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Abstract:- In this paper, we consider the inventory model for 

perishable items with quadratic trapezoidal type demand 

rate, that is, the demand rate is a piecewise quadratic 

function. The model consider allows for shortages and the 

demand is partially backlogged. The model is solved 

analytically by minimizing the total inventory cost. The result 

is illustrated with numerical example for the model. 
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1. INTRODUCTION 

 

Deteriorating items are very common thing in our daily life 

situation. In recent years, many researchers have studied 

inventory models for deteriorating items, however, 

academia has not reached a consensus on the definition of 

the deteriorating items. According to the study of Wee 

(1993), deteriorating items refers to the items that become 

decayed, damaged, evaporative, expired, invalid, 

devaluation and so on through time. According to the 

definition, deteriorating items can be classified in to two 

categories. The first category refers to the items that 

become decayed, damaged, evaporative, or expired through 

time, like meat, vegetables, fruit, medicine, flowers and so 

on; the other category refers to the items that lose part or 

total value through time because of new technology or the 

introduction of alternatives, like computer chips, mobile 

phones, fashion and seasonal goods and so on. The 

inventory problem of deteriorating items was first studied 

by Whitin (1957), he studied fashion items deteriorating at 

the end of the storage period. Then Ghare and Schrader 

(1963) concluded in their study that the consumption of the 

deteriorating items was closely relative to a negative 

exponential function of time. Various authors (Deng et al. 

(2007), Cheng and Wang (2009), Cheng et al. (2011), 

Hung (2011)) studied inventory models for deteriorating 

items in various aspects. 

In world business market, demand has been always one of 

the most key factors in the decisions relating to the 

inventory and production activities. There are mainly two 

categories demands in the present studies, one is 

deterministic demand and the other is stochastic demand. 

Various formations of consumption tendency have been 

studied, such as constant demand (Padmanabhan and Vrat 

(1990), Sukla (2012), , Sukla and sahu (2008) Chung and 

Lin (2001), Benkherouf et al. (2003), Chu et al (2004)), 

level-dependent demand (Giri and Choudhuri (1998), 

Chung et al. (2000), Bhattacharya (2005), Wu et al. 

(2006)), price dependent demand (Wee and Law (1999), 

Abad (1996, 2001)), time dependent demand (Resh et al. 

(1976), Henery (1979), Sachan (1984), Dave (1989), Teng 

(1996), Teng et al. (2002), Skouri and Papachristos (2002), 

Panda,  Sahoo, and Sukla (2012) ), Panda,  Sahoo, and 

Sukla (2013) , Sett et al. (2013), Shah, , Chaudhari  and 

Jani  (2015), Shah, , Chaudhari  and Jani  (2016), Mishra et 

al. (2013)) and time and price dependent demand (Wee 

(1995)). Among them, ramp type demand is a special type 

of time dependent demand. Hill (1995), one of the 

pioneers, developed an inventory model with ramp type 

demand that begins with a linear increasing demand until to 

the turning point, denoted as  , proposed by previous 

researchers, then it becomes a constant demand. There has 

been a movement towards developing this type of 

inventory system for minimum cost and maximum profit 

problems. Several authors: Mandal and Pal (1998) focused 

on deteriorating items. Wu et al. (1999) were concerned 

with backlog rates relative to the waiting time. Wu and 

Ouyang (2000) tried to build an inventory system under 

two replenishment policies: starting with shortage or 

without shortage. Panda, Sahoo and sukla (2013), Wu 

(2001) considered the deteriorated items satisfying Weibull 

distribution. Giri et al (2003) dealt with more generalized 

three parameter Weibull deterioration distribution. Deng 

(2005) extended the inventory model of Wu et al. (1999) 

for the situation where the in-stock period is shorter 

than . Manna and Chaudhuri (2006) set up a model 

where the deterioration is dependent on time. Panda et al. 

(2007) constructed an inventory model with a 

comprehensive ramp type demand. Deng et al. (2007) 
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contributed to the revision of Mandal and Pal (1998), and 

Wu and Ouyang (2000). Panda et al. (2008) examined the 

cyclic deterioration items. Wu et al. (2008) studied the 

maximum profit problem with the stock-dependent selling 

rate. They developed two inventory models all related to 

the conversion of the ramp type demand, and then 

examined the optimal solution for each case. However, in a 

realistic product life cycle, demand is increasing with time 

during the growth phase. Then, after reaching its peak, the 

demand becomes stable for a finite time period called the 

maturity phase. Thereafter, the demand starts decreasing 

with time and eventually reaching zero or constant. 

In this work, we extend Hill’s ramp type demand rate to 

quadratic trapezoidal type demand rate. Such type of 

demand pattern is generally seen in the case of any fad or 

seasonal goods coming to market. The demand rate for 

such items increases quadratic-ally with the time up to 

certain time and then ultimately stabilizes and becomes 

constant, and finally the demand rate approximately 

decreases to a constant, and then begins the next 

replenishment cycle. We think that such type of demand 

rate is quite natural and useful in real world market 

situation. One can think that our work may provide a solid 

foundation for the future study of this kind of important 

inventory models with quadratic trapezoidal type demand 

rate and preservation technology 

 

2.  ASSUMPTION AND NOTATIONS 

 

The fundamental assumption and notations used in this 

paper are given as follows: The demand rate, R(t), which is 

positive and consecutive, is assumed to be a quadratic 

trapezoidal type function of time, that is 


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Chose 1b , c1, 2b and c2 such a way that 
2

22 tctb −  should 

not be negative for Tt 2 . Where 1  is the time 

point changing from the increasing quadratic demand to 

constant demand, and 2 is the time point changing from 

the constant demand to the decreasing demand. 

➢ Replenishment rate is infinite, thus replenishment 

is instantaneous. 

➢ I(t) is the inventory level at any time t, 

Tt 0 . 

➢ T is the fixed length of each ordering cycle. 

➢   is the constant rate of deterioration, 

10  . 

➢ t1 is the time when the inventory level reaches 

zero. 

➢ t1
* is an optimal point. 

➢ k0 is the fixed ordering cost per order. 

➢ k1 is the cost of each deteriorated item. 

➢ k2 is the inventory holding cost per unit per unit of 

time. 

➢  k3 is the shortage cost per unit per unit of time. 

➢  S is the maximum inventory level for the ordering 

cycle, such that S=I(0). 

➢  Q is the ordering quantity per cycle. 

➢  A1(t1) is the average total cost per unit time under 

the condition 11 t . 

➢  A2(t1) is the average total cost per unit time, for 

211   t . 

➢ A3(t1) is the average total cost per unit time, for 

Tt  12  

 

3. MATHEMATICAL AND THEORETICAL RESULTS 

Here, we consider the deteriorating inventory model with 

demand rate is trapezoidal type quadratic function. 

Replenishment occurs at time t =0 when the inventory level 

attains its maximum. For ],0[ 1tt  , the inventory level 

reduces due to both demand and deterioration. At time t1, 

the inventory level reaches zero, then shortage is allowed to 

occur during the interval (t1, T), and all of the demand 

during the shortage period (t1, T) is completely backlogged. 

The total amount of backlogged items is replaced by the 

next replenishment. The rate of change of the inventory 

during the stock period [0, t1] and shortage period (t1, T) is 

governed by the following differential equations: 

     

0)()(
)(

=++ tRtI
dt

tdI
 , 10 tt  ,                    (2)                                                      

       

0)(
)(

=+ tR
dt

tdI
, Ttt 1 ,                              (3)                                                                               

with boundary condition I(0)=S and I(t1)=0. One can think 

about t1, t1 may occur within ],0[ 1  or ],[ 21   

or ],[ 2 T . Hence in this paper we are going to discuss all 

three possible cases. 

Case 1:          110  t  

The quadratic trapezoidal type market demand and constant 

rate of deterioration, the inventory level gradually 

diminishes during the period [0, t1] and ultimately reaches 

to zero at time t=t1. Then, from equations (2) and (3), we 

have 

0)(
)( 2

11 =+++ tctbtI
dt

tdI
 , 10 tt       (4)                      

0
)( 2

11 =++ tctb
dt

tdI
, 11  tt                         (5)                                                                     

0
)(

0 =+ R
dt

tdI
, 21   t              (6)                                                    

0
)( 2

22 =−+ tctb
dt

tdI
, Tt 2            (7)                                                                          

Now solving the differential equations (4) – (7) with the 

condition I(t1)=0 and continuous property of I(t), we get 
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The beginning inventory level can be computed as  
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The total number of items which is perish in the 

interval [0, t1], say DT, is 
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The total amounts of inventory carried during the 

interval [0, t1], say CT, is 
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The total shortage quantity during the interval [t1, 

T], say BT, is 
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The average total cost per unit time for 110  t is 

given by 
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that p(t1) is a strictly monotonically increasing 

function and equation (19) has a unique solution at 
*

1t , for ),0(*
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Property-1 

The constant deteriorating rate of an inventory 

model with quadratic trapezoidal type demand rate 

under the time interval 110  t , 

)( 11 tA attains its minimum at
*

11 tt = , where 

0)( *

1 =tp if 
1

*

1 t . On the other hand, 

)( 11 tA attains its minimum at 
1

*

1 =t if 

1

*

1 t . 

The total back order amount at the end of the 

cycle is 

)2(
3

)(
2

)2(
3

)(
2

3

2

322

2

22

3

1

3*

1
12

1

2*

1
1

1





+−++

+−+−=

T
c

T
b

t
c

t
b

      (21) 

Therefore, the optimal order quantity, denoted by 
*Q , is 

1

** += SQ , where 
*S  denote the 

optimal value of S. 

Case-II, 211   t  

For the time period ],[ 211 t , then, the 

differential equations governing the inventory 

model can be expressed as follows: 
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The total amount of items which is perish within 

the time interval [0, t1] is 
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The total amount of shortage during the interval      [t1, T]       
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Now, the average total cost per unit time under the 

condition 211   t , can be obtained as 
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   The required necessary condition for )( 12 tA to be 

minimized is 0
)(

1

12 =
dt

tdA
, that is 
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Let )()1()( 13
2
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k
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since 0)( 3
1

11
1 +








+= ke

k
ktp

t 



, which 

implies that )( 1tp is strictly monotonically 

increasing function during the interval 

211   t . 

Property-2 

The constant deteriorating rate of an inventory 

model with quadratic trapezoidal type demand 

function during the time interval 211   t , 

)( 12 tA attains its minimum at 
1

*

1 =t if 

1

*

1 t  and )( 12 tA  attains its minimum 

at
2

*

1 =t if 
*

12 t . 

Now, we can calculate the total amount of back-

order quantity at the end of the cycle is 
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c

T
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tR   (38) 

Therefore, the optimal order quantity denoted by 
*Q is 

2

** += SQ , where 
*S denotes the 

optimal vale of S. 

Case-III Tt  12  

For the time interval ),[ 21 Tt  , then, the 

differential equations governing the inventory 

model can be expressed as follows: 

0)(
)( 2

11 =+++ tctbtI
dt

tdI
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0)(
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dt
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dt
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 , 12 tt            (41)                                                           

0
)( 2
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Solving the differential equations (39)- (42) with I(t1)=0, 

we can get 
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can be computed as 
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The total amount of items which is perish within the time 

interval [0, t1] is 
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The total amount of inventory carried during the 

time interval [0, t1] is 
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Total quantity of shortage during the time interval [t1, T] is 
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Then, the total average cost per unit time under the time 

interval Tt  12 , can be written as  
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The first order derivative of )( 13 tA with respect to 1t is as 
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The required necessary condition for )( 13 tA to be 
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, which 

implies that )( 1tp is strictly monotonically 

increasing function within the interval 

],[ 21 Tt  . 

 

Property-3 

In this case, the inventory model under the 

condition Tt  12 , )( 13 tA
 

attains its 

minimum at
*

11 tt = , where 

0)( *

1 =tp if
*

12 t . On the other hand, 

)( 13 tA  attains its minimum 

at
2

*

1 =t if
2

*

1 t .Now, we can calculate the 

total back-order quantity at the end of the cycle is  

)(
3

)(
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33*

1
22*

1

22
3 Tt

c
tT

b
−+−=  . 

Therefore, the optimal order quantity, denoted 

by
*Q , is

3

** += SQ , where 
*S denotes the 

optimal value of S.From the above three cases, we 

can derive the following results 

 

Result-1 

An inventory model having constant deteriorating 

rate with quadratic trapezoidal type demand, the 

optimal replenishment time is 
*

1t  and 

)( 11 tA attains its minimum at 
*

11 tt =  if and only 

if 
1

*

1 t . On the other hand, )( 12 tA attains its 

minimum at 
*

11 tt =  if and only if 
2

*

11   t  

and )( 13 tA attains its minimum at 
*

11 tt =  if and 

only if
*

12 t , where 
*

1t is the unique solution of 

equation 0)( 1 =tp . 

            

Example 1 

We can consider suitable values of the following 

parameters as follows: T= 20 weeks, 1 = 6 

weeks, 2 =15 weeks, b1=10 unit, c1= 5 unit,  

b2=20 unit, c2= 2 unit, 1.0= , k0=$220, k1= $3 

per unit, k2=$12 per unit, k3=$4 per unit. By Using 

MATHEMATICA 8.0 the above data, we can find 

)( 1p =168.1206>0, the optimal replenishment 

time 
*

1t =3.41 weeks, the optimal order quantity 

Q*, for each ordering cycle, is 3576.478 unit and 

the minimum cost )( *

11 tA =$4688.2   
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parameter   0
0         t1



               Q


                 )(
11 tA


                          +50       3.53             3674.30               4894.2

                           + 25        3.50             3664.02               4883.5

                          + 20        3.45               3584.112             4730.1

                            +10     3.41               3576.478            4688.2

          b1
           -10       3.30               3576.478              4626.4

                           -20         3.27             3560.903              4610.7

                            -25         3.20              3284.369             4577.6

                           -50         3.17              3225.332             4566.9   

       ………………………………………………………………….

                           +50        3.07               3888.237             4331.4

                            +25         3.31              3424.66               4874.7

                            +20         3.35               3234.050              3814.8

                            +10        3.44             3021.12 3            3665.3   

       c1
               -10          3.73              2734.464              3396.0

                           -20          3.82              2494.192              3123.4

                           -25          4.26              2124.375            3068.8

                           -50          4.41             1912.005              2894.4

         ………………………………………………………………

                          + 50         2.99               2887.633            4843.2

                          +25        3.48      3331.537            4771.3

                           +20        3.55     3379.185            4733.8

                         +10        3.63               3476.768              4655.6

          b2
           -10       3.69                3534.739          4596.7

                            -20         3.76                3581.35                4534.2

                            -25       3.88                3636.423           4412.5

                            -50        4.75                3675.547              4385.4

………………………………………………………………………

                           50          3.645       3658.4                 4855.0

                            25         3.583       3497.2                  4839.7

                            20          3.572       3484.5                 4834.6

                            10          3.557          3448.1                 4826.4

          c2
          -10          3.534       3436.3                  4823.1

                          -20          3.475       3401.2                 4818.5

Table

                           -25         3.461      3382.3                  4806.9

                        -50         3.391             3232.4                 4806.9

………………………………………………………………………

                        + 50           3.86            3665.4                 4867.3

                         + 25          3.77            3584.7                  4856.9

                         + 20           3.66            3563.2                 4852.2

                          +10           3.512          3533.4                4847.3

                      -10            3.487           3489.7                 4842.2

                           -20           3.415          3477.8                 4834.6

                           -25           3.330            3465,4                  4830.7

                          -50            3.311            3443.6                  4822.4

………………………………………………………………………

                         + 50            4.265            2824.5                  3346.8

                        + 25          3.880          2753.8                  3384.2

                         + 20          3.825          2757.2                  3391.1

                          +10          3.654         2631.8                  3513.6

    k1
               -10            3.057            2566.3                  3544.2

                          -20            2.879         2108.1                 3573.2

                        -25            2.533           2015.5                   3604.9  

                           -50            1.865           1994.2                   3604.9

………………………………………………………………………

                       + 50             2.936           2724.6                  3674.2

                        +25             3.833          2675.7                3624.1

                        +20          3.714           2634.3                 3600.5

                        + 10             3.685           2536.3                  3557.4

      k 2
          -10            3.612           2222.1                3487.2

                       - 20              3.467        2185.2                 3426.2

                        -25            3.345           2105.4                  3385.1       

                          -50                  3.292         1538.7                   3114.8

…………………………………………………………………….

                       +50                4.265          2824.5                   3346.8

                     + 25               3.884           2753                    3384.2

                    + 20               3.825           2657.2                   3391.1

                      + 10               3.654           2631.8                  3513.6

          k3
    -10                3.057           2566.3                  3544.2

                       -20                2.879           2108.1                  3573.2

                      -25                2.533           2015.5                  3604.9

                       -50               1.865           19994.2                3688.3

………………………………………………………………………………

………………………………………………………………………………

In the above table some sensitivity analysis of the model is 

performed by changing the parameter -50%, -25%, -20, -

10, 10%,20%, 25%, and 50%, taking one at time and 

keeping the remaining parameters unaltered.
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CONCLUSION 4

 

 

In a realistic product life cycle, demand is increasing with 

time during the growth phase. Then, after reaching its peak, 

the demand becomes stable for a finite time period called 

the maturity phase. Thereafter, the demand starts 

decreasing with time. Therefore, in this paper, we study the 

inventory model for constant deteriorating items with 

quadratic trapezoidal demand rate. We proposed an 

inventory replenishment policy for this type of inventory 

model. From the market information, we find that the 

quadratic trapezoidal type demand rate is more realistic 

than ramp type demand rate, constant demand rate and 

other

 

time dependent demand rate Our paper provides an 

interesting topic for the future study of such kind of 

important inventory models, and at the same time, the 

following problems can be considered for future research 

work (1) How about the inventory model starting with 

shortages? (2)

 

How about the inventory model with time 

dependent deteriorating rate instead of constant 

deteriorating rate?
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