Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

Design and Implementation of Efficient Packet
Classification on FPGA for Noc based Designs

Rashmi D
M.Tech, Dept. of Electronics and Communication
Sir.M Visvesvaraya Institute of Technology ,
INDIA

Abstract— Packet classification is a complicated and vital task as
the processing of packets should be done at a specified line
speed. The packet classification is mainly used by networking
equipments to sort incoming packets into flows by comparing
their headers values to a list of rules. The packets are placed in
the flow determined by the matched rule. In order to decide a
packet’s priority and the manner in which packet is processed, a
flow is used. Packet classification is not a simple task because
packets must be processed at a wire speed and tens of thousands
of rules is present in the rule sets.

The hardware accelerator or packet classifier has been
processed here uses a modified version of Hypercuts packet
classification algorithm and it also uses a new pre-cutting
process which reduces the amount of memory needed to save the
search structure for the large rule sets so that it is small to fit in
the on-chip memory of an Field programmable Gate Array. The
contribution of this project is a hardware accelerator or
classifier that can classify up to 433 million packets per second
at the speed of 138.56 Gb/s when using rule sets containing tens
of thousands of rules with a power consumption of only 9.03 W
which is low compared to other FPGA based classifiers. The
modified Hypercuts algorithm allows higher clock speeds and
thus obtaining higher throughputs by removing the need for
floating point division to be performed when classifying a
packet.

Keywords— Hardware accelerator, Classifier, high
throughput, low power, packet classification, parallel processing,
pre-cutting.

I INTRODUCTION

The necessity of packet classification is considered to
be important as the burden of a router is reduced. Initially the
task of putting a real strain on the networking equipment has
to be inspected and processed to resist the resultant traffic.
Existing algorithms still have very low performance, and
ternary content addressable memories still have issues in
terms of power consumption and chip density. In spite of the
large number of techniques explored, there are still new
techniques in packet classification that can provide major
benefits. Network processors are used to process packets
when they pass through a network performs various tasks
such as packet classification, packet fragmentation and
reassembly, forwarding and encryption. The network
processors have placed under increased pressure due to the
increased number of tasks that need to be carried out, along
with the increase in line rates. This pressure is reduced by the
adding extra processing capacity is difficult due to tight
power budgets and silicon limitations. Increasing the clock
speeds to obtain extra performance is difficult due to physical

Phanindar Ravi P
Asst.Professor, Dept. of ECE
Sir.M Visvesvaraya Institute of Technology,
INDIA

limitations in the silicon, while writing the software used to
control the operation of the network processors becomes
difficult due to the increased number of processing cores.
Above approaches leads to large increases in power
consumption due to the additional transistors needed to
increase the number of processing cores and the extra heat
generated by raising the clock speed.

Hardware accelerators can also process more data than
a general-purpose processor while running at slower clock
speeds as they are optimized to carry out particular tasks. A
reduction in number of transistors and clock speed leads to
large savings in power consumption and area.

The contribution of this project is the design and
implementation of an efficient packet classification hardware
accelerator on Field programmable gate array for Network on
Chip based designs. Packet classification is difficult task
because all packets entering a network must be processed at
wire speed. This problem becomes very difficult due to rule
sets containing many rules are needed, while the large
number of services is being provided by network providers.
To improve the security, the hardware accelerator used here
allows packet classification to be done at the core of a
network. It uses several packet -classification engines
operating in parallel with a shared memory.

The classifier proposed in this project uses a multiple
packet classification working in parallel with the shared
memory, allowing it to classify packets at the speeds of up to
138.56 Gb/s. This Classifier classifies 433 million packets per
second, while using rule sets containing tens of thousands of
rules. It implements a modified version of the HyperCuts
packet classification algorithm, which breaks a rule set into
groups, with each group containing a small number of rules
that can be searched linearly. A decision tree is used to guide
a packet based on its header values to the correct group to be
searched.

The rest of the paper is organized as follows. Section
Il describes the Hypercut packet classification. Section 111
describes the modifications in the Hypercut algorithm.
Section IV explains the architecture of the classification
engine and the classifier.

Il. HYPERCUT PACKET CLASSIFICATION

The fields of a packet’s header are the 32 b source
and destination IP addresses the 16 b source and destination
port numbers, and the 8 b protocol number which are most
commonly used to perform packet classification. The easiest

Volume 3, | ssue 19

Published by, www.ijert.org 1

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

way to match these five fields of the header to a rule is to
linearly search through the rules one at a time, starting with
the highest priority rule and ending with the lowest priority
rule, until a match is found. This will result in an
unacceptably large worst case processing time, making it
difficult to classify packets at the speeds required for the core
or even edge of a network. This worst case amount of
processing time can be reduced by using the HyperCuts
packet classification algorithm. It is a decision tree-based
algorithm that builds a search structure that allows
incremental updates to a rule set. Search structures that allow
incremental updates do not have to be rebuilt each time a rule
set has a rule added or deleted. HyperCuts works by breaking
a rule set into smaller number of groups, with each group
containing a small number of rules suitable for a linear
search.

HyperCuts creates this decision tree by taking a
geometric view of a rule set, with each rule considered to be a
hypercube in hyperspace. The boundaries of each hypercube
are defined by the ranges of the rule it represents. The
algorithm cuts into this hyperspace by performing cuts to the
fields used to define it. Each cut will create sub regions, with
each sub region containing the rules whose hypercube
overlap. The information regarding the first set of cuts used
to divide the hyperspace is stored in the root node of a
decision tree. This information includes the number of cuts
that are to be performed to each field and the memory
location of each of the resulting sub regions. These sub
regions are known as the root’s child nodes, with sub regions
that contain no rules known as empty nodes. Sub regions
whose number of rules does not exceed a user-defined limit
are known as leaf nodes. This user-defined limit is known as
the binth value. Each leaf node stores one rule group that can
be searched linearly. A sub region that contains more rules
than is allowed by the binth value is known as an internal
node and the space it occupies must be further cut up into
smaller sub regions. It also stores the memory locations of the
resulting sub regions that is the internal node’s child nodes.
An Internal nodes can also have empty, leaf, and internal
nodes. The division of the hyperspace into ever-smaller sub
regions ends when the number of rules in all sub regions does
not exceed the binth value.

The decision tree can be built from the rule set
shown in Table 1. The source and destination IP addresses
have been reduced from 32 to 4 bits to aid the explanation.
The first step in building the decision tree is to decide a value
of binth. In this example, binth will be two. The next step
involves deciding which dimensions should be used by the
root node to cut the hyperspace. This is done by first
calculating the number of distinct range specifications for
each field.

5.PORT D.PORT PROTCO ACTION |

L

R1 0000 0101 30-80 |0-65535 | UDP ACT1
R2 111* 1= 0-2000 | 10-10 uDP ACT2
| R3 1erx 101* 60-80 | 0-65535 |TCP ACT3
R4 101* o=** 0-65535 | 960-990 | TCP ACT4
RS 00** 101* 0-65535 | 800-811 | TCP ACTS
R6 000* 0111 30-80 | 0-65535 | UDP ACTE
[r7 oo0* 0110 30-80 | 0-65535 | UDP ACT7 |
TABLE 1: EXAMPLE RULESET CONTAINING SEVEN
RULES

The next step involves trying all combinations of
cuts between the chosen dimensions that are less than or
equal to 4, with the maximum number of rules stored in a
child node for each combination of cuts recorded. The
combinations of cuts that can be made to the source and
destination IP addresses are [0, 2], [0, 4], [2, 0], [2, 2], and [4,
0]. The combination that results in the smallest maximum
number of rules stored in a child node is to cut both the

source and destination IP addresses in two.
1
h S SIP-2CUTS
DIP-2€UTS
Ré
R4
R7
0000 R1 | §

"LLE:
1111 R7

0000 SIP

Fig.1. Cuts made to a root node.

Fig.1 shows the decision tree after performing these
cuts. It also shows a geometric representation of the source
and destination IP addresses, showing the cuts made to the
root node (represented by an octagon in the decision tree). It
can be seen that these cuts create four sub regions. Three of
these sub regions conform to the binth value as they contain
two or less rules. This means that they are leaf nodes
(represented by rectangles in the decision tree). The fourth
sub region contains more rules than the binth value allows.
This means that it is an internal node (represented by an oval
in the decision tree) that must be cut further.

DIP
Ri
1111 R; ‘ SIP-2CUTS
R1 | DIP-2CUTS
. D> B
0000 Sip

1111 o om

Fig 2. Cuts made to an internal node

Fig. 2 shows the finished decision tree and the cuts
performed to the destination IP address when cutting the
internal node. It can be seen that two of the sub regions
contain no rules which means that they are empty nodes
(represented by circles in the decision tree). The remaining
two sub regions are stored as leaf nodes.

Volume 3, | ssue 19

Published by, www.ijert.org 2

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

A. Methods Used to Reduce Memory Usage

The HyperCuts packet classification algorithm uses
different heuristics to reduce the amount of memory needed
to save a decision tree and the number of memory accesses
required to match a rule.

First method is called node merging and it is used to
avoid the duplicated storage of identical nodes. Node
merging is carried out by first searching the decision tree for
leaf nodes that contain the same list of rules. The pointers to
these nodes (stored in root and internal nodes) are then
modified so that they point to just one of these leaf nodes,
meaning that multiple copies do not need to be stored.

A second method is called rule overlap is used to
avoid the storage of rules in leaf nodes that can never be
matched. A rule can never be matched and is, therefore,
removed from a leaf node if the hypercube of a rule with a
higher priority completely covers the space it occupies within
the leaf node’s sub region.

A third method is used to avoid the duplicated
storage of rules is called pushing common rule subset
upward. These methods stores rules at an internal or root
node that would otherwise need to be stored in the internal or
root node’s entire sub regions.

The final method is called region compaction and it
is used to aid in the more efficient cutting of the hyperspace.
Each node in a decision tree will cover a specific region of
the hyperspace. The rules associated with a node may,
however, cover a smaller region. Region compaction shrinks
the area covered by a node so that it only covers the
minimum amount of hyperspace that will cover all rules
linked with the node. This means that a smaller region will
need to be cut when dividing the hyperspace occupied by a
node into sub regions. This could result in lesser cuts, hence
memory consumption is reduced.

I11. MODIFICATIONS IN THE HYPERCUT ALGORITHM

The HyperCuts algorithm works well when
implemented in software. It is not, however, optimized for
implementation with dedicated hardware. This section
explains the modifications made to the pre-cutting scheme.
The pushing common rule subset upward method is not used
as it was found during testing of rule sets to make only a
fractional reduction in memory usage. It also results in a
more complicated search structure that would slow down the
classifier as it would have to be able to search root, internal
and leaf nodes for matching rules. Pushing common rules
upwards can also add extra memory accesses when
classifying a packet. This is because a leaf node might still
need to be searched even if a matching rule is found at an
internal or root node. This is because a leaf node might
contain another matching rule with a higher priority. Such a
case would mean that the search of the rules at internal or
root nodes was unnecessary.

A. PRE-CUTTING SCHEME

A new method for compacting the region to be cut at
each internal or root node called pre-cutting is presented here.

It uses the same methods employed by the scheme that uses
no region compaction when calculating the sub region a
packet should traverse to. This scheme only requires an
internal or root node to store the number of cuts that must be
performed to each field of a packet header and the bits in
these fields where the cuts are to be performed. The
simplicity of this scheme helps to improve throughput and
decrease power consumption. The region that needs to be
divided is compacted by recursively cutting all fields in two.
This cutting of a specific field in two stops and will not be
carried out if it results in rules being contained in more than
one sub region. Each precut to a field used to divide the
region will halve the number of sub regions that need to be
stored and the number of cuts that need to be performed to a
packet header when selecting the sub region to traverse to.
Each precut to a field also means that the bits which need to
be inspected in that field of a packet’s header are shifted to
the right by one place.

DIP
0111 R6
DIF
1 0111 TS
=] R7
R1
0100
0000 | :
0000 . 0111 0000 0011
sip SIP
Step A- Pre cut SIP and DIP Step B- Pre cut
SIP
CIP
R7
0100 — -"v
o 0 gip R6
o o
o 0 RY
o 1

Step C- Cut the region

Fig.3. Compacting of a region using pre-cutting scheme.

Fig. 3 shows an example where pre-cutting is used
to compact the area covered by the internal node from the
decision tree shown in Fig 2 so that it can be cut more
efficiently. The process begins by performing precuts to the
source and destination IP addresses as shown in step A,
reducing the area that needs to be considered for cutting by
75%. Precuts can be performed to both fields as it results in
only one sub region that contains rules. In step B, only the
source IP is precut as pre-cutting the destination IP addresses
would result in more than one sub region that contains rules.
Pre-cutting the source IP address in step B reduces the area
that needs to be considered for cutting by another 50%.
Finally, in step C no more precuts can be performed so the
compacted region is cut in two, with none of the resulting sub
regions containing more than two rules. Pre-cutting gives the
same effect as the region compaction method used by

Volume 3, | ssue 19

Published by, www.ijert.org 3

Special Issue - 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

HyperCuts in this example, with the number of sub regions
that need to be stored reduced from four to two when
compared to the method where no region compaction is used.

IV. ARCHITECTURE OF THE CLASSIFICATION
ENGINE

The architecture of packet classification engine is
shown in Fig 4 which consists of two blocks. The first block
is a tree traverser that is used to traverse a decision tree using
header information from the packet being classified. The
decision tree is traversed until an empty node is reached,
meaning that there is no matching rule, or a leaf node is
reached. A leaf node being reached will result in the tree
traverser passing the packet header and information about the
Leaf node reached to the second block known as the leaf
node searcher. The leaf node searcher compares the packet
header to the rules contained in the leaf node until either a
matching rule is found or the end of the leaf node is reached.
The leaf node searcher consists of two comparator blocks that
work in parallel. This allows two rules to be searched on each
memory access, reducing lookup times. Information on the
decision tree’s root node is stored in registers in the tree
traverser, making it possible for the tree traverser to begin
classifying a new packet while the previous packet is being
compared with rules in a leaf node. This use of pipelining
allows for a maximum throughput of one packet every two
clock cycles if the decision tree is made up of only a root
node and leaf nodes containing no more than two rules.

MEMORY

Tree structure Leaf Nodes

Ctrl & Address Info

LEAF NODE
SEARCHER

TREE TRAVERSER -

Packet fields

bl

Match Packet RuleID
Id

Fig.4. Architecture of the packet classification engine.

T

Mo Match
Packetld Ready oMate

The operation of the packet classification engine is
explained by the Flowchart shown in Fig 5. The engine has
been designed in such a way that it has to traverse a root or
internal node in one memory access. It can also search leaf
nodes at a rate of two rules per memory access.

Save search structure to

memory and root node
cutting information to
register

Calculate root child when Search leaf node & if rule matched

or leaf end, calculate root child if
packet is available

packet becomes available

Packet
available
?

Leaf node?

Load child pointer
Traverse internal node

Child
empty?

Fig 5. Operation of a packet classification engine.
A. Architecture of the Hardware Accelerator or Classifier
The architecture of classifier or hardware accelerator

which is implemented with four classification engines
working in parallel is shown in Fig 6.

Tree Structure Leaf nodes

PACKET HEADER
Buffer B

Classification
Engine 1B

MEMORY

Facket Header

Classification
Engine 1A

- W OoO=E=Em=

Classification
Engine 2B

Classification
Engine 2A

Classification
Engine 3B

Classification
Engine 3A

m o =7 o m - 2 —

Classification
Engine 4B

Classification
Engine 4A

Fig 6. Architecture of Hardware accelerator

The use of multiple engines will help to ensure that
the bandwidth of a FPGAs internal memory is better utilized.
The use of multiple engines will help to ensure that the
bandwidth of a FPGAs internal memory is better utilized. The
packet buffer stores the five header fields of the incoming
packets. It works on a first come, first served basis, with
packets being outputted from the buffer to the packet
classification engines in the same order that they were
inputted. The buffer also creates a packet ID for each header
that is passed to the packet classification engine along with
the packet header. The packet ID is used to make sure that the

Volume 3, Issue 19

Published by, www.ijert.org 4

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

matching rule 1Ds are outputted by the classifier in the same
order that the packet headers were inputted to the system.

The four engines belonging to a classifier run at the
same clock speed, with the clock used by each engine 90° out
of phase with the clock used by the previous engine. Memory
runs at a speed equal to four times that of an engine, ensuring
a simple memory interface, with each engine guaranteed
access to memory on each of its clock cycles. The memory
used is made up of a series of small memory blocks which are
connected up so that they act as a continuous memory space.
The memory ports of each memory block have their own
enable signals. These enable signals are used to reduce power
consumption by only activating the memory blocks that are
being read from on a given clock cycle. This architecture also
allows the splitting of a rule set used to classify packets into
groups of four or two in order to reduce the memory
consumption and the worst case number of memory accesses
needed to classify a packet for rule sets containing a large
number of wildcard rules.

The sorter logic block is used to make sure that the
matching IDs are outputted in the correct order and that the
rule with the highest priority is selected when there are
multiple rule matches in the case where rule sets are broken
up into groups. The sorter logic block accepts the Match, No
Match, Rule ID, and Packet | D signals from each of the
packet classification engines. It knows that an engine has
finished classifying a particular packet when either the Match
or No Match signals have been asserted. The first job the
sorter logic block does is to make sure that the rule with the
highest priority is selected between engines working in
parallel to classify the same packet. This is done by picking
the lowest rule ID between packets with the same packet ID.
The sorter logic block registers the Match, No Match, and
Rule I D signals for a classified packet to a chain of
multiplexers and registers in series. The selected register will
depend on the packet ID number. The Match, No Match, and
Rule ID signals will be registered to the output register if they
are next in the sequence of results to be outputted, and stored
if not. All stored results are shifted toward the output register
each time a result appears that is due to be outputted. This
means that the classification results are outputted from the
classifier in the same order that the packets were inputted.

V. SIMULATION RESULTS AND ANALYSIS

The classifier can be tested by measuring its logic
and memory usage, throughput in terms of Mpps (millions of
packets per second), amount of memory it requires when
storing the search structures needed to classify packets. The
classifier can also be tested by writing verilog programs for
the entire classifier design using Xilinx ISE 12.2/13.4.
Simulation results are obtained from Modelsim 6.3f which is
a very famous commercial simulation tool in electronic
industry and is synthesized for Spartan 3(Device XC3S400)
FPGA.

The function of the classifier is to classify packets
based on the header field values of the incoming packet. In
accordance to the above condition, the waveform results are
shown above in figure 7. Simulation result in Fig 7 explains
input data packet comes through the particular output

destination port only when five fields of input data packet
matches with the fields of the rule in the leaf node
corresponding to that particular output destination port.

PO W R AR

Fig 7. Simulation result

LR Gt Veor Pupt Sore Procs Tk Wniow Lopd i
DREFE s2ix[nn 3

T E

[w08 4|8
h

e, @ e) St

0L T8 Pt Satas (W67 £5757)

a et Fle o FaserEmus: ot

= Hoddelene 00 InpsertaiSale Sy
H (3‘ Toteie RS “Es bz

odac Vs “Mamings
g = Dot g st
= i DesinSircegr: +Tining Cnstrits:
i: M e Fial Tiing Sure:
i =
vt et vy st s H

Logic Uikzation Used vaieble Wiizaton

b
-l ot .

4]

M ofbonced 106

P 1 tofeseshamg Are oS

1 | Proceses - DP MO
mmmmmmmmmmmmmmm

T Shoifg o

" Fig 8. HDL synthesis device utilization summary

Fig 8 shows HDL synthesis device utilization
summary. From the device utilization summary, our proposed
classifier architecture utilizes 80% slices, 67% slice flip flops,
37% four input LUTs, 690% bonded I0OBs and it utilizes
eight GCLKs.

VI. CONCLUSION

This paper presents a new algorithm and packet
classifier or hardware accelerator with enough processing
power to allow packet classification to be implemented at the
core of the network to improve security. The classifier
classifies 433 Mpps (million packets per second) at the speed
of up to 138.56 Gbh/s by consuming power of 9.03 W which is
low compared to other FPGA based classifiers. It worked
with rule sets containing tens of thousands of rules at the
same 138.56 Gb/s speed. The classifier uses a Hypercut
algorithm that has been modified so that it is better suited for
hardware implementation.

Volume 3, | ssue 19

Published by, www.ijert.org 5

Special Issue- 2015 International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

REFERENCES

[1] Usage and Population Statistics. (2012, Jun.) [Online]. Available:
http://www.internetworldstats.com/stats.htm

[2] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet Classification
using multidimensional cutting,” in Proc. ACM Special Interest Group
Data Commun. Conf., Aug. 2003, pp. 213-224.

[3] M. Gupta and S. Singh, “Greening of the internet,” in Proc. ACM Special
Interest Group Data Commun. Conf., Aug. 2003, pp. 19-26.

[4] P. Gupta and N. McKeown, “Packet classification using Hierarchical
intelligent cuttings,” IEEE Micro, vol. 20, no. 1, pp. 34-41, Feb. 2000.

[5] P. Gupta and N. McKeown, “Packet classification on multiple fields,” in
Proc. ACM Special Interest Group Data Commun. Conf., Sep. 1999,
pp. 147-160.

[6] F. Baboescu and G. Varghese, “Scalable packet classification,”
IEEE/ACM Trans. Netw., vol. 13, no. 1, pp. 2-14, Feb. 2005.

[7]1 T. V. Lakshman and D. Stiliadis, “High-speed policy based Packet
forwarding using efficient multi-dimensional range matching,” in Proc.
ACM Special Interest Group Data Commun. Conf., Sep. 1998, pp.
203-214

[8] F. Baboescu, S. Singh, and G. Varghese, “Packet classification for core
routers: Is there an alternative to CAMs?” in Proc. IEEE Int. Conf.
Comput. Commun., Apr. 2003, pp. 53-63.

[9] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification for core
routers: Is there an alternative to CAMs?” in Proc. IEEE Int. Conf.
Comput. Commun., Apr. 2003, pp. 53-63.

[10] P. Gupta and N. McKeown, “Algorithms for packet Classification using
tuple space search,” in Proc. ACM Special Interest Group Data
Commun. Conf., Sep. 1999, pp. 135-146.

[11] T. Woo, “A modular approach to packet classification: Algorithms and
results,” in Proc. |IEEE Int. Conf. Comput. Commun., Mar. 2000, pp.
1213-1222.

[12] A. Kennedy, D. Bermingham, X. Wang, and B. Liu, “Power analysis of
packet classification on programmable network processors,” in Proc.
IEEE Int. Conf. Signal Process. Commun., Nov. 2007, pp. 1231-1234.

[13] D. E. Taylor and J. S. Turner, “Classbench: A packet Classification
bench-mark,” IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 499-511,
Jun. 2007.

[15] B.Vamanan, G. Voskuilen, and T. Vijaykumar, “Efficuts: Optimizing
packet classification for memory and throughput.” in Proc. ACM
Special Interest Group Data Commun. Conf., Aug. 2010, pp. 207-218.

[16] E. Spitznagel, D.Taylor, and J.Turner, “Packet
Classification using extended TCAMs,” in Proc. 11th IEEE Int.
Conf. Netw. Protocols,Nov. 2003, pp. 120-131.

Volume 3, I'ssue 19 Published by, www.ijert.org

