
Design and Analysis of Generic Architecture of

Multipliers

Ms. Ritu Jain

M.Tech.*, VLSI Design
Poornima college of Engineering, Jaipur

Mr. Dinesh Chand Gupta
Asst. Professor, ECE Dept.

Poornima college of Engineering, Jaipur

Abstract:

Multipliers are becoming one of the most important building

block in recent digital signal processors and other high

performance systems. The area and delay of the multiplier often

affects the overall area and speed performance of a VLSI system.

In this paper we proposed the generic architecture of the four

different multipliers. This architecture will give area, delay and

other performance parameters of the multipliers for any number

of input bits. The four multipliers include array multiplier,

Column Bypass multiplier, Modified Booth multiplier, and

Wallace tree Multiplier. By using the generic architecture we

presented a comparative analysis in terms of area and delay

offered by these multipliers for different number of input bits.

The circuit is simulated using the Xilinx tool.

Index Terms – Array Multiplier, Column Bypass Multiplier,

Modified Booth Multiplier, Wallace Tree multiplier

I. INTRODUCTION

Multipliers are the key components of many high

performance systems such as RISC(reduced instruction set

computing), microprocessors, digital signal processors and

graphics engines. Design of portable battery operated

multimedia devices also requires energy efficient

multiplication circuits. So multipliers play a very important

role in the designing of VLSI circuits for these high speed

processors.

A VLSI system performance very highly depends on the

performance of the multiplier because generally the multiplier

is the most area consuming and the slowest element in the

system. Thus after guaranteeing the correct digital

functionality, the primary consideration for system designers

has always been to optimize the area and the time delay of the

multiplier circuit. Other factors may also have equal or greater

importance for example power dissipation, yield/reliability

issues etc. Nevertheless, in successive generations of

integrated circuit technologies area and the time delay are also

one of the primary considerations for the designers. Hence

optimizing the time delay and area is a major design issue.

However, a major complication in microelectronic circuits is

the fact that many design decisions involves a area – delay

tradeoff. One cannot be lowered without raising the other. If

we reduce the time delay to improve speed, that may result in

larger area. In this paper, we will arrive at a better trade-off

between the two area and the time delay by realizing the

generic architectures of the multipliers and then comparing

the results of all the four multipliers for different number of

input bits.

The common multiplication method is “add and shift”

algorithm. M*N bit multiplication can be viewed as forming

N partial products of M bits each and then summing the

appropriately shifted partial products to produce an M+N bit

result. To generate N partial products we have to perform

binary multiplication of multiplier with each multiplicand bit.

Binary multiplication is equivalent to a logical AND

operation. Each column of partial products must then be

added and if necessary, carry values are passed to the next

column.

There are a number of techniques that can be used to perform

multiplication. In general the choice is based upon the factors

such as area, time delay, latency, throughput and design

complexity. The first multiplier which we are going to design

is the Array Multiplier. Array multiplier is well known due to

its regular structure. In this multiplier the addition can be

performed using the normal carry save adder. But this adder

affects the time delay of the multiplier. Total N-1 adders are

required for multiplication where N is the multiplier length.

The second multiplier which we are going to design is the

Column Bypass multiplier. Column bypassing technique is

another well known technique. In this technique the

operations in a column can be disabled if the corresponding

bit in the multiplicand is zero. This technique totally depends

on the number of zeroes in the multiplicand bits. The third

multiplier which we are going to design is the modified booth

multiplier. The number of partial products to be added can be

reduced using modified booth algorithm. The array multiplier

and column bypass multiplier compute the partial products in

a radix-2 manner, i.e. by observing one bit of the multiplier at

a time. Radix 2
r
 multipliers produce N/r partial products, each

of which depends on the r bits of the multiplier. For example,

a radix-4 multiplier produces N/2 partial products. Fewer

partial products leads to a smaller and faster carry save adder

array. In this paper we are going to design a radix-4 Modified

Booth algorithm. This algorithm is also a powerful algorithm

for signed number multiplication, which treats both positive

and negative numbers uniformly. The fourth multiplier which

we are going to design is the Wallace tree multiplier. The

number of logic levels required to perform the summation can

be reduced using the Wallace tree algorithm. In array

multipliers the column addition is slow because only one

carry save adder is active at a time. But if we perform

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080579

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

579

summation of partial products in parallel rather than

sequentially then we can speed up the column addition.

Wallace tree algorithm uses this approach. The Wallace tree

requires [log3/2(N/2)] levels of carry select adders to reduce N

inputs down to 2 outputs. This also gives speed

improvements.

In this paper we are going to design the generic architecture

(n*n bit multiplication) of the four multipliers which are

mentioned above and then we will calculate the area occupied

and the time delay of all multipliers for different number of

input bits.

II. ARRAY MULTIPLIER

Array multiplier is well known due to it is regular structure. It

uses the fact multiplications form a recurring pattern.

Multiplier circuit is based on add and shift algorithm. Each

partial product is generated by the multiplication of the

multiplicand with one multiplier bit. The partial product are

shifted according to their bit orders and then added.

The generation of N partial products requires N*M two bit

AND gates. Then the summation of N partial products

requires N-1, M bit adders. Most of the area of the multiplier

is devoted to the adding of N partial products. The shifting of

the partial product for their proper alignment is performed by

simple routing. The hardware circuit for 4 – bit multiplication

using array multiplier is shown in figure 1.

One advantage of array multiplier comes from its regular

structure. Since it is regular, it is easy to layout. So the design

time of array multiplier is much less than that of a tree

multiplier. Another advantage is its ease of design for a

pipelined architecture. A fully pipelined array of the

multiplier has been successfully designed for high speed DSP

application.[3]

The main limitation of full linear array multipliers is that they

are very large. As operand size increases, linear arrays grow

in size at a rate equal to the square of the operand size. This is

because the number of rows in the array is equal to the length

of the multiplier, and the width of each row is equal to the

width of the multiplicand. Another problem with array

multiplier is that the hardware is underutilized. As the sum is

propagated down through the array, each row of CSA’s

computes a result only once, when the active computation

front passes that row. Thus, the hardware is doing useful work

for a very small percentage of time.[3]

Fig. 1: 4*4 Array Multiplier

III. COLUMN BYPASS MULTIPLIER

The computation of multiplier manipulates the input data to

generate the partial products for subsequent addition

operations, which requires many switching activities in

CMOS circuit design. These switching activities within the

functional unit of a multiplier account for the majority of the

power dissipation of a multiplier. So we introduce a parallel

multiplier in which switching activities are reduced through

architecture optimization using bypassing scheme. [4]

Column bypassing means turning off some columns in the

multiplier array whenever certain multiplicand bits are zero.

With this technique, the operations in a column can be

disabled if the corresponding bit in the multiplicand is 0. It

also uses additional tri state buffers and MUXs to skip the FA

cells in the column of 0 bits. The modified full adder for

column bypassing multiplier is shown in figure 2. Based on

this, a 4*4 column bypass multiplier structure is developed as

shown in figure 3.

Fig. 2: The Modified FA Cell for Column Bypass Multiplier. [5]

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080579

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

580

Fig 3: Structure of 4*4 Column bypassing multiplier [5]

IV. MODIFIED BOOTH MULTIPLIER

In the standard add and shift operation which was used in

array multipliers, the partial products are computed in a radix-

2 manner, i.e. by observing one bit of the multiplier at a time.

Each multiplier bit generates one multiple of the multiplicand

to be added to the partial product. But if the length of

multiplier is very large, then a large number of partial

products have to be added. In this case the delay of the

multiplier will increase as the number of bits in the multiplier

will increase because the delay in the multiplier is determined

by the number of additions to be performed.

Booth algorithm is a method that will reduce the number of

multiplicand multiples. A higher radix representation of a

number, leads to fewer digits. For example, a k-bit binary

number can be interpreted as k/2 digit radix-4 number, k/3

digit radix-8 number and so on. So we can deal with more

than one bit of the multiplier in each cycle of using higher

radix multiplication. Radix 2
r

multiplier produces N/r partial

products, each of which depends on group of r bits of the

multiplier. For example a radix-4 multiplier produces N/2

partial products. Fewer partial products lead to a smaller and

faster CSA array. For example a radix-4 multiplication is

shown in the figure 4.

Multiplicand A= ●●●●

Multiplier B= (●●)(●●)

Partial Product Bits ●●●●

 ●●●●

(B1B0)2A

 (B3B2)2A

Product P= ●●●●●●●●

Fig 4.: Radix-4 Modified Booth multiplication in dot notation

Initially grouping of multiplier bits is processed. The three

bits are selected at a time starting from left and with

overlapping of left most bit. Then the group of three bits of

multiplier is encoded according to the radix-4 modified booth

encoder. Booth encoder generates signals to control the

selector to choose -2Y, -Y, 0, Y or 2Y. Figure 5 shows the

design of a booth encoder and booth selector. Table 3.1 shows

how the partial products are selected, based on bits of the

multiplier. Since the booth method applies to 2’s complement

arithmetic, it is necessary to use sign extensions to obtain

correct result. For sign extension, all the rows of the partial

products have to be extended to 2*N, where N is the length of

the multiplicand, with the use of the sign bit of the respective

partial product. But it increases the capacitive load, the area,

and the computational time.

Fig 5: Radix-4 Booth Encoder and Selector

Inputs Booth Selects Partial

Product

x2i+1 x2i x2i-1 Xi 2Xi Mi PPi

0 0 0 0 0 0 0

0 0 1 1 0 0 Y

0 1 0 1 0 0 Y

0 1 1 0 1 0 2Y

1 0 0 0 1 1 -2Y

1 0 1 1 0 1 -Y

1 1 0 1 0 1 -Y

1 1 1 0 0 1 0

Table 1: Radix-4 Modified Booth Encoding values

V. WALLACE TREE MULTIPLIER

Several popular and well known schemes are developed, with

the objective of improving the speed of the parallel multiplier.

Tree multiplication is also a very important iterative

realization of parallel multiplier for this purpose. Tree

multipliers are faster and use less power than array

multipliers. This advantage becomes more pronounced for

multipliers bigger than 16-bits. The partial sum adders are

rearranged in a tree like fashion, so reducing both the critical

path and the number of adder cells needed.

All the tree algorithms use the matrix where the columns

represent each bit weight and the number of rows represents

how many partial products that bit weight has. The challenge

is to realize the complete matrix with a minimum depth and a

minimum number of adder elements. The algorithm reduces

the matrix by adding FAs and HAs to it. The first type of

operator that can be used to cover the array is a full adder,

which takes three inputs and produces two outputs (a 3, 2

counter). The sum, located in the same column and the carry,

located in the next one. For this reason, the FA is called a 3-2

compressor. It is denoted by a circle covering three bits. The

other operator is half adder, which takes two input bits in a

column and produces two outputs (a 2, 2 counter). It is

denoted by a circle covering two bits.

To arrive at the minimal implementation, we iteratively cover

the tree with FAs and HAs starting from its densest part. The

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080579

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

581

FAs and HAs produces an output matrix, which represents the

partial products for the next stage of the algorithm. The output

matrix contains the partial products that still need reduction.

This task is repeated several times, until the output contains

only columns with one or two partial products. Each bit

weight will then only have two outputs, and the result from

the tree can be put into a vector merging adder (VMA). By

connecting the FAs and HAs from each reduction stage, we

will get a structure that looks very similar to a tree, hence the

name is tree multiplier. Figure 6 shows the transformation of

a partial product tree into a Wallace tree. Figure 7 shows the

hardware implementation of 4*4 Wallace tree multiplier.

Partial Products First Stage

 6 5 4 3 2 1 0 6 5 4 3 2 1 0

 ● ● ● ● ● ● ● ● ● ● ●

 ● ● ● ● ● ● ● ● ●

 ● ● ● ● ● ● ●

 ● ● ● ● ●

 a b

Second Stage

Final Adder

 6 5 4 3 2 1 0 6 5 4 3 2 1 0

 ● ● ● ● ● ● ● ● ● ● ● ● ● ●

 ● ● ● ● ● ● ● ● ● ● ●

 ● ● ● ●

 c d

Fig 6: Transforming a partial product tree(a) into a Wallace tree(b,c,d)

Fig 7: Hardware implementation of Wallace tree for four-bit

multiplier[1]

The Wallace tree multiplier does not have a nice repetitive

structure as the array multiplier. So it has the disadvantage of

being irregular. So it uses a lot more area on wiring and also

complicates the task of creating an efficient layout.

VI. PROPOSED DESIGN

Our objective is to find out which multiplier is best suitable

with less area and less time delay for a particular application.

Existing digital multipliers are designed for a fix number of

input bits for example 8-

Fig 8: Generic Architecture of Carry Save Array Multiplier

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080579

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

582

Fig 9: Generic Architecture of Column Bypass Multiplier

Fig 10: Generic architecture of Modified Booth multiplier in dot notation

Fig 11: Generic Architecture of Wallace tree multiplier

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080579

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

583

bit, 64-bit, 128-bit etc. But in today’s digital signal processors

we can have any n*n bit multiplication. So it becomes a

limiting factor for broad range of applications. As a result we

have designed the generic architectures of the four multipliers

named as array multiplier, column bypass multiplier,

modified booth multiplier and Wallace tree multiplier. This

will give the correct multiplication result along with the area

occupied and the time delay of that multiplier for any number

of input bits. In this way we can find out the best suitable

multiplier which will occupy the less area and also has the

lesser time delay for any number of input bits and thus

optimization in the design can be obtained. Figure 8, 9, 10, 11

shows the generic architectures of Carry save Array

multiplier, Column bypass multiplier, Modified Booth

multiplier and Wallace tree multiplier respectively.

VII. RESULTS AND ANALYSIS

A. Propagation Delay

For the propagation delay the critical path delay is measured.

The propagation delay of each architecture is measured and

shown in table 1 and graphed in figure 12.

TABLE 1

Propagation Delay of multipliers (in ns)

Name of

multiplier

Array

Multiplier

Column

bypass

Multiplier

Modified

Booth

Multiplier

Wallace

Tree

Multiplier No. of

input bits

N=4 17.681 15.853 10.249 7.165

N=8 32.001 29.452 12.418 7.165

N=16 61.241 57.231 12.418 10.178

Figure 12: Propagation Delay test results

We can see from the graph that in terms of delay Wallace tree

multiplier performs best while array multiplier and column

bypass multiplier performs worst. As the number of input bits

increases the significant difference between the delay of

different multipliers also increases.

B. Area

The area of each multiplier is calculated in terms of no. of

LUTs, no. of slices and gate count and it is tabulated in table

2 and graphed in figures 13, 14 and 15 respectively.

TABLE 2

Area occupied by multipliers

 Array

Multipli

er

Column

bypass

Multiplie

r

Modified

Booth

Multiplie

r

Wallace

Tree

Multiplie

r

No.

of

LUTs

N=4 33 24 39 46

N=8 133 112 159 238

N=16 525 480 623 438

No.

of

Slices

N=4 18 13 23 32

N=8 69 58 84 140

N=16 268 241 321 240

Gate

Count

N=4 198 144 352 695

N=8 798 672 1423 3407

N=16 3150 2880 5563 6217

Fig 13: Total No. of LUTs test results

Fig 14: Total No. of slices test results

0

10

20

30

40

50

60

70

array column
Bypass modified

Booth

Wallace
Tree

N=4

N=8

N=16

PROPAGATION DELAY

0
100
200
300
400
500
600
700

Array Column
Bypass

Modified
booth

Wallace
Tree

N=4

N=8

N=16

No. of LUTs

0
50

100
150
200
250
300
350

Array Column
Bypass

Modified
Booth

Wallace
Tree

N=4

N=8

N=16

No. of Slices

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080579

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

584

Fig 14: Total No. of Gate Count test results

We can see from the graph that the column bypass multiplier

has the minimum gate count as compared to other multipliers

while the Wallace tree multiplier occupies more area.

VIII. CONCLUSION

Each multiplier has its own advantages and disadvantages.

The multipliers with bypassing scheme, booth encoding, and

tree structure has the less delay as compared to the array

multiplier but with the speed increment the gate count i.e. area

of the multiplier also increases.

As we increase the no. of input bits the Wallace tree

multiplier has the minimum delay and the array multiplier has

the maximum delay but in terms of area the column bypass

multiplier performs best and the Wallace tree multiplier

performs worst.

REFERENCES

[1]Jan M. Rabaey, Anantha Chandraprakashan, Borivoje Nikolic, “Digital

Integrated Circuits – A Design Perspective” , PHI learning private

limited, 2nd edition.

[2] Neil H.E. Weste, David Harris, Ayan Banerjee, “CMOS VLSI Design –

A circuits and systems Perspective”, Pearson education, 3rd edition

[3] K.Z.Peckmestzi “Multiplexer based Array multipliers” IEEE

Transactions on computers, Vol. 38, no. 1, January 1999

[4] T. Arunachalam and S. Kirubaveni, “Analysis of high speed

multipliers”, International conference on Communication and Signal

Processing 978-1-4673-4866-9/13/$31.00 ©2013 IEEE

[5] Alvin Joseph J. Tang, Joy Alinda Reyes, “Comparative analysis of low

power multiplier architectures” 2011 Fifth Asia Modelling Symposium

,978-0-7695-4414-4/11 $26.00 © 2011 IEEE

[6] Rutesh S. Lonkar, Pravin P. Ashtankar, S.S.Shriramwar, “Analysis of

column bypass multiplier”, The International Journal of Computer

Science & Applications (TIJCSA), ISSN – 2278-1080

[7] Sunjoo Hong, Taehwan Roh, and Hoi-Jun Yoo, “A 145 uW 8*8 parallel

multiplier based on optimized bypassing architecture”, 978-1-4244-

9474-3/11/$26.00 ©2011 IEEE

0

1000

2000

3000

4000

5000

6000

7000

Array column
bypass

modified
Booth

wallace
Tree

N=4

N=8

N=16

Gate Count

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080579

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

585

