
Design and Analysis of High Speed, Area

Optimized 32x32-Bit Multiply Accumulate Unit

Based on Vedic Mathematics

Aneesh R
ER&DCI Institute of Technology, C-DAC

Thiruvananthapuram

Kerala, INDIA

Sarin K Mohan

ER&DCI Institute of Technology, C-DAC

Thiruvananthapuram

Kerala, INDIA

Abstract—This paper describes the implementation of a

32x32-bit multiply accumulate (MAC) unit designed using

ancient Vedic mathematical techniques. This research

work presents the efficiency of Urdhva Triyagbhyam

Vedic method for multiplication which strikes a

difference in actual process of multiplication itself. It

enables the parallel generation of partial products and

eliminates unwanted multiplication and addition steps.

Multiply Accumulate unit is a key component in the most

of the digital signal processors, in order to make a balance

in the key performance characters such as speed, power

and area, a gate level implementation of the design is

adopted in the entire research work. An analysis of the

best adder among some commonly available adders is

carried out and the best adder is used for adding the

partial product generated in the Vedic multiplication

technique to reduce the combinational delay in the critical

path. The proposed research work is coded in VHDL, and

analysis in-terms of speed power and area is done on

vertex 6 FPGA using Xilinx ISE 13.1 tool.

Keywords— Vedic mathematics, Vedic multiplier, Multiply

Accumulate Unit, FPGA, VHDL)

I. INTRODUCTION

Multiplication is an important fundamental operation in
arithmetic operations. Multiply and Accumulate (MAC)
operations are used in many Digital signal processing (DSP)
applications like FFT, DFT, convolution, and also in the
arithmetic and logic unit of the microprocessors[8],[9]. In
many DSP applications, the Multiply Accumulate component
is a major contributing factor to the critical path delay and will
affect the performance of the application. Low values of the
critical path time delay and power consumption are the major
specification for many applications. This paper describes a
high speed, area efficient and low power 32x32 –bit multiply
accumulate unit based on Vedic mathematics

Multiplication operations performing in DSP applications,
delay and throughput are two major specifications from a
researcher’s and designer’s perspective. Time delay is the real
delay of computing the algorithm and throughput is the
measure of how many multiplication operations can be
completed in a specified time. Minimizing power
consumption and latency for digital system design involves
optimization at all areas of the design [8] [9]. The
optimization operation includes the best optimum algorithm

for the operation based on specification, this being the highest
level of design, then the circuit style, the topology and finally
the technology used to implement the digital circuits.

Most common multiplication algorithms followed in
digital hardware are array multiplication algorithm and booth
multiplication algorithm. Array multiplier is an efficient
layout of combinational multiplier. Array multiplier circuit is
based on add and shift algorithm. Partial products occurred
during the multiplication of multiplicand with one multiplier
bit and the partial products are added are shifted left or right
according to the bit order and then added. (N-1) adders are
required for N-bit multiplier. Booth multiplier is used for
signed-number multiplication, which considers both positive
and negative numbers in a same manner. It uses shift and add
method to achieve the appropriate result. Each multiplier bit
generates one multiple of the multiplicand which is to be
added to the partial product. For N-bit multiplicand it requires
N number of adders.

Proposed paper uses Vedic-mathematics based approach to
reduce the number of partial products for multiplication,
which in-effect reduces the number of adders. Vedic
mathematics is the ancient Indian system of mathematics
which is based on sixteen sutras and its sub-sutras mentioned
in Atharva-Veda, and deals with various branch of
mathematics such as arithmetic, algebra, geometry,
trigonometry, conics, astronomy, calculus etc.

 The proposed architecture of 32x32-bit Multiply-
accumulate unit based on Vedic mathematics is shown in
Fig1. The operand_1 and operand_2 are 32-bit data inputs.
The 64-bit output of MAC is available in Result pin and carry
from addition is available in Carry pin. The 64-bit adder
performs addition of the result from multiplier to the value
stored in the accumulator. To enhance the performance of
MAC unit, adder for multiplication and accumulation is
selected through a comparison of several adders.

Fig1: Top level representation of MAC unit

1

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040039

II. VEDIC MATHEMATICS

The multiplier is based on an algorithm Urdhva
Tiryakbhyam (Vertical and Crosswise) of ancient Indian
Vedic mathematics. Urdhva Tiryakbhyam sutra is general
multiplication formula applicable to all case of multiplication.
It is based on a novel concept through which generation of all
partial products can be done them; concurrent addition of
these partial products can be done. Thus parallelism in
generation of partial product is obtained by using Urdhva
Tiryakbhyam sutra. The summation of the parallel product is
done by using a high power carry save adder. The partial
products and their sums are calculating in parallel blocks, so
the multiplier path delay will not contribute to the critical
path delay of the system.

The strategy applied for developing a 32 x 32-bit Vedic
multiplier is to design a 2 x 2- bit Vedic multiplier as a basic
building module for the system. In the next stage of
development a 4 x 4-bit multiplier is designed using 2 x 2-bit
Vedic multiplier. Further in same manner 8 x 8, 16 x 16 and
32 x 32- bit Vedic multiplier is designed. For the partial
product addition for all stages of development a fast carry
save adder is used.

A. 2x2 Vedic Multiplier

 In 2 x 2-bit multiplier, the multiplicand has two bits each
and result of multiplication is of four bits. Input ranges from
“00” to “11” and the output lies in the set of “0000” to “1111”.
Fig 2 shows the stepwise multiplication of two binary
numbers using Vedic mathematics technique.

Fig2: Multiplication of “10” x “10”

 The first step in multiplication is vertical multiplication of
LSB of both multiplicands, and then second step is crosswise
multiplication and additions of the partial products. Third step
involves vertical multiplication of MSB of the multiplicand
and addition with the carry propagated from step 2. Fig3
shows the hardware realization of 2x2 Vedic multiplier.

Fig3: Hardware realization of 2x2 block

B. 4x4 Vedic Multiplier

The 4x4 multiplication is decomposed into four 2x2

multiplications performed in parallel. This mechanism

reduces the number of stages for the multiplication and thus

reduces the delay of the multiplier. Fig 4 shows the block

level representation of the 4x4 Vedic multiplier.

Fig3: Block level representation of 4x4 multiplier block

 The advantages of this mechanism is that larger bit streams
(say N-bits) can be divided into (N/2=n) bit length, which can
be further divided into n/2 bit streams and this can be
continued till we reach the bit stream width of 2-bits, and the
can be multiplied in parallel, thus providing an increase in
speed of operation. The selection of the adder is based on a
comparative study described in section III.

C. 8x8 Vedic Multiplier

 The 8x8 multiplier is formed by using four, 4x4 multiplier
blocks. Multiplicands are of bit size (n=8) where as the result
is 16-bit size. The input is broken into smaller block of size
n/2=4, for both inputs. The newly formed 4-bit data blocks are
given as input to the 4x4 multiplier block, formed by 2x2
block. The results produced from the 4x4 multiplier blocks
which is of 8-bit are given to the adder. Fig 4 represents the
block level representation of the 8x8 multiplier block

2

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040039

Fig4: Block level representation of 8x8 multiplier block

D. 16x16 Vedic Multiplier

 The 16x16 multiplier is designed by using four 8x8
multiplier blocks. Both the multiplicands are of bit size (n=16)
and the result is of 32-bit size. The input is broken into smaller
block of size of n/2=8, for both the inputs. The newly formed
8x8 data blocks are applying to the input of 8x8 multiplier
blocks. Fig5 repents the block level view of the 16x16
multiplier.

Fig5: Block level representation of 16x16 multiplier block

E. 32x32 Vedic Multiplier

 The 32x32 multiplier is made by using four 16x16
multiplier blocks. The multiplicands are of bit size (n=32)
where as the result is of 64-bit size. The input is broken into
smaller block of size of n/2=16, for both the inputs. The newly
formed 16x16 data blocks are applying to the input of 16x16
multiplier blocks. Fig6 repents the block level view of the
32x32 multiplier.

 Fig6: Block level representation of 32x32 multiplier block

The template is used to format your paper and style the
text. All margins, column widths, line spaces, and text fonts
are prescribed; please do not alter them. You may note
peculiarities. For example, the head margin in this template
measures proportionately more than is customary. This

measurement and others are deliberate, using specifications
that anticipate your paper as one part of the entire
proceedings, and not as an independent document. Please do
not revise any of the current designations.

III. ANALYSIS OF ADDER

Adders preform the key role in multiplication. As the number

of data input bits in the addition increases the delay of the

system also getting increased. In order to reduce the delay in

adder circuit, a comparative study on four popular adders

with various data inputs are carried out. The adder

implementation is done with basic gates.

A. Carry Save Adder

Carry save adder is best suitable on adding more then 3-

bits. The carry save adder is just a set of full adders and half

adders. For an n-bit adder implementation, still carry is

rippled to the next stage, of the same row, even though inputs

to the lower next stage is ready, but kept in a wait state, until

the sum and carry output didn’t come from the above stage.

This induces delay, now it can be optimized, if the carry out

is passed diagonally to the lower next stage, instead of

rippling to the next stage of the same row. Cary computation

is not performed, but it is saved up to last row, where the

results are obtained finally, in the last bottom row, carry is

rippled however, but is significantly reduces the amount of

delay occurred due to rippling operation. Fig 7 represents the

carry save adder structure for a 4-bit addition.

Fig7: Block level representation of 4-bit carry save adder

The intermediate carry and sum is generated by using the

half adder and it is given to full adder to perform the addition

B. Carry Skip Adder

The carry skip adder reduces the delay as compared with

carry lookahead adder and ripple carry adder. The carry skip

adder divides the input word into blocks. Within each block,

ripple carry adder is used to produce the sum bit and carry

bit. The carry skip adder reduces the delay due to the carry

computation i.e. by skipping over group of consecutive adder

stages. If the input the individual adder blocks is different,

sum will be generated and carry will not be computed and

also the incoming carry is propagated to the next block. Also

if both input to the blocks are zero, then incoming carry will

not be propagated. Fig 8 represents the general block

representation of the carry skip adder.

3

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040039

Fig 8: General block diagram of the carry skip adder

C. Ripple Carry Adder

The ripple carry adder is made using full adders only. The

N-bit data input is directly applied to the N-full adders to

perform the addition operation and the sum is generated in

parallel. If the incoming is absent in the system, first full

adder is replaced with the half adder. In ripple carry adder the

carry output from each stage is rippled to the next stage. Fig9

shows the general block diagram of the 4-bit ripple carry

adder.

Fig 9: Block diagram of 4-bit ripple carry adder

D. Carry Lookahead Adder

The significant delay produced in ripple carry adder is a

tradeoff; this can be minimized by computing the carry

initially itself, as it will minimizes the wait for the carry at

every stage. The carry lookahead adder is based on generate

and propagate approach. Fig10 represents the logic equations

used to represent the 4-bit carry lookahead adder.

Fig10: logic equation for 4-bit carry lookahead adder

E. Delay Analysis of Adders

The above adders are designed and developed using

VHDL for various data input configurations and implemented

on Xilinx Virtex 6 XC6VLX550T FPGA, the speed, area and

power specifications are computed. Fig11 shows the

speed/delay based comparison for the all adders.

Fig 10: Delay comparison of adders

From the above table it is clear that the minimum delay is

for the carry lookahead adder, and for the Multiply-

accumulate operation, the addition operator is replaced by

carry lookahead adder.

IV. MULTIPLY ACCUMULATE UNIT

The multiply accumulate unit performs the multiplication

and addition operation. For multiplication the proposed

method uses Vedic multiplier and for addition, method uses

carry lookahead adder. Fig11 shows the block level

representation of the multiply accumulate unit.

Fig11: Architecture of MAC unit

 The use of minim delay adder and a Vedic mathematics

based multiplier for the multiply accumulate unit. The use of

Vedic multiplier reduces significant amount of adders,

required for the multiplier implementation. The fig 12 give

the number of addition and multiplication required to

implement the multiplier using conventional and Vedic

multiplier approach.

4

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040039

Fig 12: Multipliers and additions required for implementation

V. SIMULATION AND IMPLEMENTATION

Register transfer level modeling of the 32x32-bit multiply

accumulate unit is done by using VHDL and implemented on

Xilinx virtex 6 XC6VLX550T FPGA using Xilinx ISE tool

kit. The maximum combinational path delay for the MAC

unit is 21.849 ns. Fig 13 shows the implementation summery

of the 32x32- MAC units on FPGA.

Fig 13: Combination delay summery form the Xilinx ISE tool

VI. CONCLUSSIONS

A low power, area efficient and highly combinational path

delay optimized 32x32-bit MAC is designed and

implemented on FPGA. For the efficient implementation of

the design various adders are studied, compared and among

them carry lookahead adders is used for the final

implementation. The future enhancement of the Vedic

multiplication is to pipeline the design and achieve more

throughputs.

ACKNOWLEDGMENT

This research work carried out as continuation of thesis

work carried out in Master of Technology in VLSI design and

Embedded systems at ER & DCI-Institute of technology,

Thiruvananthapuram

REFERENCES

[1] T.T Hoang, M. Sjalander, “Double throughput Multiply Accumulate

Unit for Flexcore processor enhancements”. IEEE International
symposium on parallel and distributed processing, pp1-4, 2009

[2] Jagadguru Swami Sri Bharati Krishna Trithaji Maharaja, “Vedic
Mathematics”,Motilal Banarsidas Publishers Pvt. Ltd Delhi, 2009

[3] A.D. Booth, “ A signed Binary multiplication Technique”, Qrt. J.Mech.
App. Math., Vol 4., no.2, pp.236-240,1951.

[4] Akhter S., “VHDL implementation of a fast NxN multiplier based on
Vedic mathematic”, pp. 472-475. ECCTD 2007.

[5] Shamsiah Suhaili and Othman Sidek, “ Design and implementation of
reconfigurable alu on FPGA”, 3rd International Conference on
Electrical & Computer Engineering ICECE 2004, 28-30 December
2004, Dhaka, Bangaladesh, pp.47-56.

[6] Tam Anh Chu, “Booth multiplier with low power high performace
Input circuitry”, US patent, 6393454BL, May 21 2002

[7] Frank Marzona, “vedic mathematics: The Scientific Heritage of
Ancient India”, Proceedings of the Pennsylvania State System of
Higher Education Mathematics association Conference, held at
Mansfield University 1997-volume one.

[8] Aneesh R, Jijuk, Sreekumari B, “Design and Implementation of
Bluetooth MAC core with RFCOMM on FPGA”, proceedings of
INDICON 2012.

[9] Aneesh R, Jijuk, “Design of FPGA based 8-bit RISC controller IP core
using VHDL”, proceedings of INDICON 2012

5

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040039

