Design and Implementation of Efficient Parallel Prefix Adders on FPGA

Sarnala Butchibabu (M.Tech),
E.C.E Department,
Vikas college of Engineering &Technology,
Nunna, Vijayawada Rural.

Sannikanti Kishore Babu M.Tech (P.hD),
Associate Professor, E.C.E Department,
Vikas college of Engineering &Technology
Nunna, Vijayawada Rural

Abstract--Binary adders are known as important elements in the circuit designs. Many fastest adders have been created and developed. Parallel Prefix Adders (PPA) are one among them. We use adders frequently in digital design and VLSI designs, in digital design we use adders such as half adder, full adder. By using both adders we can implement ripple carry adder, using ripple carry adder we can perform addition for any number of bits. It is a serial adder. It has a huge delay problem. With the use of half adder, full adder delay increases. To overcome this Parallel Prefix Adders are preferred. In VLSI implementation parallel prefix adders are known to have the best performance. This paper presents an implementation of various types of carry tree adders (the Kogge-Stone, Sparse Kogge-Stone, Brent Kung, Han Carlson, and Ladner Fischer) and compares them to a ripple carry adder and carry look ahead adders. We report on delay, area requirements. These designs of varied on different bit widths and simulated using modelsim6.5e and implemented on a xilinx14.2 version Spartan 3E FPGA, These carry tree adders support bit width of 256.

1. INTRODUCTION

Binary addition is fundamental operation in most of the digital circuits. There are so many adders in the digital design. The selection of adder depends on its performance parameters. Adders are important elements in microprocessors, digital signal processors, ALU and in floating point arithmetic units, and memory addressing, in booth multipliers they are also used in real time signal processing like signal processing, image processing etc. for human beings arithmetic calculations are easy to calculate when they are decimals i.e. base ten. But they became pragmatic if binary numbers are given. Therefore binary addition is essential any improvement in binary addition can improve the performance of system. The fast and accuracy of system depends mainly on adder performance. In this paper designing and implementation of various parallel prefix adders on FPGA are described. Parallel Prefix Adders are also known as Carry Tree Adders. Parallel prefix adders are designed from carry look ahead adder as a base. Parallel prefix adders consist of three stages similar to CLA. Figure 1 shows the PPA structure.

![Figure 1.1 Block diagram of PPA](image)

The parallel prefix adder employs three stages in pre-processing stage the generation of Propagate and Generate signals is carried out. The calculation of Generate (Gi) and Propagate (Pi) are calculated when the inputs A, B are given. As follows

\[Gi = Ai \text{ AND } Bi \]
\[Pi = Ai \text{ XOR } Bi \]

Gi indicates whether the Carry is generated from that bit. Pi indicates whether Carry is propagated from that bit. In carry generation stage of PPA, prefix graphs can be used to describe the tree structure. Here the tree structure consists of grey cells, black cells, and buffers. In carry generation stage when two pairs of generate and propagate signals (Gm, Pm), (Gn, Pn) are given as inputs to the carry generation stage. It computes a pair of group generates and group propagate signals (Gm: n, Pm: n) which are calculated as follows

\[Gm = Gm+ (Pm.Gn) \]
\[Pm = Pm. Pn \]

The black cell computes both generate and propagate signals as output. It uses two and gates and or gate. The
grey cell computes the generate signal only. It uses only and gate, or gate.
In post processing stage simple adder to generate the sum, sum and carry out are calculated in post processing stage as follows.

\[
\text{Si} = P_i \text{ XOR } C_{i-1}
\]
\[
\text{Cout} = G_{n-1} \text{ XOR } (P_{n-1} \text{ AND } G_{n-2})
\]
If Cout is not required it can be neglected.

2. CARRY TREE ADDER STRUCTURES

Parallel prefix adders also known as carry tree adders. They pre-compute propagate and generate signals. These signals are combined using fundamental carry operator \((fco)\).

\[
(g_1, p_1) \circ (g_2, p_2) = (g_1 + g_2, p_1, p_2)
\]
Due to associative law of the fundamental carry operator these operators can be combined in different ways to form various adder structures. For example 4 bit carry look ahead generator is given by

\[
C_4 = ([g_4, p_4] \circ [(g_3, p_3) \circ ((g_2, p_2) \circ (g_1, p_1))])
\]
Now in parallel prefix adders allow parallel operation resulting in more efficient tree structure for this 4 bit example.

\[
C_4 = ([g_4, p_4] \circ (g_3, p_3)) \circ ((g_2, p_2) \circ (g_1, p_1))
\]
It is a key advantage of tree structured adders is that the critical path due to carry delay is of order \(\log_2 N\) for \(N\) bit wide adder. So the arrangement of the prefix network gives rise to various families of adders. For this study the focus is on Kogge-Stone, Sparse Kogge stone, Brent Kung, Han-Carlson and Ladner Fischer adders for 32, 64 bit width. Here we designate black cell as BC and grey cell as GC.

2.1. Kogge-Stone adder

Kogge-Stone adder is one among the parallel prefix adders. This has regular layout which makes them favoured adder in electronic technology. It has the minimum fan-out. A 16 bit Kogge stone adder is shown in the figure 2.

The maximum fan-out is 2 in all the logic levels for all width Kogge-stone prefix trees. The key of building any prefix tree is to implement the equation according to the specific features and apply the rules above described in the previous section. The number of stages for a Kogge stone adder is calculated by \(\log_2 N\). It consists of 34 BC’s and 15 GC’s and buffers are given.

2.2. Sparse Kogge-Stone adder

The Sparse Kogge stone adder consists of several small ripple carry adders on its lower part, a carry tree is on its upper part. It terminates with ripple carry adders. Number of carries generated is less in this adder compared to Kogge stone adder. The function of grey cells and black cells is same as discussed in previous sections. Figure .3 shows the block diagram of Sparse Kogge Stone adder.

2.3. Brent Kung adder

Brent Kung adder is one among the parallel prefix adders. Which has low number of cells and it is power efficient. Number of cells in the adder is defined by \(2(N - 1) - \log_2 N\). Number of bits are defined by \(N\). it consists of 11 BC’s and 15 GC’s. A simple tree structure could be formed if only the carry at every power of two positions is computed .it consists of inverse carry tree is added to compute intermediate carries. Figure .4 shows Block diagram of Brent Kung 16 bit adder.
2.4. Han-Carlson adder
This adder is the mix of Brent-Kung and Kogge stone adders. It has the maximum fan-out of 2. The Block Diagram of 16 bit Han-Carlson adder is shown in the figure below.

![Figure 2.4 Block Diagram of 16 bit Han-Carlson Adder](image)

2.5. Ladner Fischer adder
This adder is the mix of Brent Kung and sklansky parallel prefix adder’s. It has high fan-out. Figure 5 shows the block Diagram of 16 bit Ladner Fischer adder.

![Figure 2.5 Block Diagram of 16 bit Ladner Fischer Adder](image)

When we apply for Higher Bit widths the carry Tree changes accordingly.

3. RELATED WORK
We compared the design of the ripple carry adder with carry look ahead adder and different Parallel prefix trees. The Previous authors considered several Parallel prefix adders implemented on Xilinx vertex 5 FPGA. It is found that ripple carry adder performs better than carry tree designs because RCA can take advantage of fast carry chain on the FPGA, H.K. Hoe, Chris Martinez and Jyothsna Vundavalli concluded Kogge stone adder is best in terms of delay. But it takes larger area. Now in this paper we focus on carry tree adders implemented on Xilinx Spartan 3E FPGA. Here we design different carry tree adders and compared with Ripple carry adder in terms of delay. We also compare with Kogge-Stone Adder in terms of area by counting of number of LUT’s and Slices.

4. METHODOLOGY
The adders to be studied were designed with varied bit width bits and they are coded in VERILOG. The verification of the adders was verified by using Model-sim Simulator. The Xilinx ISE 14.2 software was used to synthesize the designs onto Spartan 3E FPGA. By using the Generate and Propagate and by BC and GC we are able to develop the Carry trees. It is found that the Kogge Stone Prefix trees provide better delay performance for higher order bits. We seen area is high. Han-Carlson adder has less delay and its area also less compared to Kogge-Stone. The critical path for both adders Kogge Stone and Han-Carlson adders are less. Brent Kung adder has less area compared to all the adders.

5. SIMULATION AND SYNTHESIS REPORT
The Ripple carry adders, Carry look ahead adder, and Kogge-Stone adder, Sparse Kogge Stone Adder, Brent-Kung adder, Han-Carlson adder, Ladner Fischer adder are simulated and synthesised written in verilog using modelsim and Xilinx ISE tools. We found that Kogge–Stone occupies larger area, Brent-Kung adder occupies smaller area. We noticed that parallel prefix adders are faster than the ripple carry adder. The results of different parallel prefix adders are as given below.
The Device Utilization Summary and simulated waveform of 32 bit Ripple carry adder are shown in Figure 5.1 and 5.2; The Path Delay of RCA is 37.578 ns.

The Device Utilization Summary and simulated waveform of 32 bit carry look ahead adder are shown in Figure 5.3 and 5.4; The Path Delay of CLA is 37.676 ns.

The Device Utilization Summary and simulated waveform of 32 bit Kogge-stone adder are shown in Figure 5.5 and 5.6; The Path Delay of KS adder is 15.952 ns.

<table>
<thead>
<tr>
<th>Logic Utilization</th>
<th>Used</th>
<th>Available</th>
<th>Utilization</th>
<th>Note(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of 4 input LUTs</td>
<td>64</td>
<td>29,504</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>Number of occupied Slices</td>
<td>46</td>
<td>14,752</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>Number of Slices containing only related logic</td>
<td>46</td>
<td>49</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Number of Slices containing unrelated logic</td>
<td>0</td>
<td>49</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Total Number of 4 input LUTs</td>
<td>64</td>
<td>29,504</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>Number of bonded IOs</td>
<td>98</td>
<td>376</td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td>Average Fanout of Non-Clock Nets</td>
<td>1,74</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logic Utilization</th>
<th>Used</th>
<th>Available</th>
<th>Utilization</th>
<th>Note(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of 4 input LUTs</td>
<td>123</td>
<td>29,504</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>Number of occupied Slices</td>
<td>123</td>
<td>14,752</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>Number of Slices containing only related logic</td>
<td>123</td>
<td>123</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Number of Slices containing unrelated logic</td>
<td>0</td>
<td>123</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Total Number of 4 input LUTs</td>
<td>123</td>
<td>29,504</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>Number of bonded IOs</td>
<td>98</td>
<td>376</td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td>Average Fanout of Non-Clock Nets</td>
<td>2,99</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Device Utilization Summary and simulated waveform of 32 bit Sparse Kogge-Stone adder are shown in Figure 5.9 and 5.10; The Path Delay of SPK adder is 27.875ns.

The Device Utilization Summary and simulated waveform of 32 bit Brent-Kung adder are shown in Figure 5.7 and 5.8; The Path Delay of BK adder is 28.829ns.

The Device Utilization Summary and simulated waveform of 32 bit Han-Carlson adder are shown in Figure 5.11 and 5.12; The Path Delay of HC adder is 15.862ns.

The Device Utilization Summary and simulated waveform of 32 bit Ladner Fischer adder are shown in Figure 5.13 and 5.14; The Path Delay of LF adder is 30.330ns.
Now we Synthesis and Simulate all above adders for 64 bit and tabulated the results.

<table>
<thead>
<tr>
<th>64 BIT</th>
<th>Path delay</th>
<th>4-i/p LUT’S</th>
<th>Slices</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCA</td>
<td>70.281ns</td>
<td>128</td>
<td>96</td>
</tr>
<tr>
<td>KS</td>
<td>18.059ns</td>
<td>562</td>
<td>297</td>
</tr>
<tr>
<td>BK</td>
<td>40.490ns</td>
<td>188</td>
<td>108</td>
</tr>
<tr>
<td>HC</td>
<td>28.883ns</td>
<td>260</td>
<td>144</td>
</tr>
<tr>
<td>LF</td>
<td>33.552ns</td>
<td>210</td>
<td>121</td>
</tr>
</tbody>
</table>

Table 5.1 Synthesis Results for 64-Bit width Adders

6. CONCLUSION

In this paper we have designed efficient parallel prefix adders to achieve better speed performance with less area. We noticed that Parallel Prefix Adders are not best as Ripple Carry adder at low bit widths. We noticed that Kogge-Stone adder Performs with less delay. Brent-Kung adder has low area. We have seen Kogge-stone adder occupies larger area since it uses High number of LUT’s and Slices. If the area of adder increases the cost increases, requires more wires for connection. The calculation of path delay is based on timing analysis. We can say that the adder has good performance when it has less area and delay. Both are important parameters of adders. We have seen that Han-Carlson, Ladner-Fischer have good performance with less area and delay. The Results show our methodology of addition performs the addition with less delay and area. This is required for larger adders used in arithmetic and cryptographic applications where the addition for larger number of bits is performed.

ACKNOWLEDGEMENT

I Sarnala Butchibabu would like to thank Mr. Sannikanti Kishore Babu M.Tech (PhD) E.C.E Department who had been guided throughout the project and supporting me in giving technical ideas about the paper and motivating to complete the work successfully.

REFERENCES

