest number of

coefficients. Though the efficiency of this technique is

obviously very desirable, there are some concerns.

• For Equiripple algorithms some values may converge

to a false result or not converge at all. Therefore, all

coefficient sets must be pre-tested off-line for every

corner frequency value.

• Application specific solutions (programs) that require

signal tracking or dynamically changing performance

parameters are typically better suited for windowing

since convergence is not a concern with windowing.

• Equiripple designs are based on optimization theory

and require an enormous amount of computation effort.

With the availability of today’s desktop computers, the

computational intensity requirement is not a problem,

but combined with the possibility of convergence

failure; Equiripple filters typically cannot be designed

on-the-fly within the DSP.

 Analog filters beyond 10 poles are very

difficult to realize and tend to be noisy

Figure5: low pass Equiripple FIR filter

(2) The Floating-Point DSP and IIR (Infinite Impulse

Response) Implementations

Figure6: Bi-quad digital filter structures

V. Digital to Analog Conversion (D/A)

 As with input signals to A/D converters,

waveforms created by D/A converters also exhibit

errors. For each input digital data point, the D/A holds

the corresponding value until the next sample period.

Therefore, the output waveform exists as a sequence of

steps. This output, a kind of “sample-and-hold” – is

known as a “first-order hold.” In non-reconfigurable

filters, these coefficients are constant and shift

operation is done by hardwiring. The long tree of

adders in multiplier implementation increases

switching activity and physical capacitance and then

power consumption. Some techniques have been

proposed to minimize the number of required adders

for multiplier implementation. Canonical signed digit

(CSD) coefficient representation [1] and Common Sub

expression Elimination (CSE) [2] methods are well

known approaches which produce FIR filter coefficient

multipliers with low complexity. In fixed coefficients

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

4www.ijert.org

FIR filter application, the CSE is an efficient approach

to share the common sub expressions. The conventional

FIR filter implementation approaches (CSD, CSE …)

cannot be usable and the dedicated multipliers are

required for each coefficient multiplication. Several

methods have been proposed in [3-7] to implement the

reconfigurable FIR filters. In [3] a fully programmable

multiply accumulates (MAC) based filter processor has

been proposed which is suffering from large delay of

long data path, large area and power consumption

requirements.

 An interesting CSD based reconfigurable FIR

filter architectures have been proposed in [4] and [5],

where its area and power consumption are also large.

Two other efficient reconfigurable FIR filter

implementation approaches have been presented in [6]

and [7]. These works have been focused on the

implementing of FIR filter by partitioning the filter

coefficient into fixed groups (sub-coefficients) and pre-

computing the products of input data with these

constant fixed sub coefficients. These partial products

are distributed inside the chip instead of input data and

properly selected by filter tap multiplexers to compose

the desired coefficient multiplication.

Fig. 7 Implementation of coefficient multiplication

using the coefficient partitioning approach

Fig. 8 Reconfigurable FIR filter architecture

VI. Proposed Reconfigurable Fir Filter

Architecture

 The proposed coefficient representation

technique uses signed digit to represent each sub-

coefficients. In conventional coefficient partitioning

method, the main coefficient may be assumed signed

value, but the sub-coefficients are not signed. For m-bit

word length sub-coefficients case, their values are in 0

~ 2m-1 range.

Eight partial products are calculated by pre-

computer block using shift/sum operation and

distributed to each tap's PE block. In practical

implementation just four ×1, ×3, ×5, ×7 partial products

are implemented in pre-computer block and other

products (×2, ×4, ×6, ×8) are composed by simple

hardwire shift operation of above four partial products

inside PE block. The required four sub-coefficients to

compose the desired coefficient are selected by four 8:1

multiplexers, which are controlled by Mux control

block. This block uses hi,j bits of each sub coefficient to

control the selection bits of multiplexers. Note that it is

need to eight partial products (×1, ×3, ×5, ×7, ×9, ×11,

×13 and ×15 in practical implementation) and four 16:1

multiplexers in conventional reconfigurable FIR filter

architecture. The selected four partial products in PE

block, after hardwire shift operation are combined by

add/sub operation while controlled by Add/Sub control

block. This block uses the sign bit of each sub-

coefficient, and control the add/sub block. To

implement the multiplication by zero for each sub

coefficient, the multiplexer blocks are followed by

AND gates, which is controlled by Mux control block.

Three full add/sub bocks are used to combine the

partial products of sub coefficients.

Fig. 9 Proposed reconfigurable FIR filter architecture

using 4bit BSS representation

VII. IMPLEMENTATION OF ALGORITHM

 A primary objective of this project was to

develop a synthesizable model for the AES128

encryption algorithm. Synthesis is the process of

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

5www.ijert.org

converting the register transfer level (RTL)

representation of a design into an optimized gate-level

net list. This is a major step in ASIC design flow that

takes an RTL model closer to a low-level hardware

implementation.

Figure 10.Simulated output.

A. Synthesis Timing Result

 The synthesis tool optimizes the

combinational paths in a design. In General, four types

of combinational paths can exist in any design: [3]

1- Input port of the design under test to input

of one internal flip-flip

2- Output of an internal flip-flop to input of

another flip-flip

3- Output of an internal flip-flop to output

port of the design under test

4- A combinational path connecting the

input and output ports of the design under

test

The last DC command in the script developed in

previous section, instructs the tool to report the path

with the worst timing. In this case, the path with the

worst timing is a combinational path of type two. The

delay associated with this path is the summation of

delays of all combinational gates in the path plus the

Clock-To-Q delay of the originating flip-flop, which

was calculated as 24.09ns.

 By considering the setup time of the destination

flip-flop in this path, which is 0.85ns, the 40MHz clock

signal satisfies the worst combinational path delay.

The delays of combinational gates, setup time of flip-

flops and Clock-To-Q values are derived from the

LSI_10k library file that was used for the mapping step

during synthesis

B. Synthesis Area Result

 The synthesis area report shows the total

number of cells and nets in the net list. It also uses the

area parameter associated with each cell in the

LSI_10K library file, to calculate the total

combinational and sequential area of the net list. The

total area of the gate level net list is unknown since it

depends on total area of the interconnects, which itself

is a function of the wiring load model used in physical

design. The total cell area in the net list is reported as

22978 units, which is the sum of combinational and

sequential areas.

 Figure 11.Flow summary report

 To enforce the synthesis tool to create the

most compact net list, the area of the gate level net list

was constrained to zero during the synthesis process.

As a result, the only constraint violation, which is

expected, is related to the area as shown bellow:.

CONCLUSION

 A new hardware efficient reconfigurable FIR

filter architecture has been presented in this paper using

proposed coefficient representation. Filter coefficients

has been partitioned to smaller sub coefficients based

on proposed binary signed sub coefficients. The partial

products of all possible sub coefficients and input data

have been calculated in pre-computer block and results

are distributed on filter taps to compose the coefficient

multiplication. Two reconfigurable FIR filters based on

4-bit partitioning were designed and synthesized.

REFERENCES:
[1] M. Potkonjak, M. B. Srivastava, and A.

Chandrakasan, “Efficient substitution of multiple

constant multiplications by shifts and additions

using iterative pairwise matching” in Proc. 31st

ACM/IEEE Design Automation Conf., 1994, pp.

189–194.

[2] I. C. Park and H. J. Kang, “FIR filter synthesis

algorithms for minimizing the delay and the

number of adders,” IEEE Trans. Circuits Syst. II,

vol. 48, no. 8, pp. 770–777, Aug. 2001.

[3]. R. I. Hartley, “Subexpression sharing in filters

using canonic signed digit multipliers,” IEEE

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

6www.ijert.org

Trans. Circuits Syst. II, vol. 43, no. 10, pp. 677–688,

Oct. 1996.

[4]. Shahnam Mirzaei, Anup Hosangadi, Ryan

Kastner, “FPGA Implementation of High Speed FIR

Filters

Using Add and Shift Method”, International

Conference on Computer Design, (ICCD), pp 308-

313, 2006.

[5]. R. Mahesh and A. P. Vinod, “Reconfigurable

low cmplexity FIR filters for software radio

receivers,”

in Proc. 17th IEEE Int. Symp. Personal Indoor

Mobile Radio Commun. (PIMRC), Helsinki, Finland,

Sep.

2006, pp. 1–5.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

7www.ijert.org

