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Abstract  
 

Multi standard wireless communication systems 

require the reconfigurable FIR filters with low 

complexity architectures. The complexity of FIR filters 

is dominated by the coefficient multipliers. A new 

hardware efficient reconfigurable FIR filter 

architecture is proposed in this paper based on the 

proposed binary signed sub coefficient method. Using 

the proposed coefficient representation method, the 

hardware requirements for multiplexer units are 

reduced dramatically with respect to typical methods. 
ALTERA QUARTUS II synthesis results of the designed 

filter architecture show 39% area reduction in the 

resources usage and 15% power reduction over 

previously reported two state of the art reconfigurable 

architectures. 
 

Keywords: Finite-impulse response digital filters, 
Reconfigurability  

 

I. Introduction  
Finite impulse response (FIR) filters are the 

most popular type of filters implemented in software. 

This introduction will help you understand them both 

on a theoretical and a practical level. Filters are signal 

conditioners. Each one functions by accepting an input 

signal, blocking pre-specified frequency components, 

and passing the original signal minus those components 

to the output. In a typical digital filtering application, 

software running on a digital signal processor (DSP) 

reads input samples from an A/D converter, performs 

the mathematical manipulations dictated by theory for 

the required filter type, and outputs the result via a D/A 

converter. 
An analog filter, by contrast, operates directly on the 

analog inputs and is built entirely with analog 

components, such as resistors, capacitors, and 

inductors. There are many filter types, but the most 

common are low pass, high pass, band pass, and band 

stop. A low pass filter allows only low frequency 

signals (below some specified cut-off) through to its 

output, so it can be used to eliminate high frequencies. 

A low pass filter is handy, in that regard, for limiting 

the uppermost range of frequencies in an audio signal; 

it's the type of filter that a phone line resembles. A high 

pass filter does just the opposite, by rejecting only 

frequency components below some threshold.  

 

II. Finite Impulse Response 
A finite impulse response (FIR) filter is a filter 

structure that can be used to implement almost any sort 

of frequency response digitally. An FIR filter is usually 

implemented by using a series of delays, multipliers, 

and adders to create the filter's output. Figure 1 shows 

the basic block diagram for an FIR filter of length N. 

The hk values are the coefficients used for 

multiplication, so that the output at time n is the 

summation of all the delayed samples multiplied by the 

appropriate coefficients. 

Figure1. The logical structure of an FIR filter 

         

            The process of selecting the filter's length and 

coefficients is called filter design. The goal is to set 

those parameters such that certain desired stop band 

and pass band parameters will result from running the 

filter. Most engineers utilize a program such as 

MATLAB to do their filter design. But whatever tool is 
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used, the results of the design effort should be the 

same: 

           A frequency response plot, like the one shown in 

Figure 1, which verifies that the filter meets the desired 

specifications, including ripple and transition 

bandwidth. The longer the filter (more taps), the more 

finely the response can be tuned With the length, N, 

and coefficients, float h[N] = { ... }, decided upon, the 

implementation of the FIR filter is fairly 

straightforward. Listing 1 show how it could be done in 

C. Running this code on a processor with a multiply-

and-accumulate instruction (and a compiler that knows 

how to use it) is essential to achieving a large number 

of taps. 

A. Low pass Filter Design Specifications 

Typical design parameters for a low pass filter are 

shown in Fig.2  

The pass-band ripple is typically larger than the 

stop-band ripple because it is a deviation about 1 

instead of 0. In summary, the pass-band ripple is an 

allowed gain deviation, while the stop-band ripple is an 

allowed ``leakage'' level. 

 

 

Figure 2. Illustrations of typical low pass 

filter specification in the frequency domain. 

 

In terms of these specifications, we may define 

an optimal FIR low pass filter of a given length to be 

one which minimizes the stop-band and pass-band 

ripple (weighted relatively as desired) for given stop-

band and pass-band edge frequencies. Such optimal 

filters are often designed in practice 

by Chebyshev methods, as we encountered already in 

the study of windows for spectrum 

analysis (§3.10,§3.13). Optimal Chebyshev FIR 

filters will be discussed further below (in §4.5.2), but 

first we look at simpler FIR design methods and 

compare to optimal Chebyshev designs for reference.     

An advantage of the simpler methods is that they are 

more suitable for interactive, real-time, and/or signal-

adaptive FIR filter design. 

 
III. Window Method for FIR Filter Design 

The window method for digital filter design is fast, 

convenient, and robust, but generally suboptimal. It is 

easily understood in terms of the convolution 

theorem for Fourier transforms, making it instructive to 

study after the Fourier theorems and windows 

for spectrum analysis. It can be effectively combined 

with the frequency sampling method, as we will see in 

§4.6below.  This would be an example of using the 

window method with the rectangular window. We saw 

in §4.3 that such a choice is optimal in the least-

squares sense, but it designs relatively poor audio 

filters. Choosing other windows corresponds to 

tapering the ideal impulse response to zero instead of 

truncating it. Tapering better preserves the shape of the 

desired frequency response. By choosing the window 

carefully, we can manage various trade-offs so as to 

maximize the filter-design quality in a given 

application. Window functions are always time limited. 

This means there is always a finite integer is thus 

always time-limited, as needed for practical 

implementation. The window method always designs 

a finite-impulse-response (FIR) digital filter (as 

opposed to an infinite-impulse-response (IIR) digital 

filter). By the dual of the convolution theorem, point 

wise multiplication in the time domain corresponds 

to convolution in the frequency domain.  

IV. PROPOSED SYSTEM 
The proposed coefficient representation 

technique uses pipelining technique in order to increase 

the performance and we also focus on increase the filter 

order i.e filter order to save more area as compared to 

existing methods. This is accomplished by searching 

the common sub expressions in coefficients terms 

before filter implementation and sharing them to 

eliminate extra computational complexity. In 

programmable and reconfigurable filter, the 

coefficients are not fixed and it is not easy to find the 

common sub expressions for newly applied 

coefficients. The conventional FIR filter 

implementation approaches (CSD, CSE …) cannot be 

usable and the dedicated multipliers are required for 

each coefficient multiplication. 

 

A. FIR and IIR Digital Filter Design 

Based on combining ever increasing computer 

processing speed with higher sample rate processors, 

Digital Signal Processors (DSP’s) continue to receive a 

great deal of attention in technical literature and new 
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product design.  The following section on digital filter 

design reflects the importance of understanding and 

utilizing this technology to provide precision stand 

alone digital or integrated analog/digital product 

solutions. By utilizing DSP’s capable of sequencing 

and reproducing hundreds to thousands of discrete 

elements, design models can simulate large hardware 

structures at relatively low cost.  DSP techniques can 

perform functions such as Fast-Fourier Transforms 

(FFT), delay equalization, programmable gain, 

modulation, encoding/decoding, and filtering.    

• Filter weighting functions (coefficients) can be 

calculated on the fly, reducing memory requirements  

• Algorithms can be dynamically modified as a function 

of signal input.  

DSP represents a subset of signal-processing 

activities that utilize A/D converters to turn analog 

signals into streams of digital data.  A stand-alone 

digital filter requires an A/D converter (with associated 

anti-alias filter), a DSP chip and a PROM or software 

driver.  An extensive sequence of multiplication’s and 

additions can then be performed on the digital data.  In 

some applications, the designer may also want to place 

a D/A converter, accompanied by a reconstruction 

filter, on the output of the DSP to create an analog 

equivalent signal.  A digital filter solution offering a 90 

dB attenuation floor and a 20 kHz bandwidth can 

consist of up to 10 circuits occupying several square 

inches of circuit-board space and costing hundreds of 

dollars.   

 
Figure3: A typical digital filter configuration. 

 

Digital filters process digitized or sampled 

signals.  A digital filter computes a quantized time-

domain representation of the convolution of the 

sampled input time function and a representation of the 

weighting function of the filter.  They are realized by 

an extended sequence of multiplications and additions 

carried out at a uniformly spaced sample interval.  

Simply said, the digitized input signal is 

mathematically influenced by the DSP program.  These 

signals are passed through structures that shift the 

clocked data into summers (adders), delay blocks and 

multipliers.  These structures change the mathematical 

values in a predetermined way; the resulting data 

represents the filtered or transformed signal. It is 

important to note that distortion and noise can be 

introduced into digital filters simply by the conversion 

of analog signals into digital data, also by the digital 

filtering process itself and lastly by conversion of 

processed data back into analog.  

        When fixed-point processing is used, additional 

noise and distortion may be added during the filtering 

process because the filter consists of large numbers of 

multiplications and additions, which produce errors, 

creating truncation noise.  Increasing the bit resolution 

beyond 16-bits will reduce this filter noise.  

Instead of using a commercial DSP with software 

algorithms, a digital hardware filter can also be 

constructed from logic elements such as registers and 

gates, or an integrated hardware block such as an 

FPGA (Field Programmable Gate Array).  Digital 

hardware filters are desirable for high bandwidth 

applications; the trade-offs are limited design flexibility 

and higher cost. 

(1) Fixed-Point DSP and FIR (Finite Impulse 

Response) Implementations: Fixed-Point DSP 

processors account for a majority of the DSP 

applications because of their smaller size and 

lower cost.  The Fixed-Point math requires 

programmers to pay significant attention to 

the number of coefficients utilized in each 

algorithm when multiplying and accumulating 

digital data to prevent distortion .The 

structure of these algorithms uses a repetitive 

delay-and-add format that can be represented 

as “DIRECT  

FORM-I STRUCTURE”, 

 

 
Figure 4 Transposed direct forms I FIR Filter 

FIR (Finite Impulse Response) filters are 

implemented using a finite number “n“ delay taps on a 

delay line and “n“ computation coefficients to compute 

the algorithm (filter) function.  The above structure is 

non-recursive, a repetitive delay-and-add format, and is 

most often used to produce FIR filters.  This structure 

depends upon each sample of new and present value 

data. FIR filters can create transfer functions that have 

no equivalent in linear circuit technology.   
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 In applications where linear phase is critical 

and long phase delay cannot be tolerated, a linear active 

Bessel or a constant delay filter may be a better 

selection. Two very different design techniques are 

commonly used to develop digital FIR filters: 

1. The Window Technique  

2. The Equiripple Technique. 

 

i. Window Technique: 

The simplest technique is known as 

“Windowed” filters.  This technique is based on 

designing a filter using well-known frequency domain 

transition functions called “windows”.  The use of 

windows often involves a choice of the lesser of two 

evils.  Some windows, such as the Rectangular, yield 

fast roll-off in the frequency domain, but have limited 

attenuation in the stop-band along with poor group 

delay characteristics.  Other windows like the 

Blackman, have better stop-band attenuation and group 

delay, but have a wide transition-band (the band-width 

between the corner frequency and the frequency 

attenuation floor).  Windowed filters are easy to use, 

are scalable (give the same results no matter what the 

corner frequency is) and can be computed on-the-fly by 

the DSP.   

ii. The Equiripple Technique 

An Equiripple or Remez Exchange (Parks-

McClellan) design technique provides an alternative to 

windowing by allowing the designer to achieve the 

desired frequency response with the fewest number of 

coefficients.  This is achieved by an iterative process of 

comparing a selected coefficient set to the actual 

frequency response specified until the solution is 

obtained that requires the fewest number of 

coefficients.  Though the efficiency of this technique is 

obviously very desirable, there are some concerns.  

• For Equiripple algorithms some values may converge 

to a false result or not converge at all.  Therefore, all 

coefficient sets must be pre-tested off-line for every 

corner frequency value.  

• Application specific solutions (programs) that require 

signal tracking or dynamically changing performance 

parameters are typically better suited for windowing 

since convergence is not a concern with windowing.  

• Equiripple designs are based on optimization theory 

and require an enormous amount of computation effort.  

With the availability of today’s desktop computers, the 

computational intensity requirement is not a problem, 

but combined with the possibility of convergence 

failure; Equiripple filters typically cannot be designed 

on-the-fly within the DSP.  

  Analog filters beyond 10 poles are very 

difficult to realize and tend to be noisy 

 
Figure5: low pass Equiripple FIR filter 

(2) The Floating-Point DSP and IIR (Infinite Impulse 

Response) Implementations  

 
Figure6: Bi-quad digital filter structures 

V. Digital to Analog Conversion (D/A)  

        As with input signals to A/D converters, 

waveforms created by D/A converters also exhibit 

errors.  For each input digital data point, the D/A holds 

the corresponding value until the next sample period.  

Therefore, the output waveform exists as a sequence of 

steps.  This output, a kind of “sample-and-hold” – is 

known as a “first-order hold.”  In non-reconfigurable 

filters, these coefficients are constant and shift 

operation is done by hardwiring. The long tree of 

adders in multiplier implementation increases 

switching activity and physical capacitance and then 

power consumption. Some techniques have been 

proposed to minimize the number of required adders 

for multiplier implementation. Canonical signed digit 

(CSD) coefficient representation [1] and Common Sub 

expression Elimination (CSE) [2] methods are well 

known approaches which produce FIR filter coefficient 

multipliers with low complexity. In fixed coefficients 
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FIR filter application, the CSE is an efficient approach 

to share the common sub expressions. The conventional 

FIR filter implementation approaches (CSD, CSE …) 

cannot be usable and the dedicated multipliers are 

required for each coefficient multiplication. Several 

methods have been proposed in [3-7] to implement the 

reconfigurable FIR filters. In [3] a fully programmable 

multiply accumulates (MAC) based filter processor has 

been proposed which is suffering from large delay of 

long data path, large area and power consumption 

requirements. 

         An interesting CSD based reconfigurable FIR 

filter architectures have been proposed in [4] and [5], 

where its area and power consumption are also large. 

Two other efficient reconfigurable FIR filter 

implementation approaches have been presented in [6] 

and [7]. These works have been focused on the 

implementing of FIR filter by partitioning the filter 

coefficient into fixed groups (sub-coefficients) and pre-

computing the products of input data with these 

constant fixed sub coefficients. These partial products 

are distributed inside the chip instead of input data and 

properly selected by filter tap multiplexers to compose 

the desired coefficient multiplication. 

 

      
Fig. 7 Implementation of coefficient multiplication 

using the coefficient partitioning approach 

 

 
Fig. 8 Reconfigurable FIR filter architecture 

 

 

VI. Proposed Reconfigurable Fir Filter 

Architecture 

            The proposed coefficient representation 

technique uses signed digit to represent each sub-

coefficients. In conventional coefficient partitioning 

method, the main coefficient may be assumed signed 

value, but the sub-coefficients are not signed. For m-bit 

word length sub-coefficients case, their values are in 0 

~ 2m-1 range. 

Eight partial products are calculated by pre-

computer block using shift/sum operation and 

distributed to each tap's PE block. In practical 

implementation just four ×1, ×3, ×5, ×7 partial products 

are implemented in pre-computer block and other 

products (×2, ×4, ×6, ×8) are composed by simple 

hardwire shift operation of above four partial products 

inside PE block. The required four sub-coefficients to 

compose the desired coefficient are selected by four 8:1 

multiplexers, which are controlled by Mux control 

block. This block uses hi,j bits of each sub coefficient to 

control the selection bits of multiplexers. Note that it is 

need to eight partial products (×1, ×3, ×5, ×7, ×9, ×11, 

×13 and ×15 in practical implementation) and four 16:1 

multiplexers in conventional reconfigurable FIR filter 

architecture. The selected four partial products in PE 

block, after hardwire shift operation are combined by 

add/sub operation while controlled by Add/Sub control 

block. This block uses the sign bit of each sub-

coefficient, and control the add/sub block. To 

implement the multiplication by zero for each sub 

coefficient, the multiplexer blocks are followed by 

AND gates, which is controlled by Mux control block. 

Three full add/sub bocks are used to combine the 

partial products of sub coefficients.  

 

 
Fig. 9 Proposed reconfigurable FIR filter architecture 

using 4bit BSS representation 

 

VII. IMPLEMENTATION OF ALGORITHM 

 A primary objective of this project was to 

develop a synthesizable model for the AES128 

encryption algorithm.  Synthesis is the process of 
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converting the register transfer level (RTL) 

representation of a design into an optimized gate-level 

net list.  This is a major step in ASIC design flow that 

takes an RTL model closer to a low-level hardware 

implementation. 

 
 

Figure 10.Simulated output. 

 

A. Synthesis Timing Result 

 The synthesis tool optimizes the 

combinational paths in a design.  In General, four types 

of combinational paths can exist in any design: [3] 

1- Input port of the design under test to input 

of one internal flip-flip 

2- Output of an internal flip-flop to input of 

another flip-flip 

3- Output of an internal flip-flop to output 

port of the design under test 

4- A combinational path connecting the 

input and output ports of the design under 

test 

The last DC command in the script developed in 

previous section, instructs the tool to report the path 

with the worst timing.  In this case, the path with the 

worst timing is a combinational path of type two.  The 

delay associated with this path is the summation of 

delays of all combinational gates in the path plus the 

Clock-To-Q delay of the originating flip-flop, which 

was calculated as 24.09ns. 

 

      By considering the setup time of the destination 

flip-flop in this path, which is 0.85ns, the 40MHz clock 

signal satisfies the worst combinational path delay.  

The delays of combinational gates, setup time of flip-

flops and Clock-To-Q values are derived from the 

LSI_10k library file that was used for the mapping step 

during synthesis 

B.  Synthesis Area Result 

 The synthesis area report shows the total 

number of cells and nets in the net list. It also uses the 

area parameter associated with each cell in the 

LSI_10K library file, to calculate the total 

combinational and sequential area of the net list.  The 

total area of the gate level net list is unknown since it 

depends on total area of the interconnects, which itself 

is a function of the wiring load model used in physical 

design.  The total cell area in the net list is reported as 

22978 units, which is the sum of combinational and 

sequential areas. 

 
   Figure 11.Flow summary report 

 To enforce the synthesis tool to create the 

most compact net list, the area of the gate level net list 

was constrained to zero during the synthesis process.  

As a result, the only constraint violation, which is 

expected, is related to the area as shown bellow:. 

CONCLUSION 

 A new hardware efficient reconfigurable FIR 

filter architecture has been presented in this paper using 

proposed coefficient representation. Filter coefficients 

has been partitioned to smaller sub coefficients based 

on proposed binary signed sub coefficients. The partial 

products of all possible sub coefficients and input data 

have been calculated in pre-computer block and results 

are distributed on filter taps to compose the coefficient 

multiplication. Two reconfigurable FIR filters based on 

4-bit partitioning were designed and synthesized. 
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