
Design and Implementation of Efficient Packet

Classification on FPGA for Noc based Designs

Rashmi D
M.Tech, Dept. of Electronics and Communication

 Sir.M Visvesvaraya Institute of Technology ,

 INDIA

Phanindar Ravi P
Asst.Professor, Dept. of ECE

Sir.M Visvesvaraya Institute of Technology,

INDIA

Abstract— Packet classification is a complicated and vital task as

the processing of packets should be done at a specified line

speed. The packet classification is mainly used by networking

equipments to sort incoming packets into flows by comparing

their headers values to a list of rules. The packets are placed in

the flow determined by the matched rule. In order to decide a

packet’s priority and the manner in which packet is processed, a

flow is used. Packet classification is not a simple task because

packets must be processed at a wire speed and tens of thousands

of rules is present in the rule sets.

The hardware accelerator or packet classifier has been

processed here uses a modified version of Hypercuts packet

classification algorithm and it also uses a new pre-cutting

process which reduces the amount of memory needed to save the

search structure for the large rule sets so that it is small to fit in

the on-chip memory of an Field programmable Gate Array. The

contribution of this project is a hardware accelerator or

classifier that can classify up to 433 million packets per second

at the speed of 138.56 Gb/s when using rule sets containing tens

of thousands of rules with a power consumption of only 9.03 W

which is low compared to other FPGA based classifiers. The

modified Hypercuts algorithm allows higher clock speeds and

thus obtaining higher throughputs by removing the need for

floating point division to be performed when classifying a

packet.

Keywords— Hardware accelerator, Classifier, high

throughput, low power, packet classification, parallel processing,

pre-cutting.

I. INTRODUCTION

The necessity of packet classification is considered to

be important as the burden of a router is reduced. Initially the

task of putting a real strain on the networking equipment has

to be inspected and processed to resist the resultant traffic.

Existing algorithms still have very low performance, and

ternary content addressable memories still have issues in

terms of power consumption and chip density. In spite of the

large number of techniques explored, there are still new

techniques in packet classification that can provide major

benefits. Network processors are used to process packets

when they pass through a network performs various tasks

such as packet classification, packet fragmentation and

reassembly, forwarding and encryption. The network

processors have placed under increased pressure due to the

increased number of tasks that need to be carried out, along

with the increase in line rates. This pressure is reduced by the

adding extra processing capacity is difficult due to tight

power budgets and silicon limitations. Increasing the clock

speeds to obtain extra performance is difficult due to physical

limitations in the silicon, while writing the software used to

control the operation of the network processors becomes

difficult due to the increased number of processing cores.

Above approaches leads to large increases in power

consumption due to the additional transistors needed to

increase the number of processing cores and the extra heat

generated by raising the clock speed.

Hardware accelerators can also process more data than

a general-purpose processor while running at slower clock

speeds as they are optimized to carry out particular tasks. A

reduction in number of transistors and clock speed leads to

large savings in power consumption and area.

The contribution of this project is the design and

implementation of an efficient packet classification hardware

accelerator on Field programmable gate array for Network on

Chip based designs. Packet classification is difficult task

because all packets entering a network must be processed at

wire speed. This problem becomes very difficult due to rule

sets containing many rules are needed, while the large

number of services is being provided by network providers.

To improve the security, the hardware accelerator used here

allows packet classification to be done at the core of a

network. It uses several packet classification engines

operating in parallel with a shared memory.

The classifier proposed in this project uses a multiple

packet classification working in parallel with the shared

memory, allowing it to classify packets at the speeds of up to

138.56 Gb/s. This Classifier classifies 433 million packets per

second, while using rule sets containing tens of thousands of

rules. It implements a modified version of the HyperCuts

packet classification algorithm, which breaks a rule set into

groups, with each group containing a small number of rules

that can be searched linearly. A decision tree is used to guide

a packet based on its header values to the correct group to be

searched.

The rest of the paper is organized as follows. Section

II describes the Hypercut packet classification. Section III

describes the modifications in the Hypercut algorithm.

Section IV explains the architecture of the classification

engine and the classifier.

II. HYPERCUT PACKET CLASSIFICATION

The fields of a packet’s header are the 32 b source

and destination IP addresses the 16 b source and destination

port numbers, and the 8 b protocol number which are most

commonly used to perform packet classification. The easiest

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

1

way to match these five fields of the header to a rule is to

linearly search through the rules one at a time, starting with

the highest priority rule and ending with the lowest priority

rule, until a match is found. This will result in an

unacceptably large worst case processing time, making it

difficult to classify packets at the speeds required for the core

or even edge of a network. This worst case amount of

processing time can be reduced by using the HyperCuts

packet classification algorithm. It is a decision tree-based

algorithm that builds a search structure that allows

incremental updates to a rule set. Search structures that allow

incremental updates do not have to be rebuilt each time a rule

set has a rule added or deleted. HyperCuts works by breaking

a rule set into smaller number of groups, with each group

containing a small number of rules suitable for a linear

search.

HyperCuts creates this decision tree by taking a

geometric view of a rule set, with each rule considered to be a

hypercube in hyperspace. The boundaries of each hypercube

are defined by the ranges of the rule it represents. The

algorithm cuts into this hyperspace by performing cuts to the

fields used to define it. Each cut will create sub regions, with

each sub region containing the rules whose hypercube

overlap. The information regarding the first set of cuts used

to divide the hyperspace is stored in the root node of a

decision tree. This information includes the number of cuts

that are to be performed to each field and the memory

location of each of the resulting sub regions. These sub

regions are known as the root’s child nodes, with sub regions

that contain no rules known as empty nodes. Sub regions

whose number of rules does not exceed a user-defined limit

are known as leaf nodes. This user-defined limit is known as

the binth value. Each leaf node stores one rule group that can

be searched linearly. A sub region that contains more rules

than is allowed by the binth value is known as an internal

node and the space it occupies must be further cut up into

smaller sub regions. It also stores the memory locations of the

resulting sub regions that is the internal node’s child nodes.

An Internal nodes can also have empty, leaf, and internal

nodes. The division of the hyperspace into ever-smaller sub

regions ends when the number of rules in all sub regions does

not exceed the binth value.

The decision tree can be built from the rule set

shown in Table 1. The source and destination IP addresses

have been reduced from 32 to 4 bits to aid the explanation.

The first step in building the decision tree is to decide a value

of binth. In this example, binth will be two. The next step

involves deciding which dimensions should be used by the

root node to cut the hyperspace. This is done by first

calculating the number of distinct range specifications for

each field.

 TABLE 1: EXAMPLE RULESET CONTAINING SEVEN

RULES

The next step involves trying all combinations of

cuts between the chosen dimensions that are less than or

equal to 4, with the maximum number of rules stored in a

child node for each combination of cuts recorded. The

combinations of cuts that can be made to the source and

destination IP addresses are [0, 2], [0, 4], [2, 0], [2, 2], and [4,

0]. The combination that results in the smallest maximum

number of rules stored in a child node is to cut both the

source and destination IP addresses in two.

Fig.1. Cuts made to a root node.

Fig.1 shows the decision tree after performing these

cuts. It also shows a geometric representation of the source

and destination IP addresses, showing the cuts made to the

root node (represented by an octagon in the decision tree). It

can be seen that these cuts create four sub regions. Three of

these sub regions conform to the binth value as they contain

two or less rules. This means that they are leaf nodes

(represented by rectangles in the decision tree). The fourth

sub region contains more rules than the binth value allows.

This means that it is an internal node (represented by an oval

in the decision tree) that must be cut further.

Fig 2. Cuts made to an internal node

Fig. 2 shows the finished decision tree and the cuts

performed to the destination IP address when cutting the

internal node. It can be seen that two of the sub regions

contain no rules which means that they are empty nodes

(represented by circles in the decision tree). The remaining

two sub regions are stored as leaf nodes.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

2

A. Methods Used to Reduce Memory Usage

The HyperCuts packet classification algorithm uses

different heuristics to reduce the amount of memory needed

to save a decision tree and the number of memory accesses

required to match a rule.

First method is called node merging and it is used to

avoid the duplicated storage of identical nodes. Node

merging is carried out by first searching the decision tree for

leaf nodes that contain the same list of rules. The pointers to

these nodes (stored in root and internal nodes) are then

modified so that they point to just one of these leaf nodes,

meaning that multiple copies do not need to be stored.

A second method is called rule overlap is used to

avoid the storage of rules in leaf nodes that can never be

matched. A rule can never be matched and is, therefore,

removed from a leaf node if the hypercube of a rule with a

higher priority completely covers the space it occupies within

the leaf node’s sub region.

A third method is used to avoid the duplicated

storage of rules is called pushing common rule subset

upward. These methods stores rules at an internal or root

node that would otherwise need to be stored in the internal or

root node’s entire sub regions.

The final method is called region compaction and it

is used to aid in the more efficient cutting of the hyperspace.

Each node in a decision tree will cover a specific region of

the hyperspace. The rules associated with a node may,

however, cover a smaller region. Region compaction shrinks

the area covered by a node so that it only covers the

minimum amount of hyperspace that will cover all rules

linked with the node. This means that a smaller region will

need to be cut when dividing the hyperspace occupied by a

node into sub regions. This could result in lesser cuts, hence

memory consumption is reduced.

III. MODIFICATIONS IN THE HYPERCUT ALGORITHM

The HyperCuts algorithm works well when

implemented in software. It is not, however, optimized for

implementation with dedicated hardware. This section

explains the modifications made to the pre-cutting scheme.

The pushing common rule subset upward method is not used

as it was found during testing of rule sets to make only a

fractional reduction in memory usage. It also results in a

more complicated search structure that would slow down the

classifier as it would have to be able to search root, internal

and leaf nodes for matching rules. Pushing common rules

upwards can also add extra memory accesses when

classifying a packet. This is because a leaf node might still

need to be searched even if a matching rule is found at an

internal or root node. This is because a leaf node might

contain another matching rule with a higher priority. Such a

case would mean that the search of the rules at internal or

root nodes was unnecessary.

A. PRE-CUTTING SCHEME

A new method for compacting the region to be cut at

each internal or root node called pre-cutting is presented here.

It uses the same methods employed by the scheme that uses

no region compaction when calculating the sub region a

packet should traverse to. This scheme only requires an

internal or root node to store the number of cuts that must be

performed to each field of a packet header and the bits in

these fields where the cuts are to be performed. The

simplicity of this scheme helps to improve throughput and

decrease power consumption. The region that needs to be

divided is compacted by recursively cutting all fields in two.

This cutting of a specific field in two stops and will not be

carried out if it results in rules being contained in more than

one sub region. Each precut to a field used to divide the

region will halve the number of sub regions that need to be

stored and the number of cuts that need to be performed to a

packet header when selecting the sub region to traverse to.

Each precut to a field also means that the bits which need to

be inspected in that field of a packet’s header are shifted to

the right by one place.

Step A- Pre cut SIP and DIP Step B- Pre cut

 SIP

 Step C- Cut the region

Fig.3. Compacting of a region using pre-cutting scheme.

Fig. 3 shows an example where pre-cutting is used

to compact the area covered by the internal node from the

decision tree shown in Fig 2 so that it can be cut more

efficiently. The process begins by performing precuts to the

source and destination IP addresses as shown in step A,

reducing the area that needs to be considered for cutting by

75%. Precuts can be performed to both fields as it results in

only one sub region that contains rules. In step B, only the

source IP is precut as pre-cutting the destination IP addresses

would result in more than one sub region that contains rules.

Pre-cutting the source IP address in step B reduces the area

that needs to be considered for cutting by another 50%.

Finally, in step C no more precuts can be performed so the

compacted region is cut in two, with none of the resulting sub

regions containing more than two rules. Pre-cutting gives the

same effect as the region compaction method used by

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

3

HyperCuts in this example, with the number of sub regions

that need to be stored reduced from four to two when

compared to the method where no region compaction is used.

IV. ARCHITECTURE OF THE CLASSIFICATION

ENGINE

 The architecture of packet classification engine is

shown in Fig 4 which consists of two blocks. The first block

is a tree traverser that is used to traverse a decision tree using

header information from the packet being classified. The

decision tree is traversed until an empty node is reached,

meaning that there is no matching rule, or a leaf node is

reached. A leaf node being reached will result in the tree

traverser passing the packet header and information about the

Leaf node reached to the second block known as the leaf

node searcher. The leaf node searcher compares the packet

header to the rules contained in the leaf node until either a

matching rule is found or the end of the leaf node is reached.

The leaf node searcher consists of two comparator blocks that

work in parallel. This allows two rules to be searched on each

memory access, reducing lookup times. Information on the

decision tree’s root node is stored in registers in the tree

traverser, making it possible for the tree traverser to begin

classifying a new packet while the previous packet is being

compared with rules in a leaf node. This use of pipelining

allows for a maximum throughput of one packet every two

clock cycles if the decision tree is made up of only a root

node and leaf nodes containing no more than two rules.

 Fig.4. Architecture of the packet classification engine.

The operation of the packet classification engine is

explained by the Flowchart shown in Fig 5. The engine has

been designed in such a way that it has to traverse a root or

internal node in one memory access. It can also search leaf

nodes at a rate of two rules per memory access.

Fig 5. Operation of a packet classification engine.

A. Architecture of the Hardware Accelerator or Classifier

The architecture of classifier or hardware accelerator

which is implemented with four classification engines

working in parallel is shown in Fig 6.

Fig 6. Architecture of Hardware accelerator

The use of multiple engines will help to ensure that

the bandwidth of a FPGAs internal memory is better utilized.

The use of multiple engines will help to ensure that the

bandwidth of a FPGAs internal memory is better utilized. The

packet buffer stores the five header fields of the incoming

packets. It works on a first come, first served basis, with

packets being outputted from the buffer to the packet

classification engines in the same order that they were

inputted. The buffer also creates a packet ID for each header

that is passed to the packet classification engine along with

the packet header. The packet ID is used to make sure that the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

4

matching rule IDs are outputted by the classifier in the same

order that the packet headers were inputted to the system.

The four engines belonging to a classifier run at the

same clock speed, with the clock used by each engine 90° out

of phase with the clock used by the previous engine. Memory

runs at a speed equal to four times that of an engine, ensuring

a simple memory interface, with each engine guaranteed

access to memory on each of its clock cycles. The memory

used is made up of a series of small memory blocks which are

connected up so that they act as a continuous memory space.

The memory ports of each memory block have their own

enable signals. These enable signals are used to reduce power

consumption by only activating the memory blocks that are

being read from on a given clock cycle. This architecture also

allows the splitting of a rule set used to classify packets into

groups of four or two in order to reduce the memory

consumption and the worst case number of memory accesses

needed to classify a packet for rule sets containing a large

number of wildcard rules.

The sorter logic block is used to make sure that the

matching IDs are outputted in the correct order and that the

rule with the highest priority is selected when there are

multiple rule matches in the case where rule sets are broken

up into groups. The sorter logic block accepts the Match, No

Match, Rule ID, and Packet I D signals from each of the

packet classification engines. It knows that an engine has

finished classifying a particular packet when either the Match

or No Match signals have been asserted. The first job the

sorter logic block does is to make sure that the rule with the

highest priority is selected between engines working in

parallel to classify the same packet. This is done by picking

the lowest rule ID between packets with the same packet ID.

The sorter logic block registers the Match, No Match, and

Rule I D signals for a classified packet to a chain of

multiplexers and registers in series. The selected register will

depend on the packet ID number. The Match, No Match, and

Rule ID signals will be registered to the output register if they

are next in the sequence of results to be outputted, and stored

if not. All stored results are shifted toward the output register

each time a result appears that is due to be outputted. This

means that the classification results are outputted from the

classifier in the same order that the packets were inputted.

V. SIMULATION RESULTS AND ANALYSIS

The classifier can be tested by measuring its logic

and memory usage, throughput in terms of Mpps (millions of

packets per second), amount of memory it requires when

storing the search structures needed to classify packets. The

classifier can also be tested by writing verilog programs for

the entire classifier design using Xilinx ISE 12.2/13.4.

Simulation results are obtained from Modelsim 6.3f which is

a very famous commercial simulation tool in electronic

industry and is synthesized for Spartan 3(Device XC3S400)

FPGA.

The function of the classifier is to classify packets

based on the header field values of the incoming packet. In

accordance to the above condition, the waveform results are

shown above in figure 7. Simulation result in Fig 7 explains

input data packet comes through the particular output

destination port only when five fields of input data packet

matches with the fields of the rule in the leaf node

corresponding to that particular output destination port.

Fig 7. Simulation result

Fig 8. HDL synthesis device utilization summary

Fig 8 shows HDL synthesis device utilization

summary. From the device utilization summary, our proposed

classifier architecture utilizes 80% slices, 67% slice flip flops,

37% four input LUTs, 690% bonded IOBs and it utilizes

eight GCLKs.

VI. CONCLUSION

This paper presents a new algorithm and packet

classifier or hardware accelerator with enough processing

power to allow packet classification to be implemented at the

core of the network to improve security. The classifier

classifies 433 Mpps (million packets per second) at the speed

of up to 138.56 Gb/s by consuming power of 9.03 W which is

low compared to other FPGA based classifiers. It worked

with rule sets containing tens of thousands of rules at the

same 138.56 Gb/s speed. The classifier uses a Hypercut

algorithm that has been modified so that it is better suited for

hardware implementation.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

5

REFERENCES

[1] Usage and Population Statistics. (2012, Jun.) [Online]. Available:

http://www.internetworldstats.com/stats.htm

[2] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet Classification
using multidimensional cutting,” in Proc. ACM Special Interest Group

Data Commun. Conf., Aug. 2003, pp. 213–224.

[3] M. Gupta and S. Singh, “Greening of the internet,” in Proc. ACM Special
Interest Group Data Commun. Conf., Aug. 2003, pp. 19–26.

[4] P. Gupta and N. McKeown, “Packet classification using Hierarchical

intelligent cuttings,” IEEE Micro, vol. 20, no. 1, pp. 34–41, Feb. 2000.
[5] P. Gupta and N. McKeown, “Packet classification on multiple fields,” in

Proc. ACM Special Interest Group Data Commun. Conf., Sep. 1999,

pp. 147–160.
[6] F. Baboescu and G. Varghese, “Scalable packet classification,”

IEEE/ACM Trans. Netw., vol. 13, no. 1, pp. 2–14, Feb. 2005.

[7] T. V. Lakshman and D. Stiliadis, “High-speed policy based Packet
forwarding using efficient multi-dimensional range matching,” in Proc.

ACM Special Interest Group Data Commun. Conf., Sep. 1998, pp.

203-214
[8] F. Baboescu, S. Singh, and G. Varghese, “Packet classification for core

routers: Is there an alternative to CAMs?” in Proc. IEEE Int. Conf.

Comput. Commun., Apr. 2003, pp. 53–63.
[9] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification for core

routers: Is there an alternative to CAMs?” in Proc. IEEE Int. Conf.
Comput. Commun., Apr. 2003, pp. 53–63.

[10] P. Gupta and N. McKeown, “Algorithms for packet Classification using

tuple space search,” in Proc. ACM Special Interest Group Data
Commun. Conf., Sep. 1999, pp. 135–146.

[11] T. Woo, “A modular approach to packet classification: Algorithms and

results,” in Proc. IEEE Int. Conf. Comput. Commun., Mar. 2000, pp.
1213–1222.

[12] A. Kennedy, D. Bermingham, X. Wang, and B. Liu, “Power analysis of

packet classification on programmable network processors,” in Proc.
IEEE Int. Conf. Signal Process. Commun., Nov. 2007, pp. 1231–1234.

[13] D. E. Taylor and J. S. Turner, “Classbench: A packet Classification

bench-mark,” IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 499–511,
Jun. 2007.

[15] B.Vamanan, G. Voskuilen, and T. Vijaykumar, “Efficuts: Optimizing

packet classification for memory and throughput.” in Proc. ACM
Special Interest Group Data Commun. Conf., Aug. 2010, pp. 207–218.

[16] E. Spitznagel, D.Taylor, and J.Turner, “Packet

Classification using extended TCAMs,” in Proc. 11th IEEE Int.
Conf. Netw. Protocols,Nov. 2003, pp. 120–131.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

6

