
Design and Implementation of 32bit Complex

Multiplier using Vedic Algorithm

Ankush Nikam, Swati Salunke, Sweta Bhurse
Center for VLSI and Nanotechnology

Visvesvaraya National Institute of Technology

Nagpur, Maharashtra, India.

Abstract—This paper discusses the design of 32 bit Complex

Multiplier using the techniques of Ancient Indian Vedic

Mathematics that have been modified to improve performance.

Vedic Mathematics is the ancient system of mathematics which

has a unique technique of calculations based on 16 Sutras. The

vedic method used here for complex multiplication is – ―Urdhva

Triyagbhyam‖ (vertically and Cross wise). Urdhva tiryakbhyam

Sutra is the most efficient Sutra (Algorithm) that gives

minimum delay for multiplication of small or large types of

numbers. This paper also presents comparison of 8bit, 16bit, 32

bit complex multiplier on various performance parameters like

power and delay. The proposed system is designed using VHDL

and Verilog and is implemented through Xilinx ISE 14.2

navigator and modelsim v6.3 software’s.

Keywords—Vedic Mathematics, Urdhva Triyakbhyam sutra,

Complex Multiplier, Ripple Carry Adder(RCA).

I. INTRODUCTION

This template, Swami Bharati Krishna Tirthaji Maharaj,
Shan-karacharya of Goverdhan Peath introduces the ancient
system of Vedic Mathematics to the world. Vedic
mathematics helps to reduce the complexity in calculations
that exist in conventional mathematics. Generally there are
sixteen sutras available in Vedic mathematics. Among them
only two sutras are for multiplication operation. They are
“Urdhva Triyakbhyam” sutra (is a Sanskrit word means
vertically and crosswise) used for smaller number
multiplication and ”Nihilam Navatascaramam Dasatah” Sutra
(Sanskrit word means all from 9 and last from 10) used for
large number multiplication and subtraction. The logic behind
Urdhva Triyakbhyam sutra is very much similar to the
ordinary array multiplier.

Multiplication is one of the most important arithmetic
operation functions, especially when implemented in
Programmable Logic. Complex multiplication are key
components for many high performance systems such as
Microprocessors, Digital Signal Processors (DSP), Image
Processing (IP), FIR filters etc. The multiplier generally
determines the performance of a system as it is generally the
slowest element in the system. Also it is the most area
consuming module. Hence, optimizing the speed and area of
the multiplier is a major design issue. Complex number
multiplication is performed using four real number
multiplications and two additions/ subtractions. In
algorithmic and structural levels, various multiplication
techniques has been developed to enhance the efficiency of
the multiplier, which encounters the reduction of the partial
products and/or the methods for their partial products

addition, but the principle behind multiplication is same in all
cases.

In this work we formulate this mathematics for designing the

complex multiplier architecture. Here we have designed the

32 bit complex multiplier using Urdhva Triyakbhyam sutra.

And

the rest of the paper is organized as follows - In section II we

have described the design of 32 bit complex multiplier,

section

III presents the experimental results, we conclude in section

IV.

II. DESIGN OF COMPLEX MULTIPLIER

A. 32x32bit vedic multiplier

 For any complex number multiplier design, the most

important procedure is Multiplication. Here we have designed

the 32 bit multiplier using vedic algorithm (Urdhva-

tiryakbyham sutra). Fig.1 shows the block diagram of

32x32bit vedic multiplier module which is easily designed

using four 16x16bit Vedic multipliers modules. Ripple Carry

Adders(RCA) are used for the addition of the output of these

four 16x16bit multiplier modules.

 Suppose the two 32bit numbers are X [31:0] and Y [31:0].

Fig. 1. Block Diagram of 32x32bit vedic multiplier

Each of these numbers are divided into two 16-bit numbers X
[31:16]-X[15:0](XH-XL) and Y[31:16]-Y[15:0](YHYL) and
given as a input to the 16x16bit vedic multiplier module. The
input combinations for 1 to 4 16x16bit multiplier modules are
XL-YL, XL-YH, XH-YL and XH-YH respectively. Each

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030821

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

644

multiplier gives the intermediate output of 32-bit. This
intermediate output is then added using ripple carry adders
(RCA). The output of second and third multiplier module is
added using RCA1. The output of RCA1 (32-bit) and the
higher order bits of first multiplier is then added using the
RCA2 which gives the output S[31:16]. Finally the higher
order bits of RCA2, the output of fourth multiplier and the
carry from the RCA1 (the fifteenth bit position) are added to
get the higher order bits S[63:32] of the final output of
32x32bit multiplier. The LSB bits S[15:0] of final output are
obtained directly by taking the lower order bits of the output
of first 16x16bit multiplier.

B. 32x32bit complex multiplier

Fig.2 shows the block diagram of 32x32 complex number

multiplier. It requires four 32x32bit vedic multiplier modules

and adders/substractors. Let (re_a+j im_a) and (re_b+j im_b)

be the two 32 bit complex numbers.

re_root+jim_root = (re_a+j im_a)(re_b+j im_b) (1)

Gauss’s algorithm for complex number multiplication gives

two separate final results to calculate real and imaginary part.

From equation (1) the real part of the output can be computed

using (re_a.re_b - im_a.im_b), and the imaginary part of the

result can be computed using (re_a.im_b + re_b.im_a). Thus

four separate multiplications and addition/subtraction are

required to produce the real as well as imaginary part

numbers.[5]

Fig. 2. Block Diagram of 32x32bit complex multiplier

III. RESULT AND COMPARISON

The 32x32bit complex multiplier using vedic algorithm is

implemented using VHDL and verilog and functionally

verified using Xilinx ISE 14.2 and Modelsim v6.3 simulators.

Fig3 shows the RTL schematic of 32bit complex multiplier.

The implemented 8bit and 16bit complex multiplier results

are shown in Fig.4 and Fig.5 respectively. Fig6 shows the

simulation result of implemented 32bit complex

multiplication. The 8-bit, 16-bit and 32-bit complex

multipliers are analyzed based on various performance

factors such as delay and power. The comparison results and

the device Utilization summary of these three multipliers are

shown in Table I.

Fig. 3. RTL Schematic of 32bit Complex Multiplier

Fig. 4. Simulation result of implemented 8bit Complex multiplication

Fig. 5. Simulation result of implemented 16bit Complex multiplication

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030821

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

645

Fig. 6. Simulation result of implemented 32bit Complex multiplication

TABLE I. COMPARATIVE ANALYSIS AND DEVICE UTILIZATION
SUMMARY OF 8BIT, 16BIT AND 32BIT COMPLEX MULTIPLIER

VI. CONCLUSION

In this paper we have proposed architecture, capable of
multiplying two 32bit complex numbers using Vedic
Multiplier Algorithm. The multiplier algorithm is basically
based on fundamentals of Ancient Indian Vedic Mathematics
(Urdhva Tiryakbhyam sutra) and is implemented using
Verilog and VHDL. The comparison of 8bit, 16bit, 32bit

complex multiplier on various performance parameters like
power and delay are discussed from which we infer that there
is 10% and 19% increase in power as we go from 8bits to 16
bits and 16bits to 32bits respectively. Delay constrained
varies nonlinearly as we increase the number of bits. The
above results shows that Urdhva Tiryakbhyam sutra is used
to implement complex multiplier efficiently in DSP
algorithms by decreasing propagation delay (ns).

REFERENCES

[1] Saha, P., Banerjee, A., Bhattacharyya, P., and Dandapat, A. (2011,
January). High speed ASIC design of complex multiplier using vedic
mathematics. In Students’ Technology Symposium (TechSym), 2011
IEEE (pp. 237-241). IEEE.

[2] Tiwari, H. D., Gankhuyag, G., Kim, C. M., and Cho, Y. B. (2008,
November). Multiplier design based on ancient Indian Vedic
Mathematics. In SoC Design Conference, 2008. ISOCC’08.
International (Vol. 2, pp. II-65). IEEE.

[3] Ramalatha, M., Dayalan, K. D., Dharani, P., and Priya, S. D. (2009,
July). High speed energy efficient ALU design using Vedic
multiplication techniques. In Advances in Computational Tools for
Engineering Applications, 2009. ACTEA’09. International Conference
on (pp. 600 - 603). IEEE.

[4] Mehta, P., and Gawali, D. (2009, December). Conventional versus
Vedic mathematical method for Hardware implementation of a
multiplier. In Advances in Computing, Control, and
Telecommunication Technologies, 2009. ACT’09. International
Conference on (pp. 640-642). IEEE.

[5] Kong, M. Y., Langlois, J. P., and Al-Khalili, D. (2008, May). Efficient
FPGA implementation of complex multipliers using the logarithmic
number system. In Circuits and Systems, 2008. ISCAS 2008. IEEE
International Symposium on (pp. 3154-3157). IEEE.

[6] Paramasivam, M. E., and Sabeenian, R. S. (2010, February). An
efficient bit reduction binary multiplication algorithm using Vedic
methods. In Advance Computing Conference (IACC), 2010 IEEE 2nd
International (pp. 25-28). IEEE.

[7] Patil, S., Manjunatha, D. V., and Kiran, D. (2014, October). Design of
speed and power efficient multipliers using vedic mathematics with
VLSI implementation. In Advances in Electronics, Computers and
Communications (ICAECC), 2014 International Conference on (pp. 1-
6) IEEE.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030821

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

646

