Design and Implementation of 128 x 128 Bit Multiplier by Ancient Mathematics

Nagaraju Golla
ECE Department
GRIET
Hyderabad, India

G. V. Subba Reddy
ECE Department
GRIET
Hyderabad, India

Abstract— This paper proposed the design and implementation of 128x128 bit Multiplier using the techniques of Ancient Indian Vedic Mathematics that have been modified to improve performance. Vedic Mathematics is the ancient system of mathematics which has a unique technique of calculations based on 16 Sutras. The work has proved the efficiency of Urdhva Triyagbhyam—Vedic method for multiplication which strikes a difference in the actual process of multiplication itself. Urdhva tiryakbhyam Sutra is most efficient Sutra, giving minimum delay for multiplication of all types of numbers, either small or large.

Keywords— vedic mathematics, urdhva tiryakbhyam sutra,

I. INTRODUCTION

Multiplication is an important fundamental function in arithmetic operations. Multiplication-based operations such as Multiply and Accumulate (MAC) and inner product are among some of the frequently used Computation-Intensive Arithmetic Functions (CIAF) currently implemented in many Digital Signal Processing (DSP) applications such as convolution, Fast Fourier Transform (FFT), filtering and in microprocessors in its arithmetic and logic unit.

Vedic mathematics - a gift given to this world by the ancient sages of India. A system which is far simpler and more enjoyable than modern mathematics. The simplicity of Vedic Mathematics means that calculations can be carried out mentally though the methods can also be written down. There are many advantages in using a flexible, mental system. Pupils can invent their own methods, they are not limited to one method. This leads to more creative, interested and intelligent pupils. Vedic Mathematics refers to the technique of Calculations based on a set of 16 Sutras, or aphorisms, as algorithms and their upa-sutras or corollaries derived from these Sutras. Any mathematical problems (algebra, arithmetic, geometry or trigonometry) can be solved mentally with these sutras. Vedic Mathematics is more coherent than modern mathematics. Vedic Mathematics offers a fresh and highly efficient approach to mathematics covering a wide range - starts with elementary multiplication and concludes with a relatively advanced topic, the solution of non-linear partial differential equations. But the Vedic scheme is not simply a collection of rapid methods; it is a system, a unified approach. Vedic Mathematics extensively exploits the properties of numbers in every practical application.

II. VEDIC SUTRAS

The word “Vedic” is derived from the word “Veda” which means the store-house of all knowledge. Vedic mathematics is mainly based on 16 Sutras (or aphorisms) dealing with various branches of mathematics like arithmetic, algebra, geometry etc. These Sutras along with their brief meanings are enlisted below alphabetically

1. (Anurupye) Shunyamanyat – If one is in ratio, the other is zero.
2. Chalana-Kalanabyham – Differences and Similarities.
3. Ekadhikina Purvena – By one more than the previous One.
4. Ekanyunena Purvena – By one less than the previous one.
5. Gunakasamuchyah – The factors of the sum is equal to the sum of the factors.
6. Gunitasamuchyah – The product of the sum is equal to the sum of the product.
7. Nikhilam Navatashcaramam Dashatah – All from 9 and last from 10.
9. Puranapuranabhyam – By the completion or noncompletion.
10. Sankalana- vyavakalanabhyam – By addition and by subtraction.
11. Shesanyankena Charamena – The remainders by the last digit.
12. Shunyam Saamyasamuccaye – When the sum is the same that sum is zero.
13. Sopaantyadvayamantyam – The ultimate and twice the penultimate.
15. Vyashtisamanstih – Part and Whole.

In this, Urdhva tiryakbhyam Sutra is first applied to the binary number system and is used to develop digital multiplier architecture. This is shown to be very similar to the popular array multiplier architecture. This Sutra also shows the effectiveness of to reduce the NXN multiplier structure into an efficient 4X4 multiplier structures. The proposed multiplication algorithm is then illustrated to show its computational efficiency by taking an example of reducing a 4X4-bit multiplication to a single 2X2-bit multiplication operation. This work presents a systematic design...
methodology for fast and area efficient digit multiplier based on Vedic mathematics. The Multiplier Architecture is based on the Vertical and Crosswise algorithm of ancient Indian Vedic Mathematics.

I. URDHVA – TRIYAGBHAYAM ALGORITHM

A. Urdhva – triyagbhayam

Urdhva tiryagbhayam Sutra is a general multiplication formula applicable to all cases of multiplication. It literally means “Vertically and Crosswise”. To illustrate this multiplication scheme, let us consider the multiplication of two decimal numbers (3451 × 6723).

B. Steps involved for multiplication using vedic mathematics

Step 1: 3*4+5=17

Step 2: 5*3+1*2=15 +2+0(previous carry)=17

Step 3: 4*3+5*2+1*7=12+10+7+1(previous carry)=30

Step 4: 3*3+4*2+5*7+1*6=9+8+35+6+3(previous carry)=61

Step 5:

\[
\begin{array}{c}
3 \\
4 \\
5 \\
1 \\
\end{array}
\begin{array}{c}
6 \\
7 \\
3 \\
\end{array}
\]

3*2+4*7+5*6=6+28+30+6(previous carry)=70

New carry=7

Step 6:

\[
\begin{array}{c}
3 \\
4 \\
5 \\
1 \\
\end{array}
\begin{array}{c}
6 \\
7 \\
3 \\
\end{array}
\]

3*7+4*6=21+24+7 (previous carry)=52

New carry=5

New carry=5

Step 7:

\[
\begin{array}{c}
3 \\
4 \\
5 \\
1 \\
\end{array}
\begin{array}{c}
6 \\
7 \\
3 \\
\end{array}
\]

3*6=18+5(previous carry)=23

In the above example, the first step is to multiply, the LSB of multiplicand with LSB of multiplier. If the carry is generated than add carry with next result of cross multipliers. If carry is not generated than write the answer of product as a result. The product is carried out crosswise & vertically as it is shown in figure. The line diagram for four bit multiplication is given as follows and it shows how to multiply two 4-bit binary numbers.

The design starts first with Multiplier design, that is 2x2 bit multiplier as shown in figure 2. Here, “Urdhva Tiryakbhayam Sutra” or “Vertically and Crosswise Algorithm” for multiplication has been effectively used to develop digital multiplier architecture. This algorithm is quite different from the traditional method of multiplication, which is to add and shift the partial products.
C. 4×4 Bit Vedic Multiplier module:

The 4×4 bit Vedic multiplier module is implemented using four 2×2 bit Vedic multiplier modules as discussed in fig. Let’s analyze 4×4 multiplications, say $A=A_1A_2A_3A_4$ and $B=B_1B_2B_3B_4$ and the output line for the multiplication result is $S_7S_6S_5S_4S_3S_2S_1S_0$. Let’s divide A & B into two parts say A_1A_2 & A_3A_4 for A and B_1B_2 & B_3B_4 for B. Using the fundamental of Vedic Multiplication, taking two bit at a time and using 2 bit multiplier block, we can have the following structure for multiplication as shown in the below fig.

D. Design of 8×8 Vedic Multiplier module:

The 8×8 bit Vedic multiplier module is implemented as shown in the below block diagram in fig. using four 4×4 bit Vedic multiplier modules as discussed in fig.

Let’s analyze 8×8 multiplications, say $A=A_7A_6A_5A_4A_3A_2A_1A_0$ and $B=B_7B_6B_5B_4B_3B_2B_1B_0$. The output line for the multiplication result is $S_{15}S_{14}S_{13}S_{12}S_{11}S_{10}S_9S_8S_7S_6S_5S_4S_3S_2S_1S_0$. Let’s divide A & B into two parts say $A_L=A_3A_2A_1A_0$ and $A_H=A_7A_6A_5A_4$ for A and $BL=B_3B_2B_1B_0$ and $BH=B_7B_6B_5B_4$ for B. Using the fundamental of Vedic Multiplication, taking four bit at a time and using 4 bit multiplier block, we can have the following structure for multiplication as shown in the below fig.

E. 128×128 bit Vedic Multiplier module design:

To design 128×128 bit Vedic multiplier, we need to design 16×16 bit Vedic module by using four 8×8 modules. After designing of 16×16 bit Vedic module we have to design 32×32 bit Vedic module. In the same way 64×64 bit Vedic module also design by using four 32×32 bit Vedic modules.

In the 128×128 bit Vedic module design we divide the two numbers into two 64 bit numbers like $AL=[0:63]A, AH=[64:127]A$ of A & $BL=[0:63]B, BH=[64:127]B$ of B. The multiplication result as $S=[0:255]S$. The block diagram is show in the below fig.
VI. IMPLEMENTATION OF 128X128 BIT VEDIC MULTIPLIER

The 128x128-bit Vedic multiplier is implemented in Xilinx ISE 14.2 and the simulation result is shown in the below fig.

The fpga implementation of 128x128 bit multiplier is analysed in Chipscope in Xilinx ISE 14.2. The complete combinational path delay of one 4x4 bit vedic multiplier is 3.96ns .

In the design we used 4x4 bit multipliers to implement 128x 128 bit vedic multiplier, so the delay in this design is less compared with the conventional multipliers.

V. CONCLUSION

The designs of 128x128 bit Vedic multiplier implemented on Xilinx Spartan 3E-250. The design is based on Vedic method of multiplication. The Vedic multipliers are much faster than the conventional multipliers. This gives us method for hierarchical multiplier design. So the design complexity gets reduced for inputs of large no of bits and modularity gets increased. Urdhva tiryakbyam, Nikhilam and Anurupyè sàtras are such algorithms which can reduce the delay, power and hardware requirements for multiplication of numbers. FPGA implementation of this multiplier shows that hardware realization of the Vedic mathematics algorithms is easily possible. The high speed multiplier algorithm exhibits improved efficiency in terms of speed. We can use these multiplier modules in DSP applications like MAC, ALU …etc.

REFERENCES