Design and Hardware Implementation of L-Type Resonant Step Down DC-DC Converter using Zero Current Switching Technique

Mouliswara Rao. R
Assistant Professor,
Department of EEE, AITAM,
Tekkali, Andhra Pradesh, India

Bhaskara Rao. K ${ }^{2}$
${ }^{2}$ Assistant Professor, Department of EEE, AITAM, Tekkali, Andhra Pradesh, India

Prasad. Ch^{3}
${ }^{3}$ Assistant Professor,
Department of EEE, AITAM, Tekkali, Andhra Pradesh, India

Abstract

This paper presents the study, analysis, design implementation and simulation of L-type zero current switching (ZCS) resonant buck converter and also practically implemented in hardware. Due to the incorporation of LC based resonant circuit in conventional buck converter the switching losses drastically reduced in high power application. A mathematical calculation were done and implemented the $5 \mathrm{~W}(5 \mathrm{~V} / 1 \mathrm{~A})$ rated DC-DC resonant ZCS buck converter and simulated using Pspice-Orcad capture software and hardware implemented having IC555 Timer and IRS2110 gate driver circuit for the MOSFET IRFP250.

Keywords: Hard switching, Soft switching, Zero current Switching (ZCS)

1. INTRODUCTION

Generally DC-DC converters are having electronic devices such as SCR, MOSFET ,IGBT that are used to change DC electrical power efficiently from one voltage level to another. The use of one or more switches for the purpose of power conversion can be regarded as a SMPS. A few applications of DC-DC converters are where 5V DC on a personal computer motherboard must be stepped down to $3 \mathrm{~V}, 2 \mathrm{~V}$ or less. In all of these applications, we want to change the DC energy from one voltage level to another, while wasting as little as possible in the process. In other words, we want to perform the conversion with the highest possible efficiency.

2. SWITCHING LOSSES

In MOSFETs, the main switching losses are caused by the charging and discharging of the gate-to-source and gate-to-drain parasitic capacitance to turn on and off the device respectively. Figure 2.1 shows the physical representation of these capacitors. The MOSFET parasitic capacitances are given in terms of the device data sheet parameters, and as follows. $\mathrm{C}_{\text {iss }}, \mathrm{C}_{\text {oss }}, \mathrm{C}_{\mathrm{rss}}$

Fig 2.1: MOSFET with junction capacitance
$\mathrm{C}_{\mathrm{gd}}=\mathrm{C}_{\mathrm{rss}}$
$\mathrm{C}_{\mathrm{gs}}=\mathrm{C}_{\text {iss }}-\mathrm{C}_{\mathrm{rss}}$
$\mathrm{C}_{\mathrm{ds}}=\mathrm{C}_{\mathrm{oss}}-\mathrm{C}_{\mathrm{rss}}$
where $\mathrm{C}_{\text {rss }}=$ small-signal reverse transfer capacitance.
$\mathrm{C}_{\text {iss }}=$ small-signal input capacitance with the drain and source terminals are shorted.
$\mathrm{C}_{\text {oss }}=$ small-signal output capacitance with the gate and source terminals are shorted.

A converter basically consists of an array of on-off electronic switches that use power semiconductor devices. If the switches are considered ideal or lossless (zero conduction
drop, zero leakage current, and instantaneous turn-on and turn-off times), the instantaneous and average power will balance at input and output of the converter. Switching mode operation makes the converter nonlinear, thus generating source and load harmonics and also EMI problems.
In Hard-Switching Topologies shown in fig2.2 a real semiconductor switch, the switch voltage or switch current do not go to zero instantaneously at the instant of turn-on or turn-off. The large overlap between the voltage and current waves during switching creates a large switching loss, thus reducing the efficiency of the converters. As the switching frequency increases the losses are increased drastically in high power applications. Turning on and turning off the power electronic switches with switching losses is known as "hard switching".

Fig2.2: Loss of power during hard-switching
In Soft-Switching Topologies, The main idea in soft switching is to prevent or minimize the switching overlap so that the switching loss is minimal. Soft switching techniques force the voltage or current to be zero during the time of transition; therefore there is no overlap between voltage and current and (ideally) no switching loss. Hence, the problem of switching losses and EMI due to hard switching converter operation is overcome by using soft switching. There are two types of soft switching which are zero-voltage switching (ZVS) and zero-current switching (ZCS). There are many ZVS and ZCS techniques have been published. The selection of switching technique is important when dealing with high power converter.

Figure 2.3 shows the switching transient of the switch in a soft-switched circuit and it shows the switching losses are decreased with high amount.

Fig2.3: Loss of power during soft-switching

3. L-TYPE ZCS RESONANT CONVERTER MODES OPERATION AND WAVEFORMS

An L-type ZCS resonant converter is shown above figure.3.1 The switching device S in the figure can be GTO, Thyristor, BJT, power MOSFET or IGBT. At low kilohertz range; GTO, thyristor or IGBT is used whereas for megahertz range; power MOSFETs are preferred. Inductor L and capacitance C near the dc source V_{s} from the resonant circuit whereas L_{1}, C_{1} near the load constitute a filter circuit. Direction of currents and polarities of voltages as marked in figure are treated as positive.

The circuit of figure is initially in the steady state with constant load current I_{0}. Filter inductor L_{1} is relatively large to assume that current i_{0} in L_{1} is almost constant at I_{0}. Initially switch S is open; resonant circuit parameters have $i_{L}=0$ in L and $V_{c}=0$ across C and the load current i_{0} freewheels through the diode D .

For the sake of convenience working of this converter is divided into five modes as under. For all these modes, time t is taken as zero at the beginning of each mode.
Mode-1 $\left(0 \leq \mathrm{t} \leq t_{1}\right)$:
At $\mathrm{t}=0$, switch S is turned on. As I_{0} is freewheeling through diode D , voltage across ideal diode $v_{D}=0$ and also $v_{C}=0$, fig.3.1(mode-1). it implies that source voltage V_{S} gets applied across L and the switch current i_{L} begins to flow through V_{s}, switch S, L and diode D . Therefore, $V_{s}=$ $L d_{i} / d_{t}$. It gives $i_{L}=\frac{V_{s}}{L} t$. It shows that inductor or switch current i_{L} rises linearly from its zero initial value. The diode current i_{D} is given by

$$
\begin{gathered}
i_{D}=I_{0}-i_{L}=I_{0}-\frac{V_{s}}{L} t \\
\text { At } \mathrm{t}=t_{1}, \\
i_{L}=\frac{V_{s}}{L} \cdot t_{1}=I_{0} .
\end{gathered}
$$

This gives $t_{1}=\frac{I_{0} . L}{V_{S}}$
Also, at $\mathrm{t}=t_{1}, i_{D}=I_{0}-I_{0}=0$. Soon after t_{1}, as i_{D} tends to reverse, diode D gets turned off. As a result of this, short circuit across C is removed.
Mode $2\left(0 \leq t \leq t_{2}\right)$:
Switch S remains on. As D turns off at $\mathrm{t}=0$, current I_{0} flows through V_{s}, L, L_{1} and R. In fig.3.1(mode-1) and (mode-2), constant current through L_{1} and R is represented by current source I_{0}. Also a current i_{C} begins to build up through resonant circuit consisting of V_{s}, L and C in series. Inductor current i_{L} is, therefore, given by

$$
i_{L}=I_{0}+i_{C}=I_{0}+I_{m} \sin \omega_{0} t
$$

Where $I_{m}=V_{S} \sqrt{\frac{C}{L}}=\frac{V_{S}}{Z_{0}}$ and $\omega_{0}=\frac{1}{\sqrt{L C}}$. Here $Z_{0}=\sqrt{\frac{L}{C}}$ is the characteristic impedence of resonant circuit.

The capacitor current is $i_{C}=I_{m} \sin \omega_{0} t$ and capacitor voltage V_{c} is given by

$$
v_{c}(t)=V_{s}\left(1-\cos \omega_{0} t\right)
$$

The peak value of current i_{L} is $I_{p}=I_{0}+I_{m}$ and it occurs at $\mathrm{t}=\frac{\pi}{2 \omega_{0}}=\frac{\pi}{2} \sqrt{L C}$. At this instant, $v_{c}=$ $V_{s}\left[1-\cos \frac{\pi}{2}\right]=V_{s}$ and $i_{c}=I_{m}$.

When $\mathrm{t}=t_{2}=\frac{\pi}{\omega_{0}}=\pi \sqrt{L C}$, capacitor voltage reaches peak value $V_{c p}=V_{s}[1-\cos \pi]=2 V_{s}$ and $i_{c}=0$.

Also, at $t=t_{2}, i_{L}=I_{0}, i . e$, switch current drops from peak value $\left(I_{0}+I_{m}\right)$ to I_{0}.

Mode $3\left(0 \leq \mathrm{t} \leq t_{3}\right)$:
Switch S remains on. At $t=0$, capacitor voltage is $2 V_{s}$. As i_{c} tends to reverse at $\mathrm{t}=0$, capacitor begins to discharge and force a current
$i_{c}=V_{s} \sqrt{\frac{c}{L}} \sin \omega_{0} t$ opposite to i_{L}, fig.3.1.(mode-3) so that inductor or device current i_{L} is given by

$$
i_{L}=I_{0}-i_{c}=I_{0}-I_{m} \sin \omega_{0} t
$$

And capacitor voltage $v_{c}=2 V_{s} \cos \omega_{0} t$. Current i_{L} falls to zero
when $\mathrm{t}=t_{3}$,

$$
\text { i.e., } i_{L}=0=I_{0}-I_{m} \sin \omega_{0} t_{3}
$$

Or $\quad t_{3}=\sqrt{L C} \sin ^{-1} I_{0} / I_{m}$
At $\mathrm{t}=t_{3}, \quad v_{c}=$
$2 V_{s} \cos \omega_{0} t_{3}=2 V_{s}\left[\frac{\sqrt{I_{m}{ }^{2}-I_{0}{ }^{2}}}{I_{m}}\right]=V_{c 3}$
During
this mode, $i_{c}=I_{m} \sin \omega_{o} t$ and as i_{L} falls to zero at t_{3}, switching device S gets turned off. Note that current i_{c} in this mode flows opposite to its positive direction, it is therefore shown negative in fig3.1(mode-3) At $\mathrm{t}=t_{3}$, the value of $i_{c}=-I_{0}$.

Mode $4\left(0 \leq t \leq t_{4}\right)$:

As switch S is turned off at $\mathrm{t}=0$, capacitor begins to supply the load current I_{0} as shown in fig3.1.(mode-4). Capacitor voltage at any time t is given by

$$
v_{c}=V_{c 3}-\frac{1}{c} \int i_{c} \cdot d_{t}
$$

As magnitude of capacitor current $i_{c}=i_{0}$ is constant,

$$
v_{c}=V_{c 3}-\frac{I_{0}}{c} t
$$

This mode comes to an end when v_{c} falls to zero at $\mathrm{t}=t_{4}$.
or

$$
V_{c 3}-\frac{I_{0}}{c} t_{4}=0
$$

or $\quad t_{4}=\frac{C \cdot V_{C 3}}{I_{0}}$

At $\mathrm{t}=0, v_{T}=V_{s}-V_{c 3}$ and at $\mathrm{t}=t_{4}, v_{T}=V_{s}-0=V_{s}$ as shown in fig3.1(mode-4).As I_{o} is constant, capacitor discharges linearly from $V_{c 3}$ to zero and v_{T} varies linearly from $\left(V_{s}-V_{c 3}\right)$ to V_{s} as shown in fig.3.1

Mode $5\left(0 \leq t \leq t_{5}\right)$:
At the end of mode 4 or in the beginning of mode 5, capacitor voltage v_{c} is zero as shown in fig.3.1 waveforms. As v_{c} tends to reverse at $\mathrm{t}=0$, diode D_{m} gets forward biased and starts conducting, fig.b.(mode-5). The load current I_{o} flows through diode D_{m} so that $I_{D_{m}}=I_{o}$ during this mode.

This mode comes to an end when switch S_{1} is again turned on at $t=t_{5}$. The cycle is now repeated as before. Here $t_{5}=T-\left(t_{1}+t_{2}+t_{3}+t_{4}\right)$.

The waveforms for switch or inductor current i_{L}, capacitor voltage v_{c}, diode current $I_{D_{m}}$, capacitor current i_{c} and voltage across switch S_{1} as v_{T} are shown in fig.3.1 waveforms. It is seen that at turn-on at $\mathrm{t}=0(0 \leq \mathrm{t} \leq$ t_{1}), switch current $i_{L}=0$, therefore switching $\operatorname{loss} v_{T} i_{L}=0$. Similarly, at turn-off at $t_{3}\left(0 \leq \mathrm{t} \leq t_{3}\right), i_{L}=0$ and therefore $v_{T} i_{L}=0$. It shows that the switching loss during turn-on and turn-off processes is almost zero. The peak resonant current $\quad I_{m}=\frac{V_{s}}{Z_{0}}$ must be more than the load current I_{o}, otherwise switch current i_{L} will not fall to zero and switch S_{1} will not get turned off.

The load voltage v_{0} can be regulated by varying the period t_{5}. It is obvious that longer the period t_{5}, lower is the load voltage.

Figure 3.1: L- Type ZCS Resonant Converter circuit, modes of Operation and waveforms

4. DESIGN OF CONVERTER

Design example: To verify the operation and performance of the proposed converter, a $5 \mathrm{~W}\left(5 \mathrm{~V}^{*} 1 \mathrm{~A}\right)$ experimental prototype circuit was built for battery charging application. A design procedure for $5-\mathrm{W}$ converter is presented. The specifications are as follows:

$$
\begin{aligned}
& V_{\text {in }}=12 \mathrm{~V} \\
& V_{\text {out }}=5 \mathrm{~V} \\
& I_{\text {out }}=1 \mathrm{~A}
\end{aligned}
$$

The selection of the resonant inductor and capacitor is determined by the need to satisfy the relation

$$
\frac{V_{i n}}{Z_{C}}>I_{o u t}
$$

Where, $Z_{c}=\sqrt{ } L_{r} / C_{r}$
So keeping these things in mind value chosen are:
$C_{r}=C_{d}=0.2$ micro farad
$L_{r}=L_{1}=20$ micro Henry
According to the relation given modes of operation, as the transistor turn on, causing current to ramp at
$d_{i} / d_{t}=\frac{12}{20} * 10^{\wedge} 6=0.6 * 10^{6} \mathrm{~A} / \mathrm{s}$
So the diode current will be zero in micro seconds after the transistor turn on, then the circuit enters into mode 2.

$$
Z_{c}=\sqrt{L_{r} / C_{r}}=\sqrt{20 / 0.2}=10 \Omega
$$

(it is also called characterstic impedence)
According to relation given in modes of operation,

$$
I_{\text {out }}=V_{\text {in }} / Z_{c}=12 / 10=1.2 \mathrm{~A}
$$

This show
$V_{\text {in }} / Z_{c}>I_{\text {out }}$. So the resonant condition gets fulfilled.
However if the load increases above 1.2 A, this LC combination will no longer support soft switching.
$W_{r}=1 / \sqrt{L} C=500000 \mathrm{rad} / \mathrm{sec}$
$f_{r}=W_{r} / 2 \pi=79.577 \mathrm{kHz}$
From the relation
$W_{r} t_{o f f}=56.4426$
$\mathrm{I}_{\mathrm{L}}(\mathrm{t})$ will be zero at 180.0001 (in degree) and 359.999 (in degree).corresponding time can be calculated as
$t_{o f f 1}=180.0001 * \frac{\pi}{180} * 500000=6.28 \mu s$
$t_{o f f 2}=359.99 * \pi / 180 * 500000=12.6 \mu s$

So MOSFET gate signal should be held high until ($\mu \mathrm{s}$).And it should be turn off before $t_{\text {off } 2}$ is reached. The gate signal of 10.6μ s will work nice in the case.

The second integral is the area of a triangle. The triangle peak value is given by
$V_{d}\left(t_{o f f 2}\right)=12(1-\cos (303.6))=5.36 \mathrm{~V}$
The time until V_{d} reaches zero is:
$\mathrm{t}=V_{d}\left(t_{\text {off } 2}\right) /\left(I_{\text {out }} / C_{d}\right)=5.36 \div\left(\frac{1}{0.2 \times 10^{-6}}\right)=1.072 \mu \mathrm{~s}$
Δ Area $=\left(0.2 * 5.36^{2}\right) /(2 * 1)=2.87 * 10^{-6} \mathrm{Vs}$
From (i)

$$
\begin{aligned}
& {\left[\int_{0}^{t_{o f f 2}} V_{\text {in }}\left(1-\cos \left(W_{r} t\right)\right) d t\right]} \\
& =12[10.6+0.0923] * 10^{-6} \\
& =1.47 * 10^{-4} \mathrm{Vs}
\end{aligned}
$$

So the average output voltage is

$$
\left\langle V_{d}\right\rangle=\left(1.47 * 10^{-4}+2.87 * 10^{-6}\right) / T
$$

Since the desired output is 5 V then:

$$
\begin{aligned}
& 5=\left(1.47 * 10^{-4}+2.87 * 10^{-6}\right) / \mathrm{T} \\
& \mathrm{~T}=29.97 \mu \mathrm{~s} \cong 30 \mu \mathrm{~s}
\end{aligned}
$$

So from above we get $\mathrm{f} \cong 33.33 \mathrm{kHz}$ in ideal condition. But in practical case we have to take care the drop across the diode also over the period of time which is around 1.5 V during turn on time of diode.
$6 \mathrm{~T}=(147+2.87)-1.5(\mathrm{~T}-33.53)$
[33.53 is the off time of diode]
Which gives $\mathrm{T} \cong 30.79 \mu \mathrm{~s}$ and frequency $=32.478 \mathrm{kHz}$ By taking other no ideality in MOSFET, inductor, capacitor practical switching frequency is coming around 36.6 kHz .

The proposed ZCS buck converter for USB power adapter $5 \mathrm{~V}, 1 \mathrm{~A}$ is presented. The converter features were listed in Table1

Input voltage	12 V
Output voltage	5 V
Output current	1 A
Switching frequency	33.33 kHz
Duty cycle	0.333 or 33.33%
Resonant inductor	20 uH
Resonant capacitor	0.2 uF
Output filter induct	2.0 mH
Filter capacitor	20 uF
Load resistor	5 ohms

5. SIMULATION AND HARDWARE RESULTS The above Proposed and designed converter is Simulated using PSpice-Orcad Capture Software and observed the results i.e. Current through the resonant inductor and voltage across resonant capacitor and MOSFET gate triggered pulses and output voltage

5.1 Pspice circuit diagram

Fig5.1: Pspice model of ZCS buck converter
Simulated Results

Fig5.2: Pulses to the MOSFET

Fig5.3: Current through the resonant inductor

Fig5.4: Voltage across the resonant capacitor

Fig5.5: Voltage across the output terminal

6. EXPERIMENTAL RESULTS

$5 \mathrm{~W}(5 \mathrm{~V} / 1.0 \mathrm{~A})$ prototype of the ZCS converter, as shown in Fig.5.1 is built to verify the theory. And the result is compared with simulation. The specifications of the experimental prototype is as follows: Input voltage $=12 \mathrm{~V}$, Output voltage $=5 \mathrm{~V}$, output current $=1.0 \mathrm{Amps}$

Circuit parameters of the proposed converter are as follows.

1) Switch: MOSFET IRFP250.
2) Diode: IN4001.
3) Resonant capacitor: 0.2 uF .
4) Filter capacitor: 20 uF .
5) Resonant inductor: 20 uH .
6) Output filter inductor: 2.0 mH .
7) Load resistor 5 ohms

In experimental setup we can generate triggering pulses to drive the MOSFET by using 555 timer. Here we generated 7.76 V as a gate pulse from the timer. This pulse input is not enough to drive the Mosfet IRFP250. Hence we have to amplify the signal beyond 10 volts. Because the minimum voltage required to drive the MOSFET is to be 10 volts. To amplify this signal we are using MOSFET driver IRS2110.Now we have the pulse with the amplitude of 15.6 volts. This voltage is enough to drive our MOSFET IRFP250.

After applying this gate pulse we observe the corresponding waveforms comparing with the simulation results.
IC555 Timer

Fig6.1: Pin configuration of 555 Timer

The R_{1} and R_{2} resistors of 555 Timer are calculated as below
$T_{\text {on }}=0.693 R_{1} C_{1}$

$$
R_{1}=\frac{T_{o n}}{0.693 C_{1}}
$$

The On period $T_{\text {on }}=10$ micro seconds and $C_{1}=1$ nano farads
Then the value $\mathrm{R}_{1}=14.4 \mathrm{~K}$ ohm
Toff $=0.693 R_{2} C_{1}$
$R_{2}=\frac{\text { Toff }}{0.693 C_{1}}$
The On period Toff $=20$ micro seconds and $\mathrm{C}_{1}=1$ nano farads

Then the value $\mathrm{R}_{2}=28.9 \mathrm{~K}$ ohm
The resultant 555 timer configuration is given below

Fig6.2: circuit configuration of 555 Timer

IRS2110 Gate Driver Circuit

Fig6.3: Pin configuration of IRS2110

Published by:
http://www.ijert.org

ISSN: 2278-0181
Vol. 5 Issue 05, May-2016

Fig6.4: IRS2110 as a low side MOSFET driver

5.3.3 Experimental Setup and Results

Fig6.5: Hardware circuit of L-type ZCS resonant buck converter

Fig6.6: Pulses from the 555 Timer

Fig6.7: Pulses from the IRS2110

Fig6.8: Voltage across resonant capacitor

Fig6.9: Voltage across MOSFET IRFP250

7. CONCLUSION

In this paper we analyse, design and implemented the ZCS based $5 \mathrm{~W}(5 \mathrm{~V} / 1 \mathrm{~A})$ resonant DC-DC buck converter. The various modes of operation of L-type ZCS resonant converter and time analysis of the resonant capacitor voltage and resonant inductor current waveforms analyzed. The ZCS resonant convetrter is simulated using

Pspice-Orcad capture software and also implemented the experimental(hardware) proto type. In hardware implementation the required pulses are generated by IC555 Timer and amplified by IRS2110 i.e used for switching the MOSFET IRFP250. The simulated results resonant capacitor voltage, resonant inductor current and output voltage executed successfully are compared with the hardware results and also compared with the theoretical waveforms. At final we concluded that in high power applications the switching losses are reduced drastically due to incorporation of LC based resonant circuit in conventional buck converter and improved the performance and efficiency of the converter.

REFERENCES

[1] Philip T Krein, "element of power electronics," First Indian Edition, pp.300-307, 2008.
[2] Naseem Zaidi, Aziz Ahmad "Analysis, Design and Control of Zero Current Switching DC To DC Buck Converter", International Journal of Scientific and Research Publications, Volume 2, Issue 7, July 2012.
[3] Irfan Jamil, Zhao Jinquan and Rehan Jamil, "Analysis, Design and Implementation of Zero-Current Switching Resonant Converter DCDC Buck Converter," International Journal of Electrical and Electronics Engineering (IJEEE), Vol. 2, Issue 2, May 2013.
[4] Anuj Verma1, Dheresh Upadhyay "ZCS Quasi Resonant Converter Fed Resistive Load Experimental Investigation" International Journal of Research and Innovations in Science and Technology Volume 1, Issue 1, 2014.
[5] Power Electronics - Dr.P.S. Bimbhra, Khanna Publishers.

