Abstract: In today’s scenario, renewable energy based applications are increasing due to the global warming issue and increase in the prices of fossil fuels. Renewable energy sources (RES) like sun, biomass, air, water etc. are environmental friendly and have plenty of potential that can be utilized in power generation. However, RES have a problem of intermittent in nature that can be conquered presently by combining RES known as hybrid system that can provide the reliable, economic and environment friendly electricity. One of the major concerns in this hybrid system is to optimize the size of components of hybrid system in order to fulfill the load requirements in minimum cost. Keeping in view of the above constraints, a RES based hybrid system for the rural location of Haryana state in India have been developed and economically compared in this paper. Out of different configurations, solar/biomass with biogas based hybrid system has been found most economical in view of least net present cost (NPC) and cost of energy (COE).

Keywords: Solar Photovoltaic, Biogas, Biomass, Off grid, HOMER.

I. INTRODUCTION

In today’s scenario, the world is facing four major challenges viz. ‘Energy security’, ‘Climate change’ ‘Drinking water’, and ‘poverty’. India, a highly populated nation in the world and therefore its energy requirement is increasing with time. In addition, large portion of energy of the nation is fulfilled by conventional energy sources owed to greenhouse gas (GHG) emission. These issues can be conquering by using renewable energy sources (RES) that offers environmental friendly energy. Also, Government of India (GOI) is promoting RES based energy generation by initiating several schemes like providing subsidies on green and clean energy, Jawaharlal Nehru solar mission etc. [1]. The contribution of RES and conventional sources in the total installed capacity (349288MW) in India as of 31.12.2018 has been demonstrated in Figure-1.

II. METHODOLOGY

The methodology used in this paper involves brief description of selected site, evaluation of the potential of RES, estimation of hourly load demand, and simulation and optimization, which are illustrated in the forthcoming sections.

i) Study area

Khanpur-Kalan, a village (latitude of 29.15° N and longitude of 76.75° E) placed in Gohana Tehsil in Haryana state, India included for the proposed study. Based on census 2011, this region has total population of 12544 with total households of 2014. Presently, a health centre situated in this village is not connected to the grid supply. Hence it is necessary to evolve an optimal hybrid system in order to provide regular supply of electricity. Further, the general information of the given area is mentioned in Table-1[23].

<table>
<thead>
<tr>
<th>Description</th>
<th>General Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country, State, District, Block</td>
<td>India, Haryana, Sonipat, Gohana</td>
</tr>
<tr>
<td>Village</td>
<td>Khanpur-Kalan</td>
</tr>
<tr>
<td>Occupants</td>
<td>12544</td>
</tr>
<tr>
<td>Households</td>
<td>2014</td>
</tr>
<tr>
<td>Latitude</td>
<td>29.15° N</td>
</tr>
<tr>
<td>Longitude</td>
<td>76.75° E</td>
</tr>
</tbody>
</table>
Hybrid system combining two or more than two RES may provide the economical electrical energy due to intermittent nature of RES. Several analyses have been reported in literature that hybrid system is more attractive than single energy system in view of economy, reliability, sizing etc. [3-7]. Additionally, the capital cost of renewable energy based system is relatively higher than traditional energy system. Therefore, optimal sizing is also topmost requirements in order to meet the energy requirements in economic manner. In this direction, several investigations have been carried out by utilizing various simulation software and methods [8-22].

The objective of the present work is to develop a hybrid system including solar photovoltaic (SPV)/biomass generator (BMG) along with biogas generator (BG) system for the health centre of rural location of Haryana state in India. Utilizing HOMER (Hybrid Optimization Model for Electrical Renewable), different types of renewable energy based off grid/grid connected hybrid system have been developed and compared in view of least NPC and COE.

ii) Evaluation of Potential of RES

In order to compute the potential, an extensive survey is carried out and data related to different RES involves solar radiation from sun, biogas from cattle dung and biomass from crop residues is obtained. The potential of RES of the given area is illustrated in Table 2.

<table>
<thead>
<tr>
<th>RES</th>
<th>Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily Solar irradiance</td>
<td>5.26 kWh/m²/day</td>
</tr>
<tr>
<td>Biomass (Crop Residue)</td>
<td>1418.41935 tonne/year</td>
</tr>
<tr>
<td>Biogas</td>
<td>1152.0828 m³/day</td>
</tr>
</tbody>
</table>

From Table-2, it has been found that the study area has huge potential of RES that can be used to fulfill the energy needs of the study area.

Solar energy can be used to generate electricity via SPV technology and the formula for computing power of SPV system (P_{PV} (t)) is as follows [24]:

\[
P_{PV} (t) = R_{PV} \times D \times F \times \frac{Q_{PV} (t)}{Q_{PV,STC}}
\]

Where, \(R_{PV} \) is rated capacity of SPV array at standard test condition (STC); \(Q_{PV} (t) \) is solar radiation incident on SPV array in kW/m²; \(Q_{PV,STC} \) denotes the solar radiation at STC (1 kW/m²). \(D \) stands derating factor of SPV array.

Further, the power from biomass generator (BMG) system (P_{M} (t)) is calculated as:

\[
P_{M} (t) = \frac{Q_{AM} \times CV_{M} \times \eta_{M} \times 1000}{365 \times 860 \times H_{M}}
\]

Where, \(Q_{AM} \) stands yearly potential of biomass (tons/year), \(CV_{M} \) denotes biomass calorific value (kcal/kg), \(\eta_{M} \) denotes conversion efficiency and \(H_{M} \) denotes operating hours in a day of BMG system.

The output power generated by BG system (P_{G} (t))is computed as [25]:

\[
P_{G} (t) = \frac{A \times C \times \eta}{860 \times O_{H}}
\]

Where, \(A \) stands for biogas availability/day (m³/day); \(C \) defines biogas calorific value (kcal/m³); \(\eta \) denotes conversion efficiency from biogas to electricity; \(O_{H} \) stands operating hours of BG system/day.

iii) Hourly Load Demand Estimation

The hourly load demand of the specified study region is established on the facts provided by local personnel. In this study, two seasons viz. summer season and winter season have been taken into consideration the variation of temperature on energy consumption pattern. Summer season includes April to September and winter season involves October to March. Moreover, the daily load profile of both the seasons on everyday basis is depicted in Figure- 2.

iv) Optimization Methodology

In this study, for simulation and optimization purpose, HOMER software is employed. It simulates various realistic configurations and ranked them in view of least NPC [26]. In the present work, different generators such as SPV system, BMG and BG system along with battery and converter have been considered and their techno-economic inputs such as size, cost, lifetime etc. are illustrated in Table-3.
III. RESULTS AND DISCUSSION

Based on the availability of RES, different configurations of RES in off grid mode have been identified for the selected site as under.

1. Configuration I: SPV/Biomass/Battery
2. Configuration II: SPV/Biogas/Battery
3. Configuration III: SPV/Biomass/ Biogas/Battery

Further, some configurations in grid connected mode have also been selected are as follows:

4. Configuration IV: SPV/Biomass/Biogas
5. Configuration V: SPV/Biomass/Biogas/Battery

Among all configurations, most feasible combination in view of techno-economic analysis has been selected. The techno-economic results of the chosen configurations are demonstrated in Table-4.

From Table-4, it is concluded that the grid connected hybrid SPV/BMG/BG together with battery system has minimum NPC and COE. The proposed hybrid system is demonstrated in Figure-4.

Table-3: Techno-Economic Input Database [27]

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Renewable energy technology</th>
<th>Capacity considered</th>
<th>Capital Cost ($/kW)</th>
<th>Replacement cost ($/kW)</th>
<th>Operation and maintenance (O&M) cost</th>
<th>Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SPV system</td>
<td>1kW</td>
<td>1333</td>
<td>1333</td>
<td>$ 26/year</td>
<td>25 years</td>
</tr>
<tr>
<td>2</td>
<td>BG system</td>
<td>1kW</td>
<td>660</td>
<td>450</td>
<td>$ 0.01/kW /hour</td>
<td>20000 hours</td>
</tr>
<tr>
<td>3</td>
<td>BMG system</td>
<td>1kW</td>
<td>1033</td>
<td>750</td>
<td>$ 0.011/kW/ hour</td>
<td>15000 hours</td>
</tr>
<tr>
<td>4</td>
<td>Battery (VISION 6FM200D)</td>
<td>12V, 200 Ah</td>
<td>284</td>
<td>220</td>
<td>$6/battery/year</td>
<td>5 years/battery</td>
</tr>
<tr>
<td>5</td>
<td>Converter</td>
<td>1kW</td>
<td>117</td>
<td>117</td>
<td>$3/kW /year</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Table-4: Technical and Economic parameters of selected configurations

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
<th>Configuration I</th>
<th>Configuration II</th>
<th>Configuration III</th>
<th>Configuration IV</th>
<th>Configuration V</th>
</tr>
</thead>
<tbody>
<tr>
<td>System rating</td>
<td>SPV (kW)</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Biogas generator (kW)</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Biomass generator (kW)</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Battery (No.)</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Converter (kW)</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Grid (kW)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Economic parameters</td>
<td>NPC ($)</td>
<td>37273</td>
<td>28133</td>
<td>26717</td>
<td>23855</td>
<td>23238</td>
</tr>
<tr>
<td></td>
<td>Total annualized capital cost ($)</td>
<td>835</td>
<td>893</td>
<td>736</td>
<td>677</td>
<td>627</td>
</tr>
<tr>
<td></td>
<td>Total annual replacement cost ($)</td>
<td>504</td>
<td>915</td>
<td>455</td>
<td>301</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>Total O & M cost ($)</td>
<td>331</td>
<td>324</td>
<td>295</td>
<td>161</td>
<td>286</td>
</tr>
<tr>
<td></td>
<td>Total fuel cost ($)</td>
<td>553</td>
<td>829</td>
<td>618</td>
<td>741</td>
<td>629</td>
</tr>
<tr>
<td></td>
<td>TAC ($)</td>
<td>2201</td>
<td>2916</td>
<td>2090</td>
<td>1866</td>
<td>1818</td>
</tr>
<tr>
<td></td>
<td>COE ($/kWh)</td>
<td>0.168</td>
<td>0.127</td>
<td>0.120</td>
<td>0.107</td>
<td>0.105</td>
</tr>
</tbody>
</table>
From Table-4, it is concluded that the grid connected hybrid SPV/BMG/BG together with battery system has minimum NPC and COE. The proposed hybrid system is demonstrated in Figure-4.

Further, the monthly average energy generation by the proposed system is mention in Figure-5.

I. CONCLUSION

In this study, design of hybrid system consisting of SPV/BMG/BG with battery system is carried out for providing reliable electrical supply to health centre of the rural location of Haryana state, India. In this context, five configurations have been developed and compared in view of least NPC and COE. The proposed hybrid system comprises of 3 kW SPV; 2 kW BG system; 2 kW BMG generator with 1 no. of battery and 3 kW converter. The COE of the proposed system is $0.105 (i.e. INR 7.20 per unit), which is quiet economical.

REFERENCES

[2]. Central Electricity Authority, Ministry of Power, Government of India, 2018; www.cea.nic.in

AUTHORS PROFILE

Mr. Shamshad Ali, Assistant Professor, Department of Electrical and Electronics Engineering, Mewat Engg. College, Haryana, since 19 August 2011. Apart from teaching, currently he has been working as State Public Information Officer. He has also worked as Coordinator/Head, Department of Electrical and Electronics Engineering. Earlier, he had worked as Lecturer at Jamia Millia Islamia from 2006 to 2011. He received M. Tech. (Electrical Power System Management) and B. E. (Electrical Engineering) from Jamia Millia Islamia in 2009 and 2005 respectively. Currently, he is pursuing Ph. D. from Jamia Millia Islamia (A Central University). His area of research is power system, renewable energy systems, micro grid.

Dr Majid Jamil, Professor and former Head in the Department of Electrical Engineering, Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi 110025. He obtained his Ph.D. in Power Systems, Electrical Engineering from J.M.I., New Delhi, India, in 2001. He did M.Sc. Engg. from AMU, Aligarh, India in 1992 and B.Sc. Engg. (Electrical Engineering) from Jamia Millia Islamia, New Delhi, India in 1989. He has published more than 100 papers in their area of research.

Dr. Mumtaz Ahmad Khan is the Head of Section of Electrical Engineering, Jamia Millia Islamia. He obtained his Bachelors from the faculty of Engineering & Technology, JMI, New Delhi in Electrical Engineering in 1992, Masters from Department of Electrical Engineering, AMU in 1995 and Doctorate in Electrical Engineering from JMI in 2005. He has also worked as Director, Mewat Engineering College since December 2016 to April 2019 and in BITS, Pilani-Dubai, UAE from 2005 to 2010 for a period of five years as Assistant Professor, EEE. His areas of interest are Intelligent Applications in EE, Wireless Communications, Smart & Zero Net Energy Buildings etc. He has published more than 100 research papers in reputed journals and conferences. Presently he is supervising three research scholars under his guidance. Dr. Khan is a member of many professional bodies like IEEE, IETE, CSI, ICTP, ISTE.